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Colin de Verdière (1998, J. Combin. Theory, Ser. B. 74, 121–146) introduced the
graph parameter n(G), which is defined as the maximal corank of any positive
semidefinite magnetic Schrödinger operator fulfilling a certain transversality condi-
tion. He showed that for connected simple graphs, n(G) [ 1 if and only if G is a
tree. In this paper we characterize for k=2, 3, the classes of graphs G with
n(G) [ k. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Let G=(V, E) be a graph with vertex set V={1, ..., n}, which is
allowed to have parallel edges, but which does not have loops. Let MG be
defined as the space of all Hermitian n×n matricesM=(mi, j) with

(i) mi, j ] 0 if i and j are connected by only one edge, and with
(ii) mi, j=0 if i ] j and i and j are not adjacent.

So, mi, i ¥ R, and if i and j are connected by at least two edges, then we
allow mi, j=0. A matrix M ¥MG is said to fulfill the strong Arnol’d prop-
erty (SAP) if there is no nonzero Hermitian n×n matrix X=(xi, j) such
that MX=0, and xi, j=0 if i=j or if i and j are adjacent. The maximum
corank of any positive semidefinite Hermitian n×n matrix M ¥MG fulfill-
ing the strong Arnol’d property is denoted by n(G). This invariant n(G)
was studied by Colin de Verdière [5], although only for connected simple
graphs G. He showed that if GŒ is a connected minor of a connected simple
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graph G, then n(GŒ) [ n(G), and that n(G) [ 1 if and only if G is a tree.
Furthermore, it was shown that, in contrast to the graph invariant m(G)
introduced in [4] (see [3] for an English translation), the invariant n(G) is
not bounded by some formula in terms of the genus of the surface in which
the graph can be embedded. It turns out that n(G) can be arbitrarily large
on the class of planar graphs; see [5] for a description of planar graphs for
which n(G) can be arbitrarily large. However, n(G) was shown to be
bounded from above by some kind of tree-width, la(G), of a graph G, and
la(G)−1 was shown to be bounded from above by the tree-width of G.
Using the result of Robertson and Seymour (see for example [6] for a
short proof) that for every planar graph H there is a number k such that if
G has tree-width at least k, then G has a minor isomorphic to H, one can
conclude that n(G) is large if and only if the tree-width of the graph G is
large.

In this paper we characterize the class of graphs G for which n(G) [ k,
k=2, 3. For k=2, this class has K4 and C23 (this is the graph obtained
from K4 by applying one YD-transformation) as excluded minors; see
Section 5. This was also shown in [7]; here we give a different proof. For
k=3, the excluded minors are K5 and all those graphs that can be
obtained from the 3-cube by repeatedly applying YD-transformation; see
Section 9.

What happens if instead of the strong Arnol’d property we look at
another property? For example, what is the maximum corank of any posi-
tive semidefinite M ¥MG such that if k is the corank of M, then every
(n−k)×(n−k) principal submatrix of M is nonsingular? This question
was solved by Lovász et al. in [10]. Modulo the fact that they used real-
valued orthogonal representations instead of Hermitian matrices M ¥MG,
the answer is that the maximum corank of any such matrix is at least k if
and only if G is k-connected. In Section 6 we show that any M ¥MG of
corank k for which every principal (n−k)×(n−k) matrix is nonsingular
fulfills the strong Arnol’d property. This implies that n(G) is at least the
connectivity of G. In that section we also show that if G is a graph whose
underlying simple graph is V8, then n(G) [ 3 unless G has a minor iso-
morphic to one of the graphs obtained from the 3-cube by repeatedly
applying YD-transformations.

2. PRELIMINARIES

Basic graph theory. Let G=(V, E) be a graph which we allow to have
parallel edges but no loops. The underlying simple graph of a graph G is
the graph obtained by suppressing multiple edges. If S ı V, then

