Graphs with Magnetic Schrödinger Operators of Low Corank ${ }^{1}$

Hein van der Holst
Freie Universität Berlin, Fachbereich Mathematik und Informatik, Institute für Mathematik, Arnimallee 2-6, D-14195 Berlin, Germany
E-mail: hvdholst@math.fu-berlin.de

Received September 18, 1997

Colin de Verdière (1998, J. Combin. Theory, Ser. B. 74, 121-146) introduced the graph parameter $v(G)$, which is defined as the maximal corank of any positive semidefinite magnetic Schrödinger operator fulfilling a certain transversality condi-
View metadata, citation and similar papers at core.ac.uk

1. INTRODUCTION

Let $G=(V, E)$ be a graph with vertex set $V=\{1, \ldots, n\}$, which is allowed to have parallel edges, but which does not have loops. Let \mathscr{M}_{G} be defined as the space of all Hermitian $n \times n$ matrices $M=\left(m_{i, j}\right)$ with
(i) $m_{i, j} \neq 0$ if i and j are connected by only one edge, and with
(ii) $m_{i, j}=0$ if $i \neq j$ and i and j are not adjacent.

So, $m_{i, i} \in \mathbb{R}$, and if i and j are connected by at least two edges, then we allow $m_{i, j}=0$. A matrix $M \in \mathscr{M}_{G}$ is said to fulfill the strong Arnol'd property (SAP) if there is no nonzero Hermitian $n \times n$ matrix $X=\left(x_{i, j}\right)$ such that $M X=0$, and $x_{i, j}=0$ if $i=j$ or if i and j are adjacent. The maximum corank of any positive semidefinite Hermitian $n \times n$ matrix $M \in \mathscr{M}_{G}$ fulfilling the strong Arnol'd property is denoted by $v(G)$. This invariant $v(G)$ was studied by Colin de Verdière [5], although only for connected simple graphs G. He showed that if G^{\prime} is a connected minor of a connected simple

[^0]graph G, then $v\left(G^{\prime}\right) \leqslant v(G)$, and that $v(G) \leqslant 1$ if and only if G is a tree. Furthermore, it was shown that, in contrast to the graph invariant $\mu(G)$ introduced in [4] (see [3] for an English translation), the invariant $v(G)$ is not bounded by some formula in terms of the genus of the surface in which the graph can be embedded. It turns out that $v(G)$ can be arbitrarily large on the class of planar graphs; see [5] for a description of planar graphs for which $v(G)$ can be arbitrarily large. However, $v(G)$ was shown to be bounded from above by some kind of tree-width, $\mathrm{la}(G)$, of a graph G, and $\mathrm{la}(G)-1$ was shown to be bounded from above by the tree-width of G. Using the result of Robertson and Seymour (see for example [6] for a short proof) that for every planar graph H there is a number k such that if G has tree-width at least k, then G has a minor isomorphic to H, one can conclude that $v(G)$ is large if and only if the tree-width of the graph G is large.

In this paper we characterize the class of graphs G for which $v(G) \leqslant k$, $k=2,3$. For $k=2$, this class has K_{4} and C_{3}^{2} (this is the graph obtained from K_{4} by applying one $Y \Delta$-transformation) as excluded minors; see Section 5. This was also shown in [7]; here we give a different proof. For $k=3$, the excluded minors are K_{5} and all those graphs that can be obtained from the 3 -cube by repeatedly applying $Y \Delta$-transformation; see Section 9.

What happens if instead of the strong Arnol'd property we look at another property? For example, what is the maximum corank of any positive semidefinite $M \in \mathscr{M}_{G}$ such that if k is the corank of M, then every $(n-k) \times(n-k)$ principal submatrix of M is nonsingular? This question was solved by Lovász et al. in [10]. Modulo the fact that they used realvalued orthogonal representations instead of Hermitian matrices $M \in \mathscr{M}_{G}$, the answer is that the maximum corank of any such matrix is at least k if and only if G is k-connected. In Section 6 we show that any $M \in \mathscr{M}_{G}$ of corank k for which every principal $(n-k) \times(n-k)$ matrix is nonsingular fulfills the strong Arnol'd property. This implies that $v(G)$ is at least the connectivity of G. In that section we also show that if G is a graph whose underlying simple graph is V_{8}, then $v(G) \leqslant 3$ unless G has a minor isomorphic to one of the graphs obtained from the 3-cube by repeatedly applying $Y \Delta$-transformations.

2. PRELIMINARIES

Basic graph theory. Let $G=(V, E)$ be a graph which we allow to have parallel edges but no loops. The underlying simple graph of a graph G is the graph obtained by suppressing multiple edges. If $S \subseteq V$, then
$G-S$ denotes the subgraph of G induced by the vertices in $V \backslash S$. If $S \subseteq V$, then $G[S]$ denotes the induced subgraph of G on S. If H is a subgraph of G, then $N(H)$ denotes the set of neighbors in $V(G) \backslash V(H)$ of vertices in H. If $e \in E$ (by assumption e is not a loop), then G / e denotes the graph obtained from G by deleting e and identifying the ends of e. We say that G / e is obtained from G by contracting edge e. A graph that is obtained from a subgraph of G by contracting a series of edges is called a minor of G. Let G and H be graphs. We say that G has an H-minor if G has a minor isomorphic to H. We say that a class \mathscr{C} of graphs is closed under taking minors and isomorphism if it has the property that if G belongs to \mathscr{C}, then every graph isomorphic to G belongs to \mathscr{C}, and if G^{\prime} is a minor of a graph G which belongs to \mathscr{C}, then G^{\prime} belongs to \mathscr{C}. Let \mathscr{C} be a class of graphs closed under taking minors and isomorphism. Then a graph H is called an excluded minor for \mathscr{C} if H does not belong to \mathscr{C}, but each proper minor of H belongs to \mathscr{C}. The well-quasi-ordering theorem of Robertson and Seymour [11] says that any class of graphs closed under taking minors and isomorphisms has a finite collection of excluded minors.

A pair $\left(G_{1}, G_{2}\right)$ with $G_{1} \cup G_{2}=G, E\left(G_{1}\right) \cap E\left(G_{2}\right)=\varnothing$ is called a separation of G; its order is $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|$. A subset S of the vertices of G is called a vertex cut if $G-S$ is disconnected. If $X, Y, Z \subseteq V$, then Z separates X and Y if every path of G between X and Y has a vertex in common with Z.

The degree of a vertex v of a graph G is the number of incident edges. The neighborhood of v is the set of vertices which are adjacent to v. Since we allow parallel edges, it may happen that the degree of a vertex is larger than the number of vertices in its neighborhood. A graph G^{\prime} is obtained from G by a $Y \Delta$-transformation (at v) if v is a vertex of G of degree 3 which has three vertices in its neighborhood, G^{\prime} is obtained from G by deleting vertex v and its incident edges, and by adding an edge between each pair of vertices of the neighborhood of v. A graph G^{\prime} is obtained from G by a ΔY-transformation if G^{\prime} can be obtained by deleting the edges of a triangle of G and by adding a new vertex and edges of this vertex to all vertices of the triangle.

The complete graph on n vertices is denoted by K_{n}. By C_{3}^{2} we denote the graph obtained from K_{4} by one $Y \Delta$-transformation.

By $K_{n}^{=}$we denote the graph obtained from K_{n} by adding to each edge an edge in parallel. So $K_{3}^{=}=C_{3}^{2}$. Let $Q_{3}:=K_{2} \times K_{2} \times K_{2}$; that is, the graphs with vertex set all binary vectors of length 3 and two vertices are connected if their vectors differ only in one coordinate. We denote by K_{4}^{2} the graph $K_{4}^{=}$. Let the K_{4}^{2}-family be the collection of all graphs that can be obtained from Q_{3} by a series of $Y \Delta$-transformations. We denote by $Q_{3} Y \Delta$ the graph obtained from Q_{3} by applying one $Y \Delta$-transformation. Note that the only graphs of the K_{4}^{2}-family to which we cannot apply a $Y \Delta$-transformation are $K_{2,2,2}$ and K_{4}^{2}. In Fig. 1 the graphs of the K_{4}^{2}-family are depicted.

FIGURE 1
Matrix theory. An $n \times n$ matrix $M=\left(m_{i, j}\right)$ with complex entries is Hermitian if $m_{i, j}=\overline{m_{j, i}}$ for all $i, j \in\{1, \ldots, n\}$; $\overline{m_{j, i}}$ denotes the complex conjugate of $m_{i, j}$. We denote the kernel of M by $\operatorname{ker}(M)$; this is the space of all vectors $x \in \mathbb{C}^{n}$ satisfying $M x=0$. The corank of M is the dimension of the kernel of M; we use the notation $\operatorname{corank}(M)$ for the corank of M.

Let M be a Hermitian matrix. If there is a nonzero $x \in \mathbb{C}^{n}$ with $M x=\lambda x$, then λ is an eigenvalue of M, and x is called an eigenvector of M belonging to λ. Since M is Hermitian, all eigenvalues of M are real, and hence we can order the eigenvalues $\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{n}$.

Sylvester's law of inertia states that if A is a nonsingular $n \times n$ matrix and M is a Hermitian $n \times n$ matrix, then $A^{\mathrm{H}} M A$ has the same number of negative and positive eigenvalues (counting multiplicities) and the same corank as M.

Let

$$
R(x):=\frac{x^{\mathrm{H}} M x}{x^{\mathrm{H}} x}
$$

The quotient $R(x)$ is called the Rayleigh quotient. For all nonzero vectors $x, \lambda_{1} \leqslant R(x)$, and $\lambda_{1}=R(x)$ if and only if x is an eigenvector belonging to λ_{1}. A Hermitian $n \times n$ matrix M is positive semidefinite if all its eigenvalues are nonnegative; that is, $x^{\mathrm{H}} M x \geqslant 0$ for all $x \in \mathbb{C}^{n}$. If $x^{\mathrm{H}} M x=0$ in this case, then the Rayleigh quotient tells us that $x \in \operatorname{ker}(M)$. A Hermitian $n \times n$ matrix M is positive definite if $x^{\mathrm{H}} M x>0$ for all nonzero $x \in \mathbb{C}^{n}$. If M is a positive semidefinite Hermitian $n \times n$ matrix of corank k, then there is a $(n-k) \times n$ matrix C of rank $n-k$ such that $M=C^{\mathrm{H}} C$.

Let $V=\{1, \ldots, n\}$. If $x \in \mathbb{C}^{n}$ then $\operatorname{supp}(x):=\left\{i \in V \mid x_{i} \neq 0\right\}$. If $S \subseteq V$ and $x \in \mathbb{C}^{n}$, then x_{S} denotes the subvector of x induced by the indices in S. If M
is an $n \times n$ matrix and $S, R \subseteq V$, then M_{S} denotes the principal submatrix of M induced by row and column indices in S, and $M_{S, R}$ denotes the submatrix of M induced by row indices in S and column indices in R.

Proposition 2.1. Let M be positive semidefinite. Let $x \in \operatorname{ker}(M)$ be nonzero and let $S:=\operatorname{supp}(x)$. Then M_{S} is singular. Conversely, if M_{S} is singular, then there is a nonzero $x \in \operatorname{ker}(M)$ with $\operatorname{supp}(x) \subseteq S$.

Proof. Since $x \in \operatorname{ker}(M), x^{\mathrm{H}} M x=x_{S}^{\mathrm{H}} M_{S} x_{S}=0$. As M_{S} is a principal submatrix of M, M_{S} is positive semidefinite. The Rayleigh quotient tells us that $M_{S} x_{S}=0$, and hence M_{S} is singular.

Conversely, let $y \in \operatorname{ker}\left(M_{S}\right)$ be nonzero, and let x be defined by $x_{S}=y$ and $x_{i}=0$ if $i \notin S$. Then $x^{\mathrm{H}} M x=y^{\mathrm{H}} M_{S} y=0$. As M is positive semidefinite, $M x=0$, by the Rayleigh quotient.

For further definitions in matrix theory, we refer to [9]. For the basic definitions in graph theory, we refer to [2].