312 HEIN VAN DER HOLST



G−S denotes the subgraph of G induced by the vertices in V0S. If S ı V,
then G[S] denotes the induced subgraph of G on S. If H is a subgraph of
G, then N(H) denotes the set of neighbors in V(G)0V(H) of vertices in H.
If e ¥ E (by assumption e is not a loop), then G/e denotes the graph
obtained from G by deleting e and identifying the ends of e. We say that
G/e is obtained from G by contracting edge e. A graph that is obtained
from a subgraph of G by contracting a series of edges is called a minor of
G. Let G and H be graphs. We say that G has an H-minor if G has a minor
isomorphic to H. We say that a class C of graphs is closed under taking
minors and isomorphism if it has the property that if G belongs to C, then
every graph isomorphic to G belongs to C, and if GŒ is a minor of a graph
G which belongs to C, then GŒ belongs to C. Let C be a class of graphs
closed under taking minors and isomorphism. Then a graph H is called an
excluded minor for C if H does not belong to C, but each proper minor of
H belongs to C. The well-quasi-ordering theorem of Robertson and
Seymour [11] says that any class of graphs closed under taking minors and
isomorphisms has a finite collection of excluded minors.

A pair (G1, G2) with G1 2 G2=G, E(G1) 5 E(G2)=” is called a separa-
tion of G; its order is |V(G1) 5 V(G2)|. A subset S of the vertices of G is
called a vertex cut if G−S is disconnected. If X, Y, Z ı V, then Z separates
X and Y if every path of G between X and Y has a vertex in common with Z.

The degree of a vertex v of a graph G is the number of incident edges.
The neighborhood of v is the set of vertices which are adjacent to v. Since
we allow parallel edges, it may happen that the degree of a vertex is larger
than the number of vertices in its neighborhood. A graph GŒ is obtained
from G by a YD-transformation (at v) if v is a vertex of G of degree 3 which
has three vertices in its neighborhood, GŒ is obtained from G by deleting
vertex v and its incident edges, and by adding an edge between each pair of
vertices of the neighborhood of v. A graph GŒ is obtained from G by a
DY-transformation if GŒ can be obtained by deleting the edges of a triangle
of G and by adding a new vertex and edges of this vertex to all vertices of
the triangle.

The complete graph on n vertices is denoted by Kn. By C23 we denote the
graph obtained from K4 by one YD-transformation.

By K=n we denote the graph obtained from Kn by adding to each edge an
edge in parallel. So K=3 =C

2
3. Let Q3 :=K2×K2×K2; that is, the graphs

with vertex set all binary vectors of length 3 and two vertices are connected
if their vectors differ only in one coordinate. We denote by K24 the graph
K=4 . Let the K24-family be the collection of all graphs that can be obtained
from Q3 by a series of YD-transformations. We denote by Q3YD the graph
obtained from Q3 by applying one YD-transformation. Note that the only
graphs of the K24-family to which we cannot apply a YD-transformation are
K2, 2, 2 and K24. In Fig. 1 the graphs of the K24-family are depicted.
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FIGURE 1

Matrix theory. An n×n matrix M=(mi, j) with complex entries is
Hermitian if mi, j=mj, i for all i, j ¥ {1, ..., n}; mj, i denotes the complex
conjugate of mi, j. We denote the kernel of M by ker(M); this is the space
of all vectors x ¥ Cn satisfying Mx=0. The corank of M is the dimension
of the kernel ofM; we use the notation corank(M) for the corank ofM.

LetM be a Hermitian matrix. If there is a nonzero x ¥ Cn withMx=lx,
then l is an eigenvalue ofM, and x is called an eigenvector ofM belonging
to l. SinceM is Hermitian, all eigenvalues ofM are real, and hence we can
order the eigenvalues l1 [ l2 [ · · · [ ln.
Sylvester’s law of inertia states that if A is a nonsingular n×n matrix and
M is a Hermitian n×n matrix, then AHMA has the same number of nega-
tive and positive eigenvalues (counting multiplicities) and the same corank
asM.

Let

R(x) :=
xHMx
xHx

.

The quotient R(x) is called the Rayleigh quotient. For all nonzero vectors
x, l1 [ R(x), and l1=R(x) if and only if x is an eigenvector belonging to
l1. A Hermitian n×n matrixM is positive semidefinite if all its eigenvalues
are nonnegative; that is, xHMx \ 0 for all x ¥ Cn. If xHMx=0 in this case,
then the Rayleigh quotient tells us that x ¥ ker(M). A Hermitian n×n
matrix M is positive definite if xHMx > 0 for all nonzero x ¥ Cn. If M is a
positive semidefinite Hermitian n×n matrix of corank k, then there is a
(n−k)×n matrix C of rank n−k such thatM=CHC.