3. CERTAIN SCHRÖDINGER OPERATORS

Let $G=(V, E)$ be a graph with vertex set $V=\{1, \ldots, n\}$ and with no loops. Let \mathscr{M}_{G} be the set of all Hermitian $n \times n$ matrices $M=\left(m_{i, j}\right)$ with
(i) $m_{i, j} \neq 0$ if i and j are connected by only one edge, and with
(ii) $m_{i, j}=0$ if $i \neq j$ and i and j are not adjacent.

So, $m_{i, i} \in \mathbb{R}$ and if i and j are connected by at least two edges then we allow $m_{i, j}=0$.

Theorem 3.1. Let $G=(V, E)$ be a graph and let $M \in \mathscr{M}_{G}$ be positive semidefinite. Let $k:=\operatorname{corank}(M)$. If $x \in \operatorname{ker}(M), x \neq 0$, then $G[\operatorname{supp}(x)]$ has at most k components. Furthermore, if C is a component of $G[\operatorname{supp}(x)]$ and y is defined by $y_{i}=x_{i}, i \in V(C)$, and $y_{i}=0, i \notin V(C)$, then $y \in \operatorname{ker}(M)$.

Proof. Let C_{1}, \ldots, C_{t} be the components of $G[\operatorname{supp}(x)]$. Let $x\left(C_{l}\right)$, for $l=1, \ldots, t$, be the vector with $x\left(C_{l}\right)_{j}=x_{j}$ if $j \in C_{l}$ and $x\left(C_{l}\right)_{j}=0$ otherwise. Note that $x\left(C_{l}\right)^{H} M x\left(C_{l}\right)=0$ and that $x\left(C_{k}\right)^{H} M x\left(C_{l}\right)=0$, as the support of $M x\left(C_{l}\right)$ is a subset of $V \backslash \operatorname{supp}(x)$. For each $\left(\alpha_{1}, \ldots, \alpha_{t}\right) \in \mathbb{C}^{t}$, let

$$
z_{\left(\alpha_{1}, \ldots, \alpha_{i}\right)}:=\sum_{i=1}^{t} \alpha_{i} x\left(C_{i}\right) .
$$

Since

$$
z_{\left(\alpha_{1}, \ldots, \alpha_{1}\right)}^{H} M z_{\left(\alpha_{1}, \ldots, \alpha_{1}\right)}=0,
$$

we see, from the Rayleigh quotient that $z_{\left(\alpha_{1}, \ldots, \alpha_{t}\right)}$ belongs to $\operatorname{ker}(M)$. Hence $t \leqslant k$. Furthermore $y=x(C) \in \operatorname{ker}(M)$.

Proposition 3.2. Let $M \in \mathscr{M}_{G}$ be positive semidefinite. Let $x \in \operatorname{ker}(M)$ be nonzero with $G[\operatorname{supp}(x)]$ connected. If $v \notin \operatorname{supp}(x)$ is adjacent to a vertex of $\operatorname{supp}(x)$, then there are at least two edges connecting v to $\operatorname{supp}(x)$.

Proof. If there is only one edge connecting v to $\operatorname{supp}(x)$, then the v th column of $M x$ is nonzero.

Proposition 3.3. Let $M=\left(m_{i, j}\right) \in \mathscr{M}_{G}$ be positive semidefinite. Then $m_{i, i}=0$ only if i is connected to each of its neighbors by at least two edges.

Proof. Since M is positive semidefinite $M=A^{\mathrm{H}} A$ for some matrix A, where A^{H} denotes the conjugate of A. If $m_{i, i}=0$, then the i th column of A would be zero, and hence in M all entries $m_{i, j}$ and $m_{j, i}$ would be zero for $j \in V(G)$. This is, by definition, only possible if i is connected to each of its neighbors by at least two edges.

4. THE STRONG ARNOL'D PROPERTY

Let $\mathscr{M}_{n, k}$ denote the manifold of all Hermitian $n \times n$ matrices with corank k. A matrix $M \in \mathscr{M}_{G}$ of corank k is said to fulfill the strong Arnol'd property (w.r.t. G) if \mathscr{M}_{G} and $\mathscr{M}_{n, k}$ intersect transversally in M. This means that the span of the tangent space of \mathscr{M}_{G} at M and the tangent space of $\mathscr{M}_{n, k}$ at M is equal to the space of all Hermitian $n \times n$ matrices. In Theorem 4.3 the equivalence of this definition with the definition given in the Introduction is shown. If it is clear what graph G we use, then we omit G, and we say that M fulfills the SAP. To check whether a matrix fulfills the SAP, we have the following theorem [3,5]. Although stated for simple connected graphs the theorem also holds for graphs with parallel edges.

Theorem 4.1. Let $G=(V, E)$ be a graph with n vertices. A matrix $M \in \mathscr{M}_{G}$ fulfills the $S A P$ if and only if, for every Hermitian $n \times n$ matrix A, there is a Hermitian $n \times n$ matrix $B=\left(b_{i, j}\right)$, with $b_{i, j}=0$ if $i \neq j$ and i and j are not connected by an edge, such that for all $x \in \operatorname{ker}(M), x^{\mathrm{H}} A x=x^{\mathrm{H}} B x$.

This criterion shows that the SAP only depends on $\operatorname{ker}(M)$ (and of course G.)

Let $M \in \mathscr{M}_{G}$ and let L be a matrix whose rows consist of the vectors of a basis of $\operatorname{ker}(M)$ (viewed as row vectors). Let $l_{i}, i \in V$ be the columns of L. Then Theorem 4.1 says that M fulfills the SAP if and only if the linear span of all the matrices $l_{i} l_{i}^{\mathrm{H}}, i \in V$, and $l_{i} l_{j}^{\mathrm{H}}+l_{j} l_{i}^{\mathrm{H}}, i, j \in V$ adjacent, is equal to the space of all Hermitian $d \times d$ matrices, where $d=\operatorname{corank}(M)$. Looking to the normal space of the linear span, we get the following criterion.

Theorem 4.2. Let $G=(V, E)$ be a graph. Let $M \in \mathscr{M}_{G}$ and let $l_{i}, i \in V$, be the columns of the matrix whose rows are the vectors of a basis of $\operatorname{ker}(M)$. Let $d:=\operatorname{corank}(M)$. Then M fulfills the SAP if and only if there is no nonzero Hermitian $d \times d$ matrix A such that $l_{i}^{\mathrm{H}} A l_{i}=0$ for all $i \in V$ and $l_{i}^{\mathrm{H}} A l_{j}=0$ for all $i, j \in V$ adjacent .

By using, for example, Gaussian elimination one can check if a matrix $M \in \mathscr{M}_{G}$ fulfills the SAP. Another useful criterion to check if a matrix M fulfills the SAP is stated in the following theorem. In [8] it is stated for realvalued symmetric matrices, but a proof for Hermitian matrices goes along the same lines as in the real-valued case.

Theorem 4.3 [8]. Let $G=(V, E)$ be a graph. Then $M \in \mathscr{M}_{G}$ fulfills the SAP if and only if there is no nonzero Hermitian matrix $X=\left(x_{i, j}\right)$ with $x_{i, j}=0$ if $i=j$ or if i and j are adjacent, such that $M X=0$.

This theorem follows from Theorem 4.2, as we can take $X:=L^{\mathrm{H}} A L$ if M does not fulfill the SAP, and by the spectral decomposition theorem any such X can be written as $K^{\mathrm{H}} B K$, where each row of K belongs to the span of the rows of X and where B is a diagonal matrix.

The following proposition allows us to get bounds on $v(G)$.
Proposition 4.4. Let $G=(V, E)$ be a graph. Let $M \in \mathscr{M}_{G}$ be positive semidefinite and such that M fulfills the SAP. Then $G[\operatorname{supp}(x)]$ is a connected graph for each nonzero $x \in \operatorname{ker}(M)$.

Proof. If there exists a nonzero $x \in \operatorname{ker}(M)$ with $G[\operatorname{supp}(x)]$ disconnected, then, by Theorem 3.1, there are nonzero vectors $y, z \in \operatorname{ker}(M)$ with $\operatorname{supp}(y) \cap \operatorname{supp}(z)=\varnothing$. Let $X=\left(x_{i, j}\right):=y z^{\mathrm{H}}+z y^{\mathrm{H}}$. Then $M X=0, X$ is nonzero, and $x_{i, j}=0$ if $i=j$ or if i and j are adjacent.

In this proposition, the SAP is essential. It is easy to give an example of a graph G such that there is a positive semidefinite matrix $M \in \mathscr{G}$ and a nonzero $x \in \operatorname{ker}(M)$, with $G[\operatorname{supp}(x)]$ disconnected. Let G be the graph consisting of two isolated vertices, and let $M \in \mathscr{M}_{G}$ be the 2×2 all-zero matrix. Then $x=(1,1)^{\mathrm{H}} \in \operatorname{ker}(M)$ has $G[\operatorname{supp}(x)]$ disconnected. Thus M does not fulfill the SAP. Any positive semidefinite matrix $N=\left(n_{i, j}\right) \in \mathscr{M}_{G}$
fulfilling the SAP will have $n_{i, i}=0$ for at most one vertex of G. In the more general case where G is an arbitrary but disconnected graph, any positive semidefinite matrix $M \in \mathscr{M}_{G}$ will have $M_{V(C)}$ singular for at most one component C of G.

Let G be the graph as depicted in Fig. 2. The matrix

$$
M:=\left(m_{i, j}\right)=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

belongs to \mathscr{M}_{G}. A representation of the kernel of M is given by the row vectors of the following matrix

$$
L:=\left(l_{i}\right)=\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & -1
\end{array}\right) .
$$

The Hermitian matrix

$$
A:=\left(a_{i, j}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

shows that M does not fulfill the SAP. However, for each $x \in \operatorname{ker}(M)$, $G[\operatorname{supp}(x)]$ is connected. So the converse of Proposition 4.4 is not true in general.

FIGURE 2

5. THE PARAMETER v OF A GRAPH

In this section we recall the definition of $v(G)$, given by Colin de Verdière in [5]. We give an extension to graphs which are allowed to have parallel edges and which are not necessarily connected.

The invariant $v(G)$ is defined as the largest corank k of any positive semidefinite matrix $M \in \mathscr{M}_{G}$ fulfilling the SAP.

Theorem 5.1. If G^{\prime} is a minor of G then $v\left(G^{\prime}\right) \leqslant v(G)$.
See [5] for a proof for connected simple graphs; see [7] for a proof for graphs where parallel edges are allowed. Using Theorems 5.4 and 5.7, the proof of Theorem 5.1 for graphs with parallel edges follows from the proof of Theorem 5.1 for connected simple graphs; in the proofs of Theorems 5.4 and 5.7, one does not need to use Theorem 5.1.

Let \mathscr{C}_{k} be the class of graphs G with $v(G) \leqslant k$. By Theorem 5.1, \mathscr{C}_{k} is closed under taking minors and isomorphism. By the well-quasi-ordering theorem of Robertson and Seymour [11], for each fixed k, there exists a finite collection of excluded minors for \mathscr{C}_{k}. The following two propositions give some obvious excluded minors for \mathscr{C}_{k}.

Proposition 5.2. $\quad v\left(K_{n}\right)=n-1$.
See [5]. As each proper minor H of K_{n} has $v(H)<n-1, K_{n}$ is an excluded minor for the class of graphs G with $v(G) \leqslant n-2$. (To see that $v(H)<n-1$ if H arises from K_{n} by contracting an edge, one can use the facts that $K_{n}^{=}$is an excluded minor for $v(G) \leqslant n-1$ and that H is a proper minor of $K_{n}^{=}$. See the following proposition.)

Proposition 5.3. $v\left(K_{n}{ }^{=}\right)=n$.
Proof. It is clear that $v\left(K_{n}^{=}\right) \leqslant n$. To see that $v\left(K_{n}^{=}\right) \geqslant n$, take $M:=0$. Then M is positive semidefinite and M fulfills the SAP.

As each proper minor H of $K_{n}^{=}$has $v(H)<n, K_{n}^{=}$is an excluded minor for the class of graphs G with $v(G) \leqslant n-1$. Hence we have that K_{4} and $C_{3}^{2}=K_{3}^{=}$are excluded minors for the class of graphs G with $v(G) \leqslant 2$. We shall see that K_{4} and C_{3}^{2} are the only excluded minors for the class of graphs G with $v(G) \leqslant 2$.

The following two propositions show that, for any integer $t>1$, an excluded minor of the class of graphs G with $v(G) \leqslant t$ has no $(\leqslant 2)$-vertex cut.

Proposition 5.4. Let G_{1} and G_{2} be graphs. If G is a $(\leqslant 1)$-sum of G_{1} and G_{2}, then $v(G)=\max \left\{v\left(G_{1}\right), v\left(G_{2}\right)\right\}$.

A proof of this proposition can be found in [7]. The proof is similar to the proof of the following proposition.

Proposition 5.5. Let G be a 2-connected graph. Let $S=\left\{s_{1}, s_{2}\right\}$ be a 2-vertex cut of G and let G_{1} and G_{2} be subgraphs of G such that $G_{1} \cup G_{2}=G$ and $G_{1} \cap G_{2}=G[S]$. If G_{1} or G_{2} is a path connecting the vertices of S, say G_{1} is a path, then $v(G)=v\left(G_{2}^{\prime}\right)$, where G_{2}^{\prime} is the graph obtained from G_{2} by adding a new edge between the vertices of S. Otherwise $v(G)=$ $\max \left\{v\left(G_{1}^{\prime}\right), v\left(G_{2}^{\prime}\right)\right\}$, where $G_{i}^{\prime}, i=1,2$ is the graph obtained from G_{i} by adding two edges between the vertices of S.

Proof. The case where G_{1} or G_{2} is a path follows from Theorem 5.7. So we may assume that neither G_{1} nor G_{2} is a path connecting the vertices of S.

Since $G_{i}^{\prime}, i=1,2$ is a minor of $G, v(G) \geqslant \max \left\{v\left(G_{1}^{\prime}\right), v\left(G_{2}^{\prime}\right)\right\}$.
To prove $v(G) \leqslant \max \left\{v\left(G_{1}^{\prime}\right), v\left(G_{2}^{\prime}\right)\right\}$, let $M \in \mathscr{M}_{G}$ be a matrix with $\operatorname{corank}(M)=v(G)$ and such that M fulfills the SAP. Let $C:=V\left(G_{1}\right)-S$ and let $D:=V\left(G_{2}\right)-S$. We may write

$$
M=\left(\begin{array}{ccc}
M_{C} & M_{C, S} & 0 \\
M_{S, C} & M_{S} & M_{S, D} \\
0 & M_{D, S} & M_{D}
\end{array}\right) .
$$

Either M_{C} or M_{D} is positive definite, by Propositions 2.1 and 4.4. We assume that M_{C} is positive definite.

Let

$$
P:=\left(\begin{array}{ccc}
1 & -M_{C}^{-1} M_{C, S} & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right)
$$

Then

$$
P^{\mathrm{H}} M P=\left(\begin{array}{cc}
M_{C} & 0 \\
0 & M^{\prime}
\end{array}\right),
$$

where

$$
M^{\prime}=\left(m_{i, j}^{\prime}\right):=\left(\begin{array}{cc}
M_{S}-M_{S, C} M_{C}^{-1} M_{C, S} & M_{S, D} \\
M_{D, S} & M_{D}
\end{array}\right) .
$$

Sylvester's law of inertia tells us that M^{\prime} is positive semidefinite and that M^{\prime} has corank $v(G)$. It is clear that $M^{\prime} \in \mathscr{M}_{G_{2}^{\prime}}$.

Suppose to the contrary that M^{\prime} does not fulfill the SAP. Then there is a nonzero Hermitian matrix $X^{\prime}=\left(x_{i, j}^{\prime}\right)$ with $x_{i, j}=0$ if $i=j$ or if i and j are adjacent and with $M^{\prime} X^{\prime}=0$. Then $X_{S, S}^{\prime}=0$, as the vertices of S are adjacent in G_{2}^{\prime}. Let

$$
X:=\left(\begin{array}{ccc}
0 & 0 & -M_{C}^{-1} M_{C, S} X_{S, D}^{\prime} \\
0 & 0 & X_{S, D}^{\prime} \\
-X_{D, S}^{\prime} M_{S, C} M_{C}^{-1} & X_{D, S}^{\prime} & X_{D}^{\prime}
\end{array}\right)
$$

Then $X=\left(x_{i, j}\right)$ is a nonzero Hermitian matrix, with $x_{i, j}=0$ if $i=j$ or if i and j are connected by an edge in G, such that $M X=0$. Hence M would not fulfill the SAP.

With Propositions 5.4 and 5.5 we get
Theorem 5.6. $\quad v(G) \leqslant 2$ if and only if G has no K_{4} - and no C_{3}^{2}-minor.
Proof. Since $v\left(K_{4}\right)=3$ and $v\left(C_{3}^{2}\right)=3$, a graph G with a $K_{4}{ }^{-}$or a C_{3}^{2}-minor has $v(G) \geqslant 3$. For the converse, let G be a graph with $v(G) \geqslant 3$ and with no K_{4}-minor. As each 3 -connected graph has a K_{4}-minor, G is not 3-connected. By Propositions 5.4 and 5.5 , we may assume G has no $(\leqslant 2)$-vertex cuts. So G has at most three vertices. Now only the all-zero 3×3 matrix has corank equal to 3 . Therefore G has a C_{3}^{2}-minor (indeed it has a subgraph isomorphic to C_{3}^{2}).

Theorem 5.7. If G^{\prime} is a subdivision of G, then $v\left(G^{\prime}\right)=v(G)$.
A proof of this theorem can be found in [7]. The reader should be able to provide a proof after reading the proof of the next theorem.

Theorem 5.8. If G^{\prime} is obtained from G by a $Y \Delta$-transformation, then $v\left(G^{\prime}\right) \geqslant v(G)$.

Proof. Let $M=\left(m_{i, j}\right) \in \mathscr{M}_{G}$ be a positive semidefinite Hermitian matrix with corank $v(G)$ and such that M fulfills the SAP. Let v be the vertex of degree 3 of the Y. By Proposition 3.3, $m_{v, v}>0$. Let S be the set of three vertices adjacent to v and let $C:=V(G)-(S \cup\{v\})$. We may write

$$
M=\left(\begin{array}{ccc}
m_{v, v} & M_{v, S} & 0 \\
M_{S, v} & M_{S, S} & M_{S, C} \\
0 & M_{C, S} & M_{C, C}
\end{array}\right) .
$$

Let

$$
M^{\prime}:=\left(\begin{array}{cc}
M_{S, S}-\frac{1}{m_{v, v}} M_{S, v} M_{v, S} & M_{S, C} \\
M_{C, S} & M_{C, C}
\end{array}\right) .
$$

Then $M^{\prime} \in \mathscr{M}_{G^{\prime}}$. Let

$$
P:=\left(\begin{array}{ccc}
1 & -\frac{1}{m_{v, v}} M_{v, S} & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{array}\right)
$$

Then

$$
P^{\mathrm{H}} M P=\left(\begin{array}{cc}
m_{v, v} & 0 \\
0 & M^{\prime}
\end{array}\right)
$$

From Sylvester's law of inertia it follows that M^{\prime} is positive semidefinite and that the corank of M^{\prime} is equal to the corank of M.

To see that M^{\prime} fulfills the SAP, suppose that there exists a nonzero Hermitian matrix $X^{\prime}:=\left(x_{i, j}^{\prime}\right)$, with $x_{i, j}^{\prime}=0$ if $i=j$ or if i and j are connected by an edge, such that $M^{\prime} X^{\prime}=0$. Then $X_{S, S}^{\prime}=0$. Let $X_{v, C}:=-\left(1 / m_{v, v}\right) M_{v, S} X_{S, C}^{\prime}, \quad X_{v, v}=0, \quad X_{v, S}=0, \quad X_{S, S}=0, \quad X_{S, C}=X_{S, C}^{\prime}$, and $X_{C, C}=X_{C, C}^{\prime}$. Then $X=\left(x_{i, j}\right)$ is a nonzero Hermitian matrix, with $x_{i, j}=0$ if $i=j$ or if i and j are connected by an edge in G, such that $M X=0$. Hence M would not fulfill the SAP.

Note that it may happen that $v\left(G^{\prime}\right)>v(G)$ if G^{\prime} is obtained from G by a $Y \Delta$-transformation, as $v\left(K_{1,3}\right)=1$, while $v\left(K_{3}\right)=2$.

We now give some excluded minors for the class of graphs G with $v(G) \leqslant 3$.

Proposition 5.9. $v\left(Q_{3}\right) \geqslant 4$.
Proof. Let

$$
M:=\left(\begin{array}{cccccccc}
1 & 1 & 0 & -1 & 0 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & -1 \\
-1 & 0 & 1 & 3 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 3 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 1 & 1 \\
0 & 0 & -1 & 0 & 1 & 0 & 1 & 3
\end{array}\right) .
$$

Then $M \in \mathscr{M}_{Q_{3}}$, and M is positive semidefinite and has corank 4. Furthermore M fulfills the SAP, as can easily be checked by using Theorem 4.3.

Proposition 5.10. All graphs G of the K_{4}^{2}-family have $v(G)=4$.
Proof. Since all graphs of the K_{4}^{2}-family can be obtained from Q_{3} by applying $Y \Delta$-transformations, we have that $v(G) \geqslant 4$ for all graphs G in the K_{4}^{2}-family. If one of the graphs G of the K_{4}^{2}-family has $v(G)>4$, then, as $K_{2,2,2}$ or K_{4}^{2} can be obtained from G by applying $Y \Delta$-transformations, $v\left(K_{2,2,2}\right)>4$ or $v\left(K_{4}^{2}\right)>4$. With Proposition 5.3 and Corollary 6.5a we derive a contradiction. Hence $v(G)=4$ for all graphs G in the K_{4}^{2}-family.

Since the proper minors of H of the graphs of the K_{4}^{2}-family all have $v(H) \leqslant 3$, the graphs of the K_{4}^{2}-family are excluded minors for the class of graphs G with $v(G) \leqslant 3$. In Section 9 we shall see that K_{5} and the graphs of the K_{4}^{2}-family are the only excluded minors for the class of graphs G with $\nu(G) \leqslant 3$.

6. ORTHOGONAL REPRESENTATIONS

A different characterization of $v(G)$ can be given, by using orthogonal representations. The main results of this section are Proposition 6.6 and Theorem 6.5.

An orthogonal representation of $G=(V, E)$ in \mathbb{C}^{d} is a function $\phi: V \rightarrow \mathbb{C}^{d}$ such that $\phi(u)$ and $\phi(v)$ are orthogonal if the vertices u and v are nonadjacent in G. If, moreover, $\phi(u)$ and $\phi(v)$ are orthogonal only if u and v are nonadjacent or if u and v are connected by at least two edges, then the orthogonal representation ϕ is called faithful. This notion of faithful is slightly different from the one given in [10], where an orthogonal representation ϕ is called faithful if $\phi(u)$ and $\phi(v)$ are orthogonal if and only if u and v are nonadjacent. However, for simple graphs these two notions coincide.

An orthogonal representation $\phi: V \rightarrow \mathbb{C}^{d}$ of $G=(V, E)$ is in general position if for every set of d vertices $\left\{v_{1}, \ldots, v_{d}\right\}$, the set of vectors $\left\{\phi\left(v_{1}\right), \ldots, \phi\left(v_{d}\right)\right\}$ is linearly independent.

Orthogonal representations of G were studied by Lovász et al. in [10], where they showed the following theorem (using \mathbb{R}^{d} instead of \mathbb{C}^{d}, but that does not matter here).

Theorem 6.1. A graph G with n vertices has a faithful general-position orthogonal representation in \mathbb{C}^{d} if and only if G is $(n-d)$-connected.

Each faithful orthogonal representation $\phi: V \rightarrow \mathbb{C}^{d}$ gives rise to a positive semidefinite matrix $M=\left(m_{i, j}\right) \in \mathscr{M}_{G}$ of corank $n-d$ defined by $m_{i, j}=\phi(i)^{\mathrm{H}} \phi(j)$. Conversely, from each positive semidefinite matrix $M=\left(m_{i, j}\right) \in \mathscr{M}_{G}$ of corank $n-d$ we can make a faithful orthogonal representation $\phi: V \rightarrow \mathbb{C}^{d}$. This follows from a standard result from matrix theory saying that for each positive semidefinite Hermitian $n \times n$ matrix M of corank $n-d$, there exists a $d \times n$ matrix Q of rank d such that $M=Q^{\mathrm{H}} Q$.