Let V={1, ..., n}. If x ¥ Cn then supp(x) :={i ¥ V | xi ] 0}. If S ı V and
x ¥ Cn, then xS denotes the subvector of x induced by the indices in S. IfM
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is an n×n matrix and S, R ı V, then MS denotes the principal submatrix
of M induced by row and column indices in S, and MS, R denotes the sub-
matrix ofM induced by row indices in S and column indices in R.

Proposition 2.1. Let M be positive semidefinite. Let x ¥ ker(M) be
nonzero and let S :=supp(x). Then MS is singular. Conversely, if MS is
singular, then there is a nonzero x ¥ ker(M) with supp(x) ı S.

Proof. Since x ¥ ker(M), xHMx=xHSMSxS=0. As MS is a principal
submatrix ofM,MS is positive semidefinite. The Rayleigh quotient tells us
thatMSxS=0, and henceMS is singular.

Conversely, let y ¥ ker(MS) be nonzero, and let x be defined by xS=y
and xi=0 if i ¨ S. Then xHMx=yHMS y=0. As M is positive semidefi-
nite,Mx=0, by the Rayleigh quotient. L

For further definitions in matrix theory, we refer to [9]. For the basic
definitions in graph theory, we refer to [2].

3. CERTAIN SCHRÖDINGER OPERATORS

Let G=(V, E) be a graph with vertex set V={1, ..., n} and with no
loops. Let MG be the set of all Hermitian n×n matricesM=(mi, j) with

(i) mi, j ] 0 if i and j are connected by only one edge, and with
(ii) mi, j=0 if i ] j and i and j are not adjacent.

So, mi, i ¥ R and if i and j are connected by at least two edges then we allow
mi, j=0.

Theorem 3.1. Let G=(V, E) be a graph and let M ¥MG be positive
semidefinite. Let k :=corank(M). If x ¥ ker(M), x ] 0, then G[supp(x)]
has at most k components. Furthermore, if C is a component of G[supp(x)]
and y is defined by yi=xi, i ¥ V(C), and yi=0, i ¨ V(C), then y ¥ ker(M).

Proof. Let C1, ..., Ct be the components of G[supp(x)]. Let x(Cl), for
l=1, ..., t, be the vector with x(Cl)j=xj if j ¥ Cl and x(Cl)j=0 otherwise.
Note that x(Cl)HMx(Cl)=0 and that x(Ck)HMx(Cl)=0, as the support
ofMx(Cl) is a subset of V0 supp(x). For each (a1, ..., at) ¥ C t, let

z(a1, ..., at) :=C
t

i=1
aix(Ci).
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Since

zH(a1, ..., at)Mz(a1, ..., at)=0,

we see, from the Rayleigh quotient that z(a1, ..., at) belongs to ker(M). Hence
t [ k. Furthermore y=x(C) ¥ ker(M). L

Proposition 3.2. Let M ¥MG be positive semidefinite. Let x ¥ ker(M)
be nonzero with G[supp(x)] connected. If v ¨ supp(x) is adjacent to a vertex
of supp(x), then there are at least two edges connecting v to supp(x).

Proof. If there is only one edge connecting v to supp(x), then the vth
column ofMx is nonzero. L

Proposition 3.3. Let M=(mi, j) ¥MG be positive semidefinite. Then
mi, i=0 only if i is connected to each of its neighbors by at least two edges.

Proof. Since M is positive semidefinite M=AHA for some matrix A,
where AH denotes the conjugate of A. If mi, i=0, then the ith column of A
would be zero, and hence in M all entries mi, j and mj, i would be zero for
j ¥ V(G). This is, by definition, only possible if i is connected to each of its
neighbors by at least two edges. L

4. THE STRONG ARNOL’D PROPERTY

Let Mn, k denote the manifold of all Hermitian n×n matrices with corank
k. A matrix M ¥MG of corank k is said to fulfill the strong Arnol’d prop-
erty (w.r.t. G) if MG and Mn, k intersect transversally inM. This means that
the span of the tangent space of MG atM and the tangent space of Mn, k at
M is equal to the space of all Hermitian n×n matrices. In Theorem 4.3 the
equivalence of this definition with the definition given in the Introduction
is shown. If it is clear what graph G we use, then we omit G, and we say
that M fulfills the SAP. To check whether a matrix fulfills the SAP, we
have the following theorem [3, 5]. Although stated for simple connected
graphs the theorem also holds for graphs with parallel edges.