Let us say that an orthogonal representation is stable if the corresponding matrix $M=\left(m_{i, j}\right) \in \mathscr{M}_{G}$ defined by $m_{i, j}=\phi(i)^{\mathrm{H}} \phi(j)$ fulfills the SAP.

Theorem 6.2. Let $G=(V, E)$ be a graph with n vertices. Then $n-v(G)$ is equal to the smallest dimension d such that there is a stable faithful orthogonal representation of G in \mathbb{C}^{d}.

Lemma 6.3. Let $G=(V, E)$ be a graph. Let $\phi: V \rightarrow \mathbb{C}^{d}$ be an orthogonal representation of G. Let $M=\left(m_{i, j}\right)$ with $m_{i, j}=\phi(i)^{\mathrm{H}} \phi(j)$. Then ϕ is in general position if and only if each nonzero $x \in \operatorname{ker}(M)$ has at most ($n-d-1$) entries equal to zero.

Proof. Let $\left\{x_{1}, \ldots, x_{n-d}\right\}$ be a basis of $\operatorname{ker}(M)$, and let l_{1}, \ldots, l_{n} be defined by

$$
L=\left(\begin{array}{lll}
l_{1} & \ldots & l_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{\mathrm{H}} \\
\vdots \\
x_{n-d}^{\mathrm{H}}
\end{array}\right) .
$$

Then ϕ is in general position if and only if $\left\{l_{i} \mid i \in V\right\}$, is in general position. This is equivalent to the statement that each nonzero $x \in \operatorname{ker}(M)$ has at most ($n-d-1$) entries equal to zero.

Proposition 6.4. Every general-position orthogonal representation is stable.

Proof. Let $\phi: V(G) \rightarrow \mathbb{C}^{d}$ be a general-position orthogonal representation of G. Let $M=\left(m_{i, j}\right)$ with $m_{i, j}=\phi(i)^{\mathrm{H}} \phi(j)$. Let $X=\left(x_{i, j}\right)$ with $x_{i, j}=0$ if $i=j$ or if i and j are adjacent, such that $M X=0$. By Theorem 6.1, every vertex of G has degree at least $(n-d)$. Hence every column of X contains at least ($n-d$) zeroes. By Lemma 6.3, $X=0$. So M fulfills the SAP, and hence ϕ is stable.

From this proposition and Theorem 6.1, the following lower bound for $v(G)$ follows.

Theorem 6.5. If G has a k-connected minor then $v(G) \geqslant k$.
Corollary 6.5a. $\quad v\left(K_{5}\right)=4$ and $v\left(K_{2,2,2}\right)=4$.
Proof. By Proposition 5.2, $v\left(K_{5}\right)=4$. As $K_{2,2,2}$ is 4-connected, $v\left(K_{2,2,2}\right) \geqslant 4$ by Theorem 6.5. If $v\left(K_{2,2,2}\right)>4$, then there exists a matrix $M \in \mathscr{M}_{K_{2,2,2}}$ with corank $(M)>4$ and fulfilling the SAP. As corank $(M)>4$, there is a nonzero vector $x \in \operatorname{ker}(M)$ with $x_{v_{1}}=x_{v_{2}}=x_{v_{3}}=x_{v_{4}}=0$, where v_{1}, v_{2}, v_{3} are vertices of $K_{2,2,2}$ in different color classes and $v_{4} \neq v_{1}, v_{2}, v_{3}$. But for each vertex v for which $x_{v} \neq 0$, there is a vertex w with $x_{w}=0$ such that w is only adjacent to v. This is a contradiction, for w should be adjacent to at least two vertices of $\operatorname{supp}(x)$.

If U is a unitary matrix (this means that $U^{\mathrm{H}} U=I$) then the function $U \phi$ is an orthogonal representation of G for which $(U \phi(i))^{\mathrm{H}} U \phi(j)=$ $\phi(i)^{\mathrm{H}} \phi(j)$. Hence, if ϕ is a stable orthogonal representation of $G=(V, E)$ and U is a unitary matrix then also $U \phi$ is a stable orthogonal representation of G. If $d: V \rightarrow \mathbb{C}$ with $d(v) \neq 0$ for all $v \in V$, then ϕd is a stable orthogonal representation of G.

The four-rung Mobius ladder is denoted by V_{8} (see Fig. 3).

FIGURE 3
Proposition 6.6. Let G be a graph whose underlying simple graph is isomorphic to V_{8}. If there exists a positive semidefinite matrix $M=\left(m_{i, j}\right) \in \mathscr{M}_{G}$ with corank$(M) \geqslant 4$ fulfilling the $S A P$, then G has a minor isomorphic to a graph in the K_{4}^{2}-family.

Proof. In this proof we label the vertices of V_{8} as in Fig. 3. For every vertex v of $G, m_{v, v}>0$; or equivalently, there is no $x \in \operatorname{ker}(M)$ with $|\operatorname{supp}(x)|=1$. For if not, then v is connected to each of its neighbors by at least two edges, which implies that G has a $K_{4}^{2} \Delta Y$-minor.

We next show that

$$
\begin{equation*}
\operatorname{corank}(M) \leqslant 4 \quad \text { for all } \quad M \in \mathscr{M}_{G} . \tag{1}
\end{equation*}
$$

Suppose corank $(M)>4$. Then there are nonzero vectors $x, y \in \operatorname{ker}(M)$ with $x_{h}=x_{e}=x_{c}=x_{f}=0$ and $y_{a}=y_{f}=y_{d}=y_{g}=0$. Since there are no vectors $z \in \operatorname{ker}(M)$ with $|\operatorname{supp}(z)|=1, \operatorname{supp}(x)=\{a, b\}$ and $\operatorname{supp}(y)=$ $\{b, c\}$. Let $z:=x_{b} y-y_{b} x$. Then $\operatorname{supp}(z)=\{a, c\}$, and hence $G[\operatorname{supp}(z)]$ is disconnected. So corank $(M) \leqslant 4$.
We next show that $\operatorname{corank}(M) \leqslant 3 \quad$ for all $\quad M \in \mathscr{M}_{V_{8}}$.

For this we use Theorem 6.2. So there is a faithful orthogonal representation $\phi: V\left(V_{8}\right) \rightarrow \mathbb{C}^{4}$. Hence we may take $\phi(a)=(1,0,0,0), \phi(c)=$ $(0,1,0,0), \phi(f)=(0,0,1,0)$. Then we can write $\phi(d)=\left(0,1,0, d_{4}\right)$, $\phi(e)=\left(e_{1}, 0,1, e_{4}\right), \phi(g)=\left(0, g_{2}, g_{3}, 1\right)$, and $\phi(h)=\left(1,0,0, h_{4}\right)$. If $\phi(b)$ would be of the form $\left(b_{1}, b_{2}, b_{3}, 0\right)$, then, since $\phi(b)$ and $\phi(d)$ are orthogonal, $b_{2}=0$ and $\phi(c)$ is orthogonal to $\phi(b)$, which implies that b and c are connected by at least two edges. Hence we can write $\phi(b)=\left(b_{1}, b_{2}, b_{3}, 1\right)$. Since $\phi(b)$ and $\phi(d)$ are orthogonal, $\overline{b_{2}}=-d_{4}$. Since $\phi(b)$ and $\phi(e)$ are orthogonal, $\overline{b_{1}} e_{1}+\overline{b_{3}}=-e_{4}$. Since $\phi(b)$ and $\phi(h)$ are orthogonal, $\overline{b_{1}}=-h_{4}$. So $\phi(b)=\left(-\overline{h_{4}},-\overline{d_{4}},-\overline{e_{4}}-b_{1} \overline{e_{1}}, 1\right)$ Since $\phi(d)$ and $\phi(g)$ are orthogonal, $g_{2}=-\overline{d_{4}}$. Since $\phi(e)$ and $\phi(g)$ are orthogonal, $g_{3}=-\overline{e_{4}}$. Hence $\phi(g)=$ $\left(0,-\overline{d_{4}},-\overline{e_{4}}, 1\right)$. Since $\phi(e)$ and $\phi(h)$ are orthogonal, $\overline{e_{1}}+\overline{e_{4}} h_{4}=0$; hence $\overline{b_{1}}=\overline{e_{1}} / \overline{e_{4}}$. So $\phi(b)=\left(-\overline{h_{4}},-\overline{d_{4}},-\overline{e_{4}}-\left(\left|e_{1}\right|^{2} /\left|e_{4}\right|^{2}\right) \overline{e_{4}}, 1\right)$.

But $\phi(b)$ and $\phi(g)$ are orthogonal, so $\left|d_{4}\right|^{2}-\left|e_{4}\right|^{2}+\left|e_{1}\right|^{2}+1=0$, which gives a contradiction. Hence $\operatorname{corank}(N) \leqslant 3$ for each positive semidefinite $N \in \mathscr{M}_{V_{8}}$.

Therefore, if $M=\left(m_{i, j}\right) \in \mathscr{M}_{G}$ has $\operatorname{corank}(M)=4$, then $m_{i, j}=0$ for at least one pair of adjacent vertices. Thus G has at least one parallel edge. We distinguish, up to symmetry, two cases. Namely, a and h are connected by at least two edges, or a and e are connected by at least two edges.

We look to the case where $m_{a, h}=0$. Then, $\operatorname{since} \operatorname{corank}(M)=4$, there is a nonzero vector $x \in \operatorname{ker}(M)$ with $x_{b}=x_{d}=x_{e}=0$. Then $x_{a}=0$ as $m_{a, a}>0$. Now, either $x_{f} \neq 0$ and $m_{e, f}=0$, or $x_{f}=0$ and $x_{g} \neq 0$, for otherwise $x_{h}=0$ and $x_{c}=0$, which implies that $x=0$. But, if $x_{f}=0$ and $x_{g} \neq 0$, then $m_{f, g}=0$.

Suppose that $m_{f, g}=0$. Then we show that also $m_{b, c}=0, m_{d, e}=0$, and hence b and c are connected by at least two edges and d and e are connected by at least two edges. This graph G clearly has a K_{4}^{2}-minor. Again using Theorem 6.2, there is a faithful orthogonal representation $\phi: V G \rightarrow \mathbb{C}^{4}$. We may assume that $\phi(a)=(1,0,0,0), \phi(c)=(0,1,0,0)$, $\phi(f)=(0,0,1,0)$, and $\phi(h)=(0,0,0,1)$. This implies that we may write $\phi(b)=\left(b_{1}, b_{2}, b_{3}, 0\right), \phi(d)=\left(0, d_{2}, 0, d_{4}\right), \phi(e)=\left(e_{1}, 0, e_{3}, 0\right)$, and $\phi(g)=$ $\left(0, g_{2}, 0, g_{4}\right)$ (as $\left.m_{f, g}=0\right)$. Hence $\phi(d)$ and $\phi(e)$ are orthogonal, which
means that d and e must be connected by at least two edges. Because $\phi(b)$ and $\phi(d)$ are orthogonal, $\overline{b_{2}} d_{2}=0$. Hence $b_{2}=0$ or $d_{2}=0$. Suppose $d_{2}=0$. Then $g_{4}=0$, as $\phi(g)$ and $\phi(d)$ are orthogonal, and hence $\phi(g)=$ $\left(0, g_{2}, 0,0\right)$. But since $\phi(g)$ and $\phi(b)$ are orthogonal, $b_{2}=0$. If $b_{2}=0$ then $\phi(b)$ and $\phi(c)$ are orthogonal, which means that b and c are connected by at least two edges.