Theorem 4.1. Let G=(V, E) be a graph with n vertices. A matrix
M ¥MG fulfills the SAP if and only if, for every Hermitian n×n matrix A,
there is a Hermitian n×n matrix B=(bi, j), with bi, j=0 if i ] j and i and j
are not connected by an edge, such that for all x ¥ ker(M), xHAx=xHBx.

This criterion shows that the SAP only depends on ker(M) (and of
course G.)
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LetM ¥MG and let L be a matrix whose rows consist of the vectors of a
basis of ker(M) (viewed as row vectors). Let li, i ¥ V be the columns of L.
Then Theorem 4.1 says that M fulfills the SAP if and only if the linear
span of all the matrices lil

H
i , i ¥ V, and lil

H
j +ljl

H
i , i, j ¥ V adjacent, is equal

to the space of all Hermitian d×d matrices, where d=corank(M).
Looking to the normal space of the linear span, we get the following
criterion.

Theorem 4.2. Let G=(V, E) be a graph. Let M ¥MG and let li, i ¥ V,
be the columns of the matrix whose rows are the vectors of a basis of ker(M).
Let d :=corank(M). Then M fulfills the SAP if and only if there is no
nonzero Hermitian d×d matrix A such that lHi Ali=0 for all i ¥ V and
lHi Alj=0 for all i, j ¥ V adjacent.

By using, for example, Gaussian elimination one can check if a matrix
M ¥MG fulfills the SAP. Another useful criterion to check if a matrix M
fulfills the SAP is stated in the following theorem. In [8] it is stated for real-
valued symmetric matrices, but a proof for Hermitian matrices goes along
the same lines as in the real-valued case.

Theorem 4.3 [8]. Let G=(V, E) be a graph. Then M ¥MG fulfills the
SAP if and only if there is no nonzero Hermitian matrix X=(xi, j) with
xi, j=0 if i=j or if i and j are adjacent, such thatMX=0.

This theorem follows from Theorem 4.2, as we can take X :=LHAL ifM
does not fulfill the SAP, and by the spectral decomposition theorem any
such X can be written as KHBK, where each row of K belongs to the span
of the rows of X and where B is a diagonal matrix.

The following proposition allows us to get bounds on n(G).

Proposition 4.4. Let G=(V, E) be a graph. Let M ¥MG be positive
semidefinite and such that M fulfills the SAP. Then G[supp(x)] is a con-
nected graph for each nonzero x ¥ ker(M).

Proof. If there exists a nonzero x ¥ ker(M) with G[supp(x)] discon-
nected, then, by Theorem 3.1, there are nonzero vectors y, z ¥ ker(M) with
supp(y) 5 supp(z)=”. Let X=(xi, j) :=yzH+zyH. Then MX=0, X is
nonzero, and xi, j=0 if i=j or if i and j are adjacent. L

In this proposition, the SAP is essential. It is easy to give an example of
a graph G such that there is a positive semidefinite matrix M ¥ G and a
nonzero x ¥ ker(M), with G[supp(x)] disconnected. Let G be the graph
consisting of two isolated vertices, and let M ¥MG be the 2×2 all-zero
matrix. Then x=(1, 1)H ¥ ker(M) has G[supp(x)] disconnected. Thus M
does not fulfill the SAP. Any positive semidefinite matrix N=(ni, j) ¥MG

MAGNETIC SCHRÖDINGER OPERATORS 317



fulfilling the SAP will have ni, i=0 for at most one vertex of G. In the more
general case where G is an arbitrary but disconnected graph, any positive
semidefinite matrix M ¥MG will have MV(C) singular for at most one
component C of G.

Let G be the graph as depicted in Fig. 2. The matrix

M :=(mi, j)=R
1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

S
belongs to MG. A representation of the kernel of M is given by the row
vectors of the following matrix

L :=(li)=R
1 −1 0 0 0 0

1 0 −1 0 0 0

0 0 0 1 −1 0

0 0 0 1 0 −1

S .
The Hermitian matrix

A :=(ai, j)=R
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

S
shows that M does not fulfill the SAP. However, for each x ¥ ker(M),
G[supp(x)] is connected. So the converse of Proposition 4.4 is not true in
general.