Suppose that $m_{e, f}=0$. Then using Theorem 6.2, there is a faithful orthogonal representation $\phi: V G \rightarrow \mathbb{C}^{4}$. We may assume that $\phi(a)=$ $(1,0,0,0), \phi(c)=(0,1,0,0), \phi(f)=(0,0,1,0)$, and $\phi(h)=(0,0,0,1)$. This implies that we may write $\phi(b)=\left(b_{1}, b_{2}, b_{3}, 0\right), \phi(d)=\left(0, d_{2}, 0, d_{4}\right)$, $\phi(e)=\left(e_{1}, 0,0,0\right)$, and $\phi(g)=\left(0, g_{2}, g_{3}, g_{4}\right)$. Since e and b are not adjacent, $\overline{e_{1}} b_{1}=0$, so $b_{1}=0$, for $e_{1}=0$ implies that $m_{e, e}=0$. Since b and d are not adjacent, $\overline{b_{2}} d_{2}=0$, so $b_{2}=0$ or $d_{2}=0$. If $b_{2}=0$, then $\phi(b)=$ $\left(0,0, b_{3}, 0\right)$ and $\phi(g)=\left(0, g_{2}, 0, g_{4}\right)$. Then b and c are connected by at least two edges, as are f and g, and e and d. Hence G has a K_{4}^{2}-minor. So we may assume that $d_{2}=0$. Then $\phi(g)=\left(0, g_{2}, g_{3}, 0\right)$. Then c and d are connected by at least two edges, as are e and f and h and g. But also in this case G has a K_{4}^{2}-minor.

Hence we may assume that a and e are connected by at least two edges. We may, furthermore, assume that there are no parallel edges on the Hamilton circuit of G, as that case was handled above. Since corank $(M)=4$, there is a nonzero vector $x \in \operatorname{ker}(M)$ with $x_{b}=x_{h}=x_{f}=0$. This implies that $x_{a}=0$, which implies $x_{c}=0$, and this implies $x_{g}=0$. Then $x_{d}=x_{e}=0$ follows, and hence $x=0$, which gives a contradiction.

7. ROOTED GRAPHS

A rooted graph $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$ is a pair, where G is a graph and $s_{1}, \ldots, s_{t} \in V(G)$.

Let G and H be graphs. The following few definitions are taken from [13]. A model ϕ of H in G assigns to each edge e of H an edge $\phi(e)$ of G and to each vertex v of H a nonnull connected subgraph $\phi(v)$ of G, such that
(i) the graphs $\phi(v), v \in V(H)$, are mutually vertex-disjoint, the edges $\phi(e), e \in E(H)$, are all distinct, and for $v \in V(H)$ and $e \in E(H)$, $\phi(e) \notin E(\phi(v)) ;$
(ii) for $e \in E(H)$, if e has ends u and v, then $\phi(e)$ has one end in $V(\phi(u))$ and the other in $V(\phi(v))$.

So, if ϕ is a model of H in G, then H is isomorphic to a minor of G.

Let $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$ and $\left(H,\left(r_{1}, \ldots, r_{t}\right)\right)$ be rooted graphs. A model ϕ of $\left(H,\left(r_{1}, \ldots, r_{t}\right)\right)$ in $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$ is a model of H in G such that $s_{i} \in V\left(\phi\left(r_{i}\right)\right), 1 \leqslant i \leqslant k$. We say that $\left(H,\left(r_{1}, \ldots, r_{t}\right)\right)$ is isomorphic to a minor of $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$ if there is a model of $\left(H,\left(r_{1}, \ldots, r_{t}\right)\right)$ in $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$. We say that $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$ has an $\left(H,\left(r_{1}, \ldots, r_{t}\right)\right)$-minor if $\left(H,\left(r_{1}, \ldots, r_{t}\right)\right)$ is isomorphic to a minor of $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$.

Let (A, B) be a separation of G with $V(A \cap B)=\left\{s_{1}, \ldots, s_{k}\right\}$. If $\left(A^{\prime},\left(r_{1}, \ldots, r_{k}\right)\right)$ is isomorphic to a rooted minor of $\left(A,\left(s_{1}, \ldots, s_{k}\right)\right)$, then, after identifying r_{i} with s_{i} for $i=1, \ldots, k, A^{\prime} \cup B$ is isomorphic to a minor of G. So if $\left(A^{\prime}, B\right)$ is a separation of a graph containing an excluded minor and $\left(A^{\prime},\left(r_{1}, \ldots, r_{k}\right)\right)$ is isomorphic to a rooted minor of $\left(A,\left(s_{1}, \ldots, s_{k}\right)\right)$, then, after identifying the roots of $\left(A^{\prime},\left(r_{1}, \ldots, r_{k}\right)\right)$ with those of $\left(A,\left(s_{1}, \ldots, s_{k}\right)\right), A \cup B$ contains the excluded minor as well. So only separations (A, B) are allowed where $\left(A^{\prime},\left(r_{1}, \ldots, r_{k}\right)\right)$ is not isomorphic to a minor of $\left(A,\left(s_{1}, \ldots, s_{k}\right)\right)$.

If $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$ is a rooted graph, then a separation (A, B) with $s_{i} \in B$, for $1 \leqslant i \leqslant t$, and $|A \backslash B|>0$ is called an internal separation; $|V(A \cap B)|$ is called the order of the separation. We say that a rooted graph ($G,\left(s_{1}, \ldots, s_{t}\right)$) is internally t-connected if there is no internal separation of $\left(G,\left(s_{1}, \ldots, s_{t}\right)\right)$ of order $\leqslant t$.

Let $K_{4} r$ be the rooted graph $\left(K_{4},\left(s_{1}, s_{2}, s_{3}\right)\right)$, where s_{1}, s_{2}, and s_{3} are three distinct vertices of K_{4}.

Lemma 7.1. Let $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$ be an internally 3-connected rooted graph. Then, $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$ has no $K_{4} r$-minor if and only if G has no K_{4}-minor.

Proof. The difficult part is to prove that if G has a K_{4}-minor, then ($G,\left(s_{1}, s_{2}, s_{3}\right)$) has a $K_{4} r$-minor. So suppose that G has a K_{4}-minor. Then G has a subdivision of K_{4} as a subgraph. Now let K be any subdivision of K_{4} in G. If there are only two vertex-disjoint paths between $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and K, then clearly there is a ($\leqslant 2$)-separation (A, B) with $(A \backslash B) \cap S=\varnothing$ and $|A \backslash B|>0$. So there are three vertex-disjoint paths between S and K. Let t_{1}, \ldots, t_{4} be the vertices of degree 3 in K and let P_{1}, \ldots, P_{6} be the paths of K between the vertices t_{1}, \ldots, t_{4}. If the paths from S to K do not end in one path P_{i} for some i then $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$ clearly has a $K_{4} r$-minor.

So, for any subdivision K of K_{4} in G, the paths from S to K end in one path, say P_{1}. We take K such that the length of the path P_{1} onto which the paths from S to K end is as short as possible. Let Q_{1}, Q_{2}, Q_{3} be three vertex-disjoint paths from S to P_{1}. Let t_{1} and t_{2} be the ends of P_{1}. Since there is no ($\leqslant 2$)-separation (A, B) with $(A \backslash B) \cap S=\varnothing$ and $|A \backslash B|>0$ (so especially there is no such separation (A, B) with $V(A \cap B)=\left\{t_{1}, t_{2}\right\}$), there must be a path P from $K-V\left(P_{1}\right)$ to $Q_{1} \cup Q_{2} \cup Q_{3} \cup P_{1}$. We may assume that P has no internal vertices in $Q_{1} \cup Q_{2} \cup Q_{3} \cup K$. If P has one
end in $\left(Q_{1} \cup Q_{2} \cup Q_{3}\right) \backslash V\left(P_{1}\right)$, then we can find three vertex-disjoint paths which do not all end in P_{1}. Hence P has one end in P_{1}. Let u_{1}, u_{2} be the vertices of two paths of Q_{1}, Q_{2}, Q_{3} ending in P_{1} so that the other path of Q_{1}, Q_{2}, Q_{3} ends in P_{1} between the vertices u_{1} and u_{2}. If P has one end in P_{1} between u_{1} and u_{2}, not including u_{1} and u_{2}, then we can find a subdivision K^{\prime} of K_{4} in G such that not all paths from S to K^{\prime} end in one path between the vertices of degree 3 of K^{\prime}. So P has one end in P_{1} which does not lie between u_{1} and u_{2} (but we allow that the end of P is u_{1} or u_{2}). Then we can find a subdivision K^{\prime} of K_{4} in G such that the path of K^{\prime} onto which all paths from S to K^{\prime} end has shorter length. This gives a contradiction, so ($G,\left(s_{1}, s_{2}, s_{3}\right)$) has a $K_{4} r$-minor.
Let $C_{3}^{2} r$ be the rooted graph $\left(C_{3}^{2},\left(s_{1}, s_{2}, s_{3}\right)\right)$, where s_{1}, s_{2}, and s_{3} are three distinct vertices of C_{3}^{2}.

Theorem 7.2. Let $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$ be an internally 3-connected rooted graph.. Then G has no C_{3}^{2-} and no K_{4}-minor if and only if $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right.$) has no $C_{3}^{2} r$ - and no $K_{4} r$-minor.

Proof. If G has no C_{3}^{2} - and no K_{4}-minor, then clearly ($G,\left(s_{1}, s_{2}, s_{3}\right)$) has no $C_{3}^{2} r$ - and no $K_{4} r$-minor.

For the converse we may assume, by Lemma 7.1, that G has no K_{4}-minor. Suppose to the contrary that G has a C_{3}^{2}-minor. We assume that G is a minimal counterexample, that is, G^{\prime} has no C_{3}^{2}-minor for each proper minor G^{\prime} of G.

It is clear that we may assume that G is connected.
Suppose G is not 2 -connected. Let r be a cut-vertex of G. Since $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$ is internally 3 -connected, each component C of $G-\{r\}$ either contains at least two vertices of $\left\{s_{1}, s_{2}, s_{3}\right\}$ (and hence exactly two vertices) or consists of only one vertex, and this vertex is one of the vertices of $\left\{s_{1}, s_{2}, s_{3}\right\}$. Let C_{1} be a component of $G-\{r\}$ consisting of one vertex, which we may assume is s_{1} without loss of generality. Then $\left(G-s_{1}\right.$, $\left(r, s_{2}, s_{3}\right)$) has no $C_{3}^{2} r$-minor, and hence G has no C_{3}^{2}-minor. Thus G is 2-connected.

Suppose that G has a $K_{2,3}$-minor. Then there are two distinct vertices p_{1} and p_{2}, three openly vertex-disjoint paths P_{1}, P_{2}, and P_{3} connecting p_{1} to p_{2}, and each of these paths has more than one edge. If there is a path from an internal vertex of one path to an internal vertex of another path, then G has a K_{4}-minor. Hence $\left\{p_{1}, p_{2}\right\}$ is a vertex cut of G, and each path in $\left\{P_{1}, P_{2}, P_{3}\right\}$ belongs to a component of $G-\left\{p_{1}, p_{2}\right\}$. Let C_{1}, C_{2}, and C_{3} be the components of $G-\left\{p_{1}, p_{2}\right\}$. Since ($G,\left(s_{1}, s_{2}, s_{3}\right)$) is internally 3-connected, each component $C_{i}, i=1,2,3$, contains a vertex of $\left\{s_{1}, s_{2}, s_{3}\right\}$; we may assume that $s_{i} \in V\left(C_{i}\right), i=1,2,3$. Let G_{i}, for $i=1,2,3$, be the graph obtained from $G\left[V\left(C_{i}\right) \cup\left\{p_{1}, p_{2}\right\}\right]$ by adding two edges connecting p_{1} and p_{2}. Then $\left(G_{1},\left(s_{1}, p_{2}, p_{3}\right)\right)$ is isomorphic to a minor of $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$.

Similar statements hold for $\left(G_{2},\left(p_{1}, s_{2}, p_{3}\right)\right)$ and $\left(G_{3},\left(p_{1}, p_{2}, s_{3}\right)\right)$. By minimality, $G_{i}, i=1,2,3$ has no C_{3}^{2}-minor. But then G has no C_{3}^{2}-minor.