FIGURE 2
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5. THE PARAMETER n OF A GRAPH

In this section we recall the definition of n(G), given by Colin de
Verdière in [5]. We give an extension to graphs which are allowed to have
parallel edges and which are not necessarily connected.

The invariant n(G) is defined as the largest corank k of any positive
semidefinite matrixM ¥MG fulfilling the SAP.

Theorem 5.1. If GŒ is a minor of G then n(GŒ) [ n(G).

See [5] for a proof for connected simple graphs; see [7] for a proof for
graphs where parallel edges are allowed. Using Theorems 5.4 and 5.7, the
proof of Theorem 5.1 for graphs with parallel edges follows from the proof
of Theorem 5.1 for connected simple graphs; in the proofs of Theorems 5.4
and 5.7, one does not need to use Theorem 5.1.

Let Ck be the class of graphs G with n(G) [ k. By Theorem 5.1, Ck is
closed under taking minors and isomorphism. By the well-quasi-ordering
theorem of Robertson and Seymour [11], for each fixed k, there exists a
finite collection of excluded minors for Ck. The following two propositions
give some obvious excluded minors for Ck.

Proposition 5.2. n(Kn)=n−1.

See [5]. As each proper minor H of Kn has n(H) < n−1, Kn is an
excluded minor for the class of graphs G with n(G) [ n−2. (To see that
n(H) < n−1 if H arises from Kn by contracting an edge, one can use the
facts that K=n is an excluded minor for n(G) [ n−1 and that H is a proper
minor of K=n . See the following proposition.)

Proposition 5.3. n(K=n )=n.

Proof. It is clear that n(K=n ) [ n. To see that n(K=n ) \ n, take M :=0.
ThenM is positive semidefinite andM fulfills the SAP. L

As each proper minor H of K=n has n(H) < n, K=n is an excluded minor
for the class of graphs G with n(G) [ n−1. Hence we have that K4 and
C23=K

=
3 are excluded minors for the class of graphs G with n(G) [ 2. We

shall see that K4 and C23 are the only excluded minors for the class of
graphs G with n(G) [ 2.

The following two propositions show that, for any integer t > 1, an
excluded minor of the class of graphs G with n(G) [ t has no ( [ 2)-vertex
cut.

Proposition 5.4. Let G1 and G2 be graphs. If G is a ( [ 1)-sum of G1
and G2, then n(G)=max {n(G1), n(G2)}.

A proof of this proposition can be found in [7]. The proof is similar to
the proof of the following proposition.

MAGNETIC SCHRÖDINGER OPERATORS 319



Proposition 5.5. Let G be a 2-connected graph. Let S={s1, s2} be a
2-vertex cut of G and let G1 and G2 be subgraphs of G such that G1 2 G2=G
and G1 5 G2=G[S]. If G1 or G2 is a path connecting the vertices of S,
say G1 is a path, then n(G)=n(G

−

2), where G
−

2 is the graph obtained from G2
by adding a new edge between the vertices of S. Otherwise n(G)=
max {n(G −1), n(G

−

2)}, where G
−

i, i=1, 2 is the graph obtained from Gi by
adding two edges between the vertices of S.

Proof. The case where G1 or G2 is a path follows from Theorem 5.7. So
we may assume that neither G1 nor G2 is a path connecting the vertices of S.

Since G −i, i=1, 2 is a minor of G, n(G) \ max {n(G −1), n(G
−

2)}.
To prove n(G) [ max{n(G −1), n(G

−

2)}, let M ¥MG be a matrix with
corank(M)=n(G) and such that M fulfills the SAP. Let C :=V(G1)−S
and let D :=V(G2)−S. We may write

M=R
MC MC, S 0

MS, C MS MS, D

0 MD, S MD

S .

Either MC or MD is positive definite, by Propositions 2.1 and 4.4. We
assume thatMC is positive definite.

Let

P :=R
1 −M−1

C MC, S 0

0 I 0

0 0 I

S .

Then

PHMP=RMC 0
0 MŒ
S ,

where

MŒ=(m −i, j) :=R
MS−MS, CM

−1
C MC, S MS, D

MD, S MD

S .

Sylvester’s law of inertia tells us that MŒ is positive semidefinite and that
MŒ has corank n(G). It is clear thatMŒ ¥MG −2

.
Suppose to the contrary thatMŒ does not fulfill the SAP. Then there is a

nonzero Hermitian matrix XŒ=(x −i, j) with xi, j=0 if i=j or if i and j are
adjacent and with MŒXŒ=0. Then X −S, S=0, as the vertices of S are
adjacent in G −2. Let
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X :=R
0 0 −M−1

C MC, SX
−

S, D

0 0 X −S, D

−X −D, SMS, CM
−1
C X −D, S X −D

S .

Then X=(xi, j) is a nonzero Hermitian matrix, with xi, j=0 if i=j or if i
and j are connected by an edge in G, such that MX=0. Hence M would
not fulfill the SAP. L

With Propositions 5.4 and 5.5 we get

Theorem 5.6. n(G) [ 2 if and only if G has no K4- and no C
2
3-minor.

Proof. Since n(K4)=3 and n(C23)=3, a graph G with a K4- or a
C23-minor has n(G) \ 3. For the converse, let G be a graph with n(G) \ 3
and with no K4-minor. As each 3-connected graph has a K4-minor, G is
not 3-connected. By Propositions 5.4 and 5.5, we may assume G has no
( [ 2)-vertex cuts. So G has at most three vertices. Now only the all-zero
3×3 matrix has corank equal to 3. Therefore G has a C23-minor (indeed it
has a subgraph isomorphic to C23). L

Theorem 5.7. If GŒ is a subdivision of G, then n(GŒ)=n(G).

A proof of this theorem can be found in [7]. The reader should be able
to provide a proof after reading the proof of the next theorem.

Theorem 5.8. If GŒ is obtained from G by a YD-transformation, then
n(GŒ) \ n(G).

Proof. LetM=(mi, j) ¥MG be a positive semidefinite Hermitian matrix
with corank n(G) and such that M fulfills the SAP. Let v be the vertex of
degree 3 of the Y. By Proposition 3.3, mv, v > 0. Let S be the set of three
vertices adjacent to v and let C :=V(G)−(S 2 {v}). We may write

M=R
mv, v Mv, S 0

MS, v MS, S MS, C

0 MC, S MC, C

S .

Let

MŒ :=RMS, S−
1
mv, v
MS, vMv, S MS, C

MC, S MC, C

S .
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ThenMŒ ¥MGŒ. Let

P :=R1 −
1
mv, v
Mv, S 0

0 I 0

0 0 I

S .
Then

PHMP=Rmv, v 0
0 MŒ
S .

From Sylvester’s law of inertia it follows that MŒ is positive semidefinite
and that the corank ofMŒ is equal to the corank ofM.

To see that MŒ fulfills the SAP, suppose that there exists a nonzero
Hermitian matrix XŒ :=(x −i, j), with x −i, j=0 if i=j or if i and j
are connected by an edge, such that MŒXŒ=0. Then X −S, S=0. Let
Xv, C :=−(1/mv, v) Mv, SX

−

S, C, Xv, v=0, Xv, S=0, XS, S=0, XS, C=X
−

S, C,
and XC, C=X

−

C, C. Then X=(xi, j) is a nonzero Hermitian matrix, with
xi, j=0 if i=j or if i and j are connected by an edge in G, such that
MX=0. HenceM would not fulfill the SAP. L

Note that it may happen that n(GŒ) > n(G) if GŒ is obtained from G by a
YD-transformation, as n(K1, 3)=1, while n(K3)=2.

We now give some excluded minors for the class of graphs G with
n(G) [ 3.

Proposition 5.9. n(Q3) \ 4.

Proof. Let

M :=R
1 1 0 −1 0 1 0 0

1 3 1 0 0 0 1 0

0 1 1 1 0 0 0 −1

−1 0 1 3 1 0 0 0

0 0 0 1 1 1 0 1

1 0 0 0 1 3 −1 0

0 1 0 0 0 −1 1 1

0 0 −1 0 1 0 1 3

S .
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Then M ¥MQ3 , and M is positive semidefinite and has corank 4.
Furthermore M fulfills the SAP, as can easily be checked by using
Theorem 4.3. L

Proposition 5.10. All graphs G of the K24-family have n(G)=4.