Hence G is outerplanar; we assume that G is embedded into the plane. Let C be the circuit bounding the infinite face. If C has no chord, then G has at most three vertices. But then clearly G has no C_{3}^{2}-minor if ($G,\left(s_{1}, s_{2}, s_{3}\right)$) has no $C_{3}^{2} r$-minor. So we may assume that C has a chord. Let p_{1} and p_{2} be the ends of a chord. Let C_{1} and C_{2} be the components of $G-\left\{p_{1}, p_{2}\right\}$, and let G_{i} for $i=1,2$ be the graph obtained from $G\left[V\left(C_{i}\right) \cup\left\{p_{1}, p_{2}\right\}\right]$ by adding an edge between p_{1} and p_{2}. So, in G_{i}, $i=1,2$, at least two edges are connecting p_{1} and p_{2}. Suppose that C_{1} contains exactly one vertex of $\left\{s_{1}, s_{2}, s_{3}\right\}$, say it contains s_{1}. Then $\left(G_{1},\left(s_{1}, p_{1}, p_{2}\right)\right)$ or $\left(G_{1},\left(s_{1}, p_{2}, p_{1}\right)\right)$ is isomorphic to a minor of ($G,\left(s_{1}, s_{2}, s_{3}\right)$), and hence, by minimality, G_{1} has no C_{3}^{2}-minor. Almost the same argument applies to the case when C_{1} contains two vertices of $\left\{s_{1}, s_{2}, s_{3}\right\}$, and similarly for C_{2}. So G_{1} and G_{2} have no C_{3}^{2}-minor. But then G has no C_{3}^{2}-minor, a contradiction.

Let $K_{3}^{r} p:=(G,(u, v, w))$, where G is the graph with vertex set $\{u, v, w, x\}$ and edge set $\{u v, u x, v x, x w\}$; see Fig. 4, where bold vertices are the roots of $K_{3}^{r} p$.

Proposition 7.3. Let $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$ be an internally 3-connected rooted graph. Suppose $K_{3}^{r} p$ is not isomorphic to a minor of $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$. Then the underlying simple graph of $G-s_{3}$ is a subgraph of a path.

Proof. Add to ($G,\left(s_{1}, s_{2}, s_{3}\right)$) an edge connecting s_{1} and s_{3}, and one connecting s_{2} and s_{3}; let the rooted graph obtained be ($G^{\prime},\left(s_{1}, s_{2}, s_{3}\right)$). As ($G,\left(s_{1}, s_{2}, s_{3}\right)$) has no $K_{3}^{r} p$-minor, ($G^{\prime},\left(s_{1}, s_{2}, s_{3}\right)$) has no $K_{4} r$-minor, and hence, by Lemma 7.1, G^{\prime} has no K_{4}-minor.

Suppose that there is no path from s_{1} to s_{2} disjoint from s_{3}. Then, as $\left(G,\left(s_{1}, s_{2}, s_{3}\right)\right)$ is internally 3-connected, $V(G)=\left\{s_{1}, s_{2}, s_{3}\right\}$, and the proposition is clear.

So we may assume that there is a path P from s_{1} to s_{2} disjoint from s_{3}; we take this path as short as possible. Suppose that $G-\left(\left\{s_{3}\right\} \cup V(P)\right)$ is

FIGURE 4
nonempty; let C be a component of $G-\left(\left\{s_{3}\right\} \cup V(P)\right)$. If $N(C)$ has more than two vertices, then G^{\prime} has a K_{4}-minor; so $N(C)$ has at most two vertices. But this contradicts the fact that ($G,\left(s_{1}, s_{2}, s_{3}\right)$) is internally 3-connected. Hence $V(G)=V(P) \cup\left\{s_{3}\right\}$. Since P is as short as possible, there is no edge connecting two nonadjacent vertices of P. So deleting s_{3} from G gives a graph whose underlying simple graph is a path.

8. TREE-DECOMPOSITIONS

A tree-decomposition of a graph $G=(V, E)$ is a pair (T, W) where T is a tree and $W=\left(W_{t} \mid t \in V(T)\right)$ is a family of subsets of V with the following properties.
(i) $\bigcup\left\{W_{t} \mid t \in V(T)\right\}=V$,
(ii) every edge of G has both ends in some W_{t}, and
(iii) if $t_{1}, t_{2}, t_{3} \in V(T)$ and t_{2} lies on a path from t_{1} to t_{3}, then $W_{t_{1}} \cap W_{t_{3}} \subseteq W_{t_{2}}$.
The subsets W_{t} are called the bags of the tree-decomposition. The width of a tree-decomposition is $\max \left(\left|W_{t}\right|-1 \mid t \in V(T)\right)$, and the tree-width of G is the minimum width of any tree-decomposition of G. See [12].

Let (T, W) be a tree-decomposition of G with $W_{s} \subseteq W_{t}$ for adjacent vertices s and t of T. Let T^{\prime} be the tree obtained from T by contracting the edge connecting s and t; let the new vertex be r. Let $W_{r}=W_{t}$. Then (T^{\prime}, W) is a tree-decomposition of G with width equal to the width of the treedecomposition (T, W). We call a tree-decomposition (T, W) such that there are no adjacent vertices s, t with $W_{s} \subseteq W_{t}$, a nice tree-decomposition. By the construction given above it is possible to find a nice tree-decomposition for every tree-decomposition.

If G^{\prime} is a minor of G, then the tree-width of G^{\prime} is at most the tree-width of G. Hence the class of graphs G with tree-width at most k can be characterized by a finite family of excluded minors. For $k=1$ the only excluded minor is K_{3}. For $k=2$ the only excluded minor is K_{4}. For $k=3$ the excluded minors are given in the following theorem.

Theorem 8.1. A graph G has tree-width $\leqslant 3$ if and only if G has no K_{5}, $K_{2,2,2}, C_{5} \times K_{2}$, or V_{8}-minor.

See [1] for a proof of the excluded minors characterization of the class of graphs with tree-width $\leqslant 3$. We use this characterization of graphs with tree-width $\leqslant 3$ in the proof of the characterization of the graphs G with $v(G) \leqslant 3$. As a matter of fact the tree-decompositions we use are very special as Lemma 8.3 shows. We first state a lemma.

Lemma 8.2 [12, Lemma 3.4]. Let (T, W) be a tree-decomposition of G. Let r s be an edge of T and let T_{1} and T_{2} be the two components of $T \backslash r$. Then $W_{s} \cap W_{r}$ separates $\bigcup\left\{W_{t} \mid t \in V\left(T_{1}\right)\right\}$ and $\bigcup\left\{W_{t} \mid t \in V\left(T_{2}\right)\right\}$.

Lemma 8.3. Let G be a 3 -connected graph of tree-width 3. If G has no Q_{3} - or $Q_{3} Y \Delta$-minor, then there is a nice tree-decomposition (T, W) of width 3 of G, where for each $W_{t} \in W$, there are at most two sets A_{t} and B_{t} of size 3, such that for each component D of $G-W_{t}$ either $N(D) \subseteq A_{t}$ or $N(D) \subseteq B_{t}$.

Proof. The 3-connectivity of G implies that if (T, W) is any nice treedecomposition of width 3 of G, then $\left|W_{t}\right|=4$ for all $t \in V(T)$. For suppose that $\left|W_{t}\right| \leqslant 3$ for some $t \in V(T)$. Let f be an edge of T one end of which is t, and let s be the other end of f. Let T_{1}, T_{2} be the components of $T \backslash f$. By Lemma 8.2, $W_{t} \cap W_{s}$ separates $B_{1}:=\bigcup\left\{W_{r} \mid r \in V\left(T_{1}\right)\right\}$ and $B_{2}:=$ $\cup\left\{W_{r} \mid r \in V\left(T_{2}\right)\right\}$. Since (T, W) is a nice tree-decomposition, $B_{1} \backslash\left(W_{t} \cap W_{s}\right)$ $\neq \varnothing$ and $B_{2} \backslash\left(W_{t} \cap W_{s}\right) \neq \varnothing$. Hence $W_{t} \cap W_{s}$ is a vertex cut of G. But $\left|W_{t} \cap W_{s}\right| \leqslant 2$, contradicting the 3-connectivity of G.

Suppose to the contrary that there is no nice tree-decomposition (T, W) of width 3 of G, where, for each $W_{t} \in W$, there are at most two sets A_{t} and B_{t} of size 3 such that for each component D of $G-W_{t}$ either $N(D) \subseteq A_{t}$ or $N(D) \subseteq B_{t}$. Call a bag W_{t} for which there are no two sets A_{t} and B_{t} of size 3 such that for each component D of $G-W_{t}$ either $N(D) \subseteq A_{t}$ or $N(D) \subseteq B_{t}$ a bad bag. Take a nice tree-decomposition (T, W) such that the number of bad bags is minimal. Let W_{s} be a bad bag of (T, W).

Let D_{1}, \ldots, D_{k} be the components of $G-W_{s}$. Since G is 3-connected, $\left|N\left(D_{i}\right)\right|=3$ for $i=1, \ldots, k$. Suppose that among the family of sets $N\left(D_{i}\right)$, $i=1, \ldots, k$, there are four distinct sets $A_{s}, B_{s}, C_{s}, D_{s}$. Let $D_{1}, D_{2}, D_{3}, D_{4}$ be components of $G-W_{s}$ such that $N\left(D_{1}\right) \subseteq A_{s}, N\left(D_{2}\right) \subseteq B_{s}, N\left(D_{3}\right) \subseteq C_{s}$, and $N\left(D_{4}\right) \subseteq D_{s}$. Contracting these components to a point and deleting all other components of $G-W_{s}$ shows that G has a Q_{3}-minor in this case. Hence there are at most three distinct sets among $N\left(D_{i}\right), i=1, \ldots, k$.

Suppose there are three distinct sets A_{s}, B_{s}, C_{s} among $N\left(D_{i}\right), i=1, \ldots, k$. Let A be the subgraph of G induced by A_{s} and by all components D of $G-W_{s}$ for which $N(D) \subseteq A_{s}$. Define in the same way the subgraphs B and C. Let w be the common vertex of A_{s}, B_{s}, and C_{s}; we write $\left\{w, w_{1}, w_{2}\right\}=A_{s}, \quad\left\{w, w_{2}, w_{3}\right\}=B_{s}$, and $\left\{w, w_{3}, w_{1}\right\}=C_{s}$. If the rooted graphs $\left(A,\left(w_{1}, w_{2}, w\right)\right),\left(B,\left(w_{2}, w_{3}, w\right)\right)$, and $\left(C,\left(w_{3}, w_{1}, w\right)\right)$ all have a $K_{3}^{r} p$-minor, then G has a $Q_{3} Y \Delta$-minor. So at least one of the rooted graphs has no $K_{3}^{r} p$-minor; we may assume that $\left(A,\left(w_{1}, w_{2}, w\right)\right)$ has no $K_{3}^{r} p$-minor. Let T_{1}, \ldots, T_{r} be the components of $T-s$ such that for each vertex $t \in V\left(T_{i}\right)$, $i=1, \ldots, r, W_{t} \subseteq B$. Let $t_{i}, i=1, \ldots, r$, be the vertex of T_{i} adjacent to s. Define similarly $T_{1}^{\prime}, \ldots, T_{r^{\prime}}^{\prime}$ and $t_{1}^{\prime}, \ldots, t_{r^{\prime}}^{\prime}$, except for C instead of B. By Proposition 7.3, A has a nice tree-decomposition (P, U) of width $\leqslant 2$ with
P a path. Let $p_{i}, i=1,2$ be the vertex of P such that $U_{p_{i}} \in U$ contains w_{i} and w. Let $W_{p}^{\prime}=U_{p} \cup\{w\}, p \in V(P)$, and $p \neq p_{1}, p_{2}$; let $W_{p_{1}}^{\prime}=B_{s} \cup U_{p_{1}}$ and $W_{p_{2}}^{\prime}=C_{s} \cup U_{p_{2}}$. Let $W_{t}^{\prime}=W_{t}, t \in V(T)$ and $t \neq s$. Let S be the tree obtained from $T_{1}, \ldots, T_{r}, T_{1}^{\prime}, \ldots, T_{r^{\prime}}^{\prime}$ and P by connecting the vertices t_{i}, $i=1, \ldots, r$ to p_{1}, and $t_{i}^{\prime}, i=1, \ldots, r^{\prime}$ to p_{2}. Then $\left(S, W^{\prime}\right)$ is a nice treedecomposition of G with one bad bag less, which contradicts the assumption that (T, W) is a tree-decomposition with a minimum number of bad bags. Hence there is a nice tree-decomposition (T, W) of width 3 of G, where, for each $W_{t} \in W$, there are at most two sets A_{t} and B_{t} of size 3 such that for each component D of $G-W_{t}$ either $N(D) \subseteq A_{t}$ or $N(D) \subseteq B_{t}$.