Proof. Since all graphs of the K24-family can be obtained from Q3 by
applying YD-transformations, we have that n(G) \ 4 for all graphs G in the
K24-family. If one of the graphs G of the K24-family has n(G) > 4, then, as
K2, 2, 2 or K24 can be obtained from G by applying YD-transformations,
n(K2, 2, 2) > 4 or n(K24) > 4. With Proposition 5.3 and Corollary 6.5a
we derive a contradiction. Hence n(G)=4 for all graphs G in the
K24-family. L

Since the proper minors of H of the graphs of the K24-family all have
n(H) [ 3, the graphs of the K24-family are excluded minors for the class of
graphs G with n(G) [ 3. In Section 9 we shall see that K5 and the graphs of
the K24-family are the only excluded minors for the class of graphs G with
n(G) [ 3.

6. ORTHOGONAL REPRESENTATIONS

A different characterization of n(G) can be given, by using orthogonal
representations. The main results of this section are Proposition 6.6 and
Theorem 6.5.

An orthogonal representation of G=(V, E) in Cd is a function f: VQ Cd

such that f(u) and f(v) are orthogonal if the vertices u and v are nonadja-
cent in G. If, moreover, f(u) and f(v) are orthogonal only if u and v are
nonadjacent or if u and v are connected by at least two edges, then the
orthogonal representation f is called faithful. This notion of faithful is
slightly different from the one given in [10], where an orthogonal repre-
sentation f is called faithful if f(u) and f(v) are orthogonal if and only if u
and v are nonadjacent. However, for simple graphs these two notions
coincide.

An orthogonal representation f: VQ Cd of G=(V, E) is in general
position if for every set of d vertices {v1, ..., vd}, the set of vectors
{f(v1), ..., f(vd)} is linearly independent.

Orthogonal representations of G were studied by Lovász et al. in [10],
where they showed the following theorem (using Rd instead of Cd, but that
does not matter here).

Theorem 6.1. A graph G with n vertices has a faithful general-position
orthogonal representation in Cd if and only if G is (n−d)-connected.
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Each faithful orthogonal representation f: VQ Cd gives rise to a
positive semidefinite matrix M=(mi, j) ¥MG of corank n−d defined by
mi, j=f(i)H f(j). Conversely, from each positive semidefinite matrix
M=(mi, j) ¥MG of corank n−d we can make a faithful orthogonal repre-
sentation f: VQ Cd. This follows from a standard result from matrix
theory saying that for each positive semidefinite Hermitian n×n matrix M
of corank n−d, there exists a d×n matrix Q of rank d such thatM=QHQ.

Let us say that an orthogonal representation is stable if the correspond-
ing matrixM=(mi, j) ¥MG defined by mi, j=f(i)H f(j) fulfills the SAP.

Theorem 6.2. Let G=(V, E) be a graph with n vertices. Then n− n(G)
is equal to the smallest dimension d such that there is a stable faithful
orthogonal representation of G in Cd.

Lemma 6.3. Let G=(V, E) be a graph. Let f: VQ Cd be an orthogonal
representation of G. Let M=(mi, j) with mi, j=f(i)H f(j). Then f is in
general position if and only if each nonzero x ¥ ker(M) has at most
(n−d−1) entries equal to zero.

Proof. Let {x1, ..., xn−d} be a basis of ker(M), and let l1, ..., ln be
defined by

L=(l1 ... ln)=R
xH1

x

xHn−d

S .
Then f is in general position if and only if {li | i ¥ V}, is in general position.
This is equivalent to the statement that each nonzero x ¥ ker(M) has at
most (n−d−1) entries equal to zero. L

Proposition 6.4. Every general-position orthogonal representation is
stable.

Proof. Let f: V(G)Q Cd be a general-position orthogonal representa-
tion of G. LetM=(mi, j) with mi, j=f(i)H f(j). Let X=(xi, j) with xi, j=0
if i=j or if i and j are adjacent, such thatMX=0. By Theorem 6.1, every
vertex of G has degree at least (n−d). Hence every column of X contains
at least (n−d) zeroes. By Lemma 6.3, X=0. So M fulfills the SAP, and
hence f is stable. L

From this proposition and Theorem 6.1, the following lower bound for
n(G) follows.
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Theorem 6.5. If G has a k-connected minor then n(G) \ k.

Corollary 6.5a. n(K5)=4 and n(K2, 2, 2)=4.