We use the following lemma on tree-width in Lemma 8.5.
Lemma 8.4 [12, Lemma 3.5]. Let (T, W) be a tree-decomposition of G with $|V(T)| \geqslant 2$. For each $t \in V(T)$ let G_{t} be a connected subgraph of G with $V\left(G_{t}\right) \cap W_{t}=\varnothing$. Then there exist $t, t^{\prime} \in V(T)$, adjacent in T, such that $W_{t} \cap W_{t^{\prime}}$ separates $V\left(G_{t}\right)$ and $V\left(G_{t^{\prime}}\right)$ in G.

Lemma 8.5. Let $G=(V, E)$ be a graph, and let (T, W) be a treedecomposition of G. Let $M \in \mathscr{M}_{G}$ be positive semidefinite matrix fulfilling the $S A P$. Then there is a bag $W_{t} \in W$ such that either $W_{t}=V(G)$ or $M_{V(G) \backslash W_{t}}$ is positive definite.

Proof. Suppose to the contrary that there is no bag $W_{t} \in W$ such that $W_{t} \neq V(G)$ or $M_{V(G) \backslash W_{t}}$ is positive definite. Then $|V(T)| \geqslant 2$, and we can use Lemma 8.4. For each W_{t} we take the component G_{t} of $G-W_{t}$ with $M_{V\left(G_{t}\right)}$ singular. By Lemma 8.4 , there exist $t, t^{\prime} \in V(T)$, adjacent in T, such that $W_{t} \cap W_{t^{\prime}}$ separates $V\left(G_{t}\right)$ and $V\left(G_{t^{\prime}}\right)$. Hence G_{t} and $G_{t^{\prime}}$ belong to different components of $G-\left(W_{t} \cap W_{t^{\prime}}\right)$. By Propositions 2.1 and 4.4, M does not fulfill the SAP, a contradiction.

Lemma 8.6. Let $G=(V, E)$ be a graph, and let (T, W) be a treedecomposition of G of width 3 , where for each $W_{t} \in W$, there are at most two sets A_{t} and B_{t} of size at most 3 , such that for each component D of $G-W_{t}$ either $N(D) \subseteq A_{t}$ or $N(D) \subseteq B_{t}$. Let $M \in \mathscr{M}_{G}$ be positive semidefinite with corank at least 4 . Let $W_{t} \in W$ such that $M_{V(G) \backslash W_{t}}$ is positive definite. Let w_{1} be the vertex in $A_{t} \backslash\left(A_{t} \cap B_{t}\right)$, let w_{2} be the vertex in $B_{t} \backslash\left(A_{t} \cap B_{t}\right)$, and assume that w_{1} and w_{2} are connected by at least one edge. Then M has corank 4 and w_{1} and w_{2} are connected by at least two edges.

Proof. Suppose to the contrary that there is exactly one edge connecting w_{1} to w_{2}. Let D_{A} be the set of vertices of all components D of $G-W_{t}$ with $N(D) \subseteq A_{t}$, and let D_{B} be the set of vertices of all components D of $G-W_{t}$ with $N(D) \subseteq B_{t}$. We leave the cases where D_{A} or D_{B} is empty to the reader; they can be done similarly. Since $M_{V(G) \backslash W_{t}}$ is positive definite, $M_{D_{A}}$ and $M_{D_{B}}$ are positive definite. We may write

$$
M=\left(\begin{array}{ccc}
M_{D_{A}} & M_{D_{A}, W_{t}} & 0 \\
M_{W_{t}, D_{A}} & M_{W_{t}} & M_{W_{t}, D_{B}} \\
0 & M_{D_{B}, W_{t}} & M_{D_{B}}
\end{array}\right) .
$$

Let

$$
P:=\left(\begin{array}{ccc}
I & -M_{D_{A}}^{-1} M_{D_{A}, W_{t}} & 0 \\
0 & I & -M_{D_{B}}^{-1} M_{D_{B}, W_{t}} \\
0 & 0 & I
\end{array}\right)
$$

Sylvester's law of inertia tells us that

$$
P^{\mathrm{H}} M P=\left(\begin{array}{ccc}
M_{D_{A}} & 0 & 0 \\
0 & M_{W_{t}}-M_{W_{t}, D_{A}} M_{D_{A}}^{-1} M_{D_{A}, W_{t}}-M_{W_{t}, D_{B}} M_{D_{B}}^{-1} M_{D_{B}, W_{t}} & 0 \\
0 & 0 & M_{D_{B}}
\end{array}\right)
$$

is positive semidefinite and that it has the same corank as M. So

$$
\begin{equation*}
L=\left(l_{i, j}\right):=M_{W_{t}}-M_{W_{t}, D_{A}} M_{D_{A}}^{-1} M_{D_{A}, W_{t}}-M_{W_{t}, D_{B}} M_{D_{B}}^{-1} M_{D_{B}, W_{t}} \tag{3}
\end{equation*}
$$

has corank at least 4. Note that $M_{W_{t}, D_{A}} M_{D_{A}}^{-1} M_{D_{A}, W_{t}}$ can have nonzero entries only for those row and column indices in A_{t} and that $M_{W_{t}, D_{B}} M_{D_{B}}^{-1} M_{D_{B}, W_{t}}$ can have nonzero entries only for those row and column indices in B_{t}. As there is only one edge connecting w_{1} to w_{2}, $l_{w_{1}, w_{2}}=m_{w_{1}, w_{2}} \neq 0$. This is absurd as the only matrix of corank at least 4 with at most four rows and four columns is the 4×4 all-zero matrix. It also follows that M has corank 4.

9. EXCLUDED MINORS

In this section we first give the excluded minors for the class of graphs G with $v(G) \leqslant 3$ if G has tree-width at most 3 . Then using the fact that V_{8} is a splitter for the class of graphs with no K_{5}-minor, we can give the complete family of excluded minors for the class of graphs with $v(G) \leqslant 3$.

Lemma 9.1. Let G be a graph with tree-width $\leqslant 3$. If G has no minor isomorphic to a graph in the K_{4}^{2}-family, then $v(G) \leqslant 3$.

Proof. Suppose to the contrary that $v(G)>3$. Let $M=\left(m_{i, j}\right) \in \mathscr{M}_{G}$ be a positive semidefinite matrix with $\operatorname{corank}(M)>3$ and which fulfills the SAP. By Proposition 5.5, we may assume that G is 3 -connected. By Lemma 8.3, there is a nice tree-decomposition (T, W) of width 3 of G, where, for each $W_{t} \in W$, there are two sets A_{t} and B_{t} of size 3 such that for each component D of $G-W_{t}$ either $N(D) \subseteq A_{t}$ or $N(D) \subseteq B_{t}$. By Lemma 8.5,
there is a bag W_{t} of the tree-decomposition (T, W) such that for each component D of $G-W_{t}, M_{V(D)}$ is positive definite. Let w_{1} be the vertex in $A_{t} \backslash\left(A_{t} \cap B_{t}\right)$, and let w_{2} be the vertex in $B_{t} \backslash\left(A_{t} \cap B_{t}\right)$. Let $\left\{u_{1}, u_{2}\right\}:=$ $A_{t} \cap B_{t}$. By Lemma 8.6, w_{1} and w_{2} are connected by at least two edges, and $\operatorname{corank}(M)=4$.

Let D_{A} be the set of vertices of all components D of $G-W_{t}$ with $N(D) \subseteq A_{t}$, and let D_{B} be the set of vertices of all components D of $G-W_{t}$ with $N(D) \subseteq B_{t}$. Let A be the graph induced by $A_{t} \cup D_{A}$ and let B be the graph obtained from the subgraph of G induced by $B_{t} \cup D_{B}$ by deleting all edges connecting the vertices u_{1} and u_{2}. So A and B have no edges in common.

In some of the following formulas we assume that D_{A} and D_{B} are nonempty. We leave it to the reader to provide the formulas when D_{A} or D_{B} is empty.

Let

$$
\begin{equation*}
N:=\left(n_{i, j}\right)=M_{A_{t}}-M_{A_{t}, D_{A}} M_{D_{A}} M_{D_{A}, A_{t}} . \tag{4}
\end{equation*}
$$

From (3) it follows that the only possible nonzero entries of N are $n_{u_{1}, u_{1}}$, $n_{u_{2}, u_{2}}, n_{u_{1}, u_{2}}$. Let

$$
P=\left(p_{i, j}\right):=\left(\begin{array}{cccc}
M_{D_{A}} & M_{D_{A}, w_{1}} & M_{D_{A}, u_{1}} & M_{D_{A}, u_{2}} \\
M_{w_{1}, D_{A}} & m_{w_{1}, w_{1}} & m_{w_{1}, u_{1}} & m_{w_{1}, u_{2}} \\
M_{u_{1}, D_{A}} & m_{u_{1}, w_{1}} & m_{u_{1}, u_{1}}-n_{u_{1}, u_{1}} & m_{u_{1}, u_{2}}-n_{u_{1}, u_{2}} \\
M_{u_{2}, D_{A}} & m_{u_{2}, w_{1}} & m_{u_{2}, u_{1}}-n_{u_{2}, u_{1}} & m_{u_{2}, u_{2}}-n_{u_{2}, u_{2}}
\end{array}\right) \text {, }
$$

and let

$$
Q=\left(q_{i, j}\right):=\left(\begin{array}{cccc}
n_{u_{1}, u_{1}} & n_{u_{1}, u_{2}} & m_{u_{1}, w_{2}} & M_{u_{1}, D_{B}} \\
n_{u_{2}, u_{1}} & n_{u_{2}, u_{2}} & m_{u_{2}, w_{2}} & M_{u_{2}, D_{B}} \\
m_{w_{2}, u_{1}} & m_{w_{2}, u_{2}} & m_{w_{2}, w_{2}} & M_{w_{2}, D_{B}} \\
M_{D_{B}, u_{1}} & M_{D_{B}, u_{2}} & M_{D_{B}, w_{2}} & M_{D_{B}}
\end{array}\right) .
$$

Then P and Q are positive semidefinite matrices, each of corank 3, which follows from (3).

We distinguish several cases. The first case is where $n_{u_{1}, u_{2}} \neq 0$.
Let A^{\prime} be the graph obtained from A by adding a new edge between u_{1} and u_{2}. We claim that $v\left(A^{\prime}\right) \geqslant 3$. To see this, we take the matrix P. The matrix P is a positive semidefinite matrix and has corank 3. As A^{\prime} has an additional edge between u_{1} and $u_{2}, P \in \mathscr{M}_{A^{\prime}}$. So it remains to show that P fulfills the SAP (w.r.t. A^{\prime}). Suppose to the contrary that P does not fulfill the SAP. Then there is a nonzero Hermitian matrix

$$
Y=\left(y_{i, j}\right):=\left(\begin{array}{cccc}
Y_{D_{A}} & y_{w_{1}} & y_{u_{1}} & y_{u_{2}} \\
y_{w_{1}}^{\mathrm{H}} & 0 & y_{w_{1}, u_{1}} & y_{w_{1}, u_{2}} \\
y_{u_{1}}^{\mathrm{H}} & y_{u_{1}, w_{1}} & 0 & 0 \\
y_{u_{2}}^{\mathrm{H}} & y_{u_{2}, w_{1}} & 0 & 0
\end{array}\right)
$$

with $y_{i, j}=0$ if $i=j$ or if i and j are adjacent, such that $P Y=0$. Let

$$
X=\left(x_{i, j}\right):=\left(\begin{array}{cccccc}
Y_{D_{A}} & y_{w_{1}} & y_{u_{1}} & y_{u_{2}} & 0 & X_{D_{A}, D_{B}} \\
y_{w_{1}}^{\mathrm{H}} & 0 & y_{w_{1}, u_{1}} & y_{w_{1}, u_{2}} & 0 & X_{w_{1}, D_{B}} \\
y_{u_{1}}^{\mathrm{H}} & y_{u_{1}, w_{1}} & 0 & 0 & 0 & 0 \\
y_{u_{2}}^{\mathrm{H}} & y_{u_{2}, w_{1}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
X_{D_{B}, D_{A}} & X_{D_{B}, w_{1}} & 0 & 0 & 0 & 0
\end{array}\right)
$$

be the Hermitian matrix where

$$
\begin{aligned}
X_{D_{B}, D_{A}} & :=-M_{D_{B}}^{-1} M_{D_{B},\left\{u_{1}, u_{2}\right\}}\binom{y_{u_{1}}^{\mathrm{H}}}{y_{u_{2}}^{\mathrm{H}}}, \\
X_{D_{B}, w_{1}} & :=-M_{D_{B}}^{-1} M_{D_{B},\left\{u_{1}, u_{2}\right\}}\binom{y_{u_{1}, w_{1}}}{y_{u_{2}, w_{1}}},
\end{aligned}
$$

and $X_{D_{A}, D_{B}}:=X_{D_{B}, D_{A}}^{\mathrm{H}}, X_{w_{1}, D_{B}}:=X_{D_{B}, w_{1}}^{\mathrm{H}}$. Then $M X=0$. Since $x_{i, j}=0$ if $i=j$ or if i and j are adjacent, M does not fulfill the SAP. This contradiction shows that P fulfills the SAP. Thus $v\left(A^{\prime}\right)=3$, and hence A^{\prime} has a $K_{4}{ }^{-}$or a C_{3}^{2}-minor. Since $\left(A^{\prime},\left(w_{1}, u_{1}, u_{2}\right)\right)$ is internally 3-connected, $\left(A^{\prime},\left(w_{1}, u_{1}, u_{2}\right)\right)$ has a $K_{4} r$ - or a $C_{3}^{2} r$-minor by Theorem 7.2. Hence $\left(A,\left(w_{1}, u_{1}, u_{2}\right)\right)$ has an $H_{1} r$ - or an $H_{2} r$-minor, where $H_{1} r$ is a rooted graph obtained from $K_{4} r$ by deleting one edge connecting s_{2} and s_{3} and where $H_{2} r$ is a rooted graph obtained from $C_{3}^{2} r$ by deleting one edge connecting S_{2} and s_{3}. Let B^{\prime} be the graph obtained from B by adding an edge connecting u_{1} and u_{2}. We claim that $v\left(B^{\prime}\right) \geqslant 3$. To see this, we take the matrix Q. Then Q is a positive semidefinite matrix with corank$(Q)=3$, and $Q \in \mathscr{M}_{B^{\prime}}$. With the same argument as above one shows that Q fulfills the SAP (w.r.t. B^{\prime}). Hence $v\left(B^{\prime}\right) \geqslant 3$, which implies that $\left(B,\left(w_{2}, u_{1}, u_{2}\right)\right)$ has an $H_{1} r$ - or an $H_{2} r$-minor. But then G has a minor isomorphic to a graph in the K_{4}^{2}-family.

So we may assume that $n_{u_{1}, u_{2}}=0$. Suppose that $y_{u_{1}, u_{2}}=0$ for every Hermitian matrix $Y=\left(y_{i, j}\right)$ with $y_{i, j}=0$ if $i=j$ or if i and j are adjacent in A and with $P Y=0$. Then the argument given above shows that P fulfills the SAP (w.r.t. A), and hence $v(A) \geqslant 3$, which implies that $\left(A,\left(w_{1}, u_{1}, u_{2}\right)\right)$ has a $K_{4} r$ - or a $C_{3}^{2} r$-minor. Add two edges in parallel to B between the vertices u_{1} and u_{2}, and denote the graph obtained by B^{\prime}. Then in the same way as above it can be shown that $\left(B^{\prime},\left(w_{2}, u_{1}, u_{2}\right)\right)$ contains a $K_{4} r$ - or a $C_{3}^{2} r$-minor. Hence $\left(B,\left(w_{2}, u_{1}, u_{2}\right)\right)$ contains a $F r$-minor, where $F r$ is the rooted graph obtained from $C_{3}^{2} r$ by deleting the two parallel edges between s_{2} and s_{3}. But then it can clearly be seen that G has a minor isomorphic to a graph in the K_{4}^{2}-family.

Suppose that $z_{u_{1}, u_{2}}=0$ for every Hermitian matrix $Z=\left(z_{i, j}\right)$ with $z_{i, j}=0$ if $i=j$ or if i and j are adjacent in B and with $Q Z=0$. Then with the same argument as above, Q fulfills the SAP (w.r.t. B), and hence ($B,\left(w_{2}, u_{1}, u_{2}\right)$) has a $K_{4} r$ - or a $C_{3}^{2} r$-minor. Add two edges in parallel to A between the vertices u_{1} and u_{2}, and denote the graph obtained by A^{\prime}. Then in the same way as above it can be shown that $\left(A^{\prime},\left(w_{1}, u_{1}, u_{2}\right)\right)$ contains a $K_{4} r$ - or a $C_{3}^{2} r$-minor. Hence $\left(A,\left(w_{1}, u_{1}, u_{2}\right)\right)$ contains a $F r$-minor. But then it can clearly be seen that G has a minor isomorphic to a graph in the K_{4}^{2}-family.

So we may assume that there is a Hermitian matrix $Y=\left(y_{i, j}\right)$ with $y_{i, j}=0$ if $i=j$ or if i and j are adjacent in A and with $P Y=0$, such that $y_{u_{1}, u_{2}} \neq 0$, and that there is a Hermitian matrix $Z=\left(z_{i, j}\right)$ with $z_{i, j}=0$ if $i=j$ or if i and j are adjacent in B and with $Q Z=0$, such that $z_{u_{1}, u_{2}} \neq 0$. We may, furthermore, assume that $y_{u_{1}, u_{2}}=z_{u_{1}, u_{2}}$. Let

$$
X=\left(x_{i, j}\right):=\left(\begin{array}{cccccc}
Y_{D_{A}} & y_{w_{1}} & y_{u_{1}} & y_{u_{2}} & x_{w_{2}} & X_{D_{A}, D_{B}} \\
y_{w_{1}}^{\mathrm{H}} & 0 & y_{w_{1}, u_{1}} & y_{w_{1}, u_{2}} & 0 & x_{w_{1}}^{\mathrm{H}} \\
y_{u_{1}}^{\mathrm{H}} & y_{u_{1}, w_{1}} & 0 & y_{u_{1}, u_{2}} & z_{u_{1}, w_{2}} & z_{u_{1}}^{\mathrm{H}} \\
y_{u_{2}}^{\mathrm{H}} & y_{u_{2}, w_{1}} & y_{u_{2}, u_{1}} & 0 & z_{u_{2}, w_{2}} & z_{u_{2}}^{\mathrm{H}} \\
x_{w_{2}}^{\mathrm{H}} & 0 & z_{w_{2}, u_{1}} & z_{w_{2}, u_{2}} & 0 & z_{w_{2}}^{\mathrm{H}} \\
X_{D_{B}, D_{A}} & x_{w_{1}} & z_{u_{1}} & z_{u_{2}} & z_{w_{2}} & Z_{D_{B}}
\end{array}\right) \text {, }
$$

where

$$
\begin{aligned}
& x_{w_{2}}:=-M_{D_{A}}^{-1} M_{D_{A},\left\{u_{1}, u_{2}\right\}}\binom{z_{u_{1}, w_{2}}}{z_{u_{2}, w_{2}}}, \\
& x_{w_{1}}:=-M_{D_{B}}^{-1} M_{D_{B},\left\{u_{1}, u_{2}\right\}}\binom{y_{u_{1}, w_{1}}}{y_{u_{2}, w_{1}}},
\end{aligned}
$$

$$
\begin{aligned}
X_{D_{B}, D_{A}} & :=-M_{D_{B}}^{-1} M_{D_{B},\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}}\left(\begin{array}{c}
y_{w_{1}}^{\mathrm{H}} \\
y_{u_{1}}^{\mathrm{H}} \\
y_{u_{2}}^{\mathrm{H}} \\
x_{w_{2}}^{\mathrm{H}}
\end{array}\right) \\
& =-\left(\begin{array}{lll}
x_{w_{1}} & z_{u_{1}} & z_{u_{2}} \\
z_{w_{2}}
\end{array}\right) M_{\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}, D_{A}} M_{D_{A}}^{-1} \\
& =M_{D_{B}}^{-1} M_{D_{B},\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}} X_{\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}} M_{\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}, D_{A}} M_{D_{A}}^{-1},
\end{aligned}
$$

and $X_{D_{A}, D_{B}}=X_{D_{B}, D_{A}}^{\mathrm{H}}$. Note that

$$
\left(\begin{array}{llll}
y_{w_{1}} & y_{u_{1}} & y_{u_{2}} & x_{w_{2}}
\end{array}\right)=-M_{D_{A}}^{-1} M_{D_{A},\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}} X_{\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}},
$$

and

$$
\left(\begin{array}{llll}
x_{w_{1}} & z_{u_{1}} & z_{u_{2}} & z_{w_{2}}
\end{array}\right)=-M_{D_{B}}^{-1} M_{D_{B},\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}} X_{\left\{w_{1}, u_{1}, u_{2}, w_{2}\right\}} .
$$

Then $M X=0$ and $x_{i, j}=0$ if $i=j$ or if i and j are adjacent. So M does not fulfill the SAP. This contradiction concludes the proof.

Recall that a graph H is called a splitter for a class \mathscr{C} of graphs if each graph G of \mathscr{C} which has H as a proper minor has a 2-vertex cut. For example, V_{8} is a splitter of the class of graphs with no K_{5}-minor.

Theorem 9.2. $\quad v(G) \leqslant 3$ if and only if G has no K_{5}-minor and no minor isomorphic to a graph in the K_{4}^{2}-family.

Proof. We already know that a graph G with a K_{5}-minor or a minor isomorphic to a graph in the K_{4}^{2}-family has $v(G)>3$.

For the converse, let G have no K_{5}-minor and no minor isomorphic to a graph in the K_{4}^{2}-family. By Proposition 5.5, we may assume that G is 3-connected. Since $K_{2,2,2}$ belongs to the K_{4}^{2}-family, and Q_{3} is a minor of $C_{5} \times K_{2}, G$ either has a V_{8}-minor or G has tree-width $\leqslant 3$. Since V_{8} is a splitter for the class of graphs with no K_{5}-minor, either the underlying simple graph of G is isomorphic to V_{8} or G has tree-width $\leqslant 3$. From Proposition 6.6 and Lemma 9.1 it follows that $v(G) \leqslant 3$.

REFERENCES

1. S. Arnborg, A. Proskurowski, and D. G. Corneil, Minimal forbidden minor characterization of a class of graphs, Colloquia Math. Soc. János Bolyai 52 (1987), 49-62.
2. J. A. Bondy and U. S. R. Murty, "Graph Theory with Applications," Macmillan, London, 1976.
3. Y. Colin de Verdière, Sur un nouvel invariant des graphes et un critère de planarité, J. Combin. Theory Ser. B 50 (1990), 11-21.
4. Y. Colin de Verdière, On a new graph invariant and a criterion of planarity, in "Graph Structure Theory" (N. Robertson and P. Seymour, Eds.), Contemporary Mathematics, Vol. 147, pp. 137-147, American Mathematical Society, Providence, RI, 1993.
5. Y. Colin de Verdière, Multiplicities of eigenvalues and tree-width of graphs, J. Combin. Theory Ser. B 74 (1998), 121-146.
6. R. Diestel, "Graph Theory," second ed., Springer-Verlag, New York, 2000.
7. H. van der Holst, "Topological and Spectral Graph Characterizations," Ph.D. thesis, University of Amsterdam, 1996.
8. H. van der Holst, L. Lovász, and A. Schrijver, On the invariance of Colin de Verdière's graph parameter under clique sums, Linear Algebra Appl. 226-228 (1995), 509-517.
9. P. Lancaster and M. Tismenetsky, "The Theory of Matrices," 2nd ed., with applications, Academic Press, Orlando, 1985.
10. L. Lovász, M. Saks, and A. Schrijver, Orthogonal representations and connectivity of graphs, Linear Algebra Appl. 114-115 (1989), 439-454.
11. N. Robertson and P. D. Seymour, Graph minors. XX. Wagner's conjecture, 1988.
12. N. Robertson and P. D. Seymour, Graph minors. III. Planar tree-width, J. Combin. Theory Ser. B 36 (1984), 49-64.
13. N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Combin. Theory Ser. B 63 (1995), 65-110.

[^0]: ${ }^{1}$ Research supported by the Netherlands Organization for Scientific Research (NWO). The author is grateful to the referee for providing many valuable comments that improved the presentation of this paper.