Proof. By Proposition 5.2, n(K5)=4. As K2, 2, 2 is 4-connected,
n(K2, 2, 2) \ 4 by Theorem 6.5. If n(K2, 2, 2) > 4, then there exists a matrix
M ¥MK2, 2, 2 with corank(M) > 4 and fulfilling the SAP. As corank(M) > 4,
there is a nonzero vector x ¥ ker(M) with xv1=xv2=xv3=xv4=0, where
v1, v2, v3 are vertices of K2, 2, 2 in different color classes and v4 ] v1, v2, v3.
But for each vertex v for which xv ] 0, there is a vertex w with xw=0 such
that w is only adjacent to v. This is a contradiction, for w should be
adjacent to at least two vertices of supp(x). L

If U is a unitary matrix (this means that UHU=I) then the function
Uf is an orthogonal representation of G for which (Uf(i))H Uf(j)=
f(i)Hf(j). Hence, if f is a stable orthogonal representation of G=(V, E)
and U is a unitary matrix then also Uf is a stable orthogonal representa-
tion of G. If d: VQ C with d(v) ] 0 for all v ¥ V, then fd is a stable
orthogonal representation of G.

The four-rung Mobius ladder is denoted by V8 (see Fig. 3).

FIGURE 3

Proposition 6.6. Let G be a graph whose underlying simple graph
is isomorphic to V8. If there exists a positive semidefinite matrix
M=(mi, j) ¥MG with corank(M) \ 4 fulfilling the SAP, then G has a minor
isomorphic to a graph in the K24-family.

Proof. In this proof we label the vertices of V8 as in Fig. 3. For every
vertex v of G, mv, v > 0; or equivalently, there is no x ¥ ker(M) with
|supp(x)|=1. For if not, then v is connected to each of its neighbors by at
least two edges, which implies that G has a K24DY-minor.

We next show that

corank(M) [ 4 for all M ¥MG.(1)
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Suppose corank(M) > 4. Then there are nonzero vectors x, y ¥ ker(M)
with xh=xe=xc=xf=0 and ya=yf=yd=yg=0. Since there are no
vectors z ¥ ker(M) with |supp(z)|=1, supp(x)={a, b} and supp(y)=
{b, c}. Let z :=xb y−ybx. Then supp(z)={a, c}, and hence G[supp(z)] is
disconnected. So corank(M) [ 4.

We next show that

corank(M) [ 3 for all M ¥MV8 .(2)

For this we use Theorem 6.2. So there is a faithful orthogonal representa-
tion f: V(V8)Q C4. Hence we may take f(a)=(1, 0, 0, 0), f(c)=
(0, 1, 0, 0), f(f)=(0, 0, 1, 0). Then we can write f(d)=(0, 1, 0, d4),
f(e)=(e1, 0, 1, e4), f(g)=(0, g2, g3, 1), and f(h)=(1, 0, 0, h4). If f(b)
would be of the form (b1, b2, b3, 0), then, since f(b) and f(d) are orthogo-
nal, b2=0 and f(c) is orthogonal to f(b), which implies that b and c are
connected by at least two edges. Hence we can write f(b)=(b1, b2, b3, 1).
Since f(b) and f(d) are orthogonal, b2=−d4. Since f(b) and f(e) are
orthogonal, b1e1+b3=−e4. Since f(b) and f(h) are orthogonal, b1=−h4.
So f(b)=(−h4, −d4, −e4−b1e1, 1) Since f(d) and f(g) are orthogonal,
g2=−d4. Since f(e) and f(g) are orthogonal, g3=−e4. Hence f(g)=
(0, −d4, −e4, 1). Since f(e) and f(h) are orthogonal, e1+e4h4=0; hence
b1=e1/e4. So f(b)=(−h4, −d4, −e4−(|e1 |2/|e4 |2) e4, 1).

But f(b) and f(g) are orthogonal, so |d4 |2−|e4 |2+|e1 |2+1=0, which
gives a contradiction. Hence corank(N) [ 3 for each positive semidefinite
N ¥MV8 .

Therefore, if M=(mi, j) ¥MG has corank(M)=4, then mi, j=0 for at
least one pair of adjacent vertices. Thus G has at least one parallel edge.
We distinguish, up to symmetry, two cases. Namely, a and h are connected
by at least two edges, or a and e are connected by at least two edges.

We look to the case where ma, h=0. Then, since corank(M)=4, there
is a nonzero vector x ¥ ker(M) with xb=xd=xe=0. Then xa=0 as
ma, a > 0. Now, either xf ] 0 and me, f=0, or xf=0 and xg ] 0, for
otherwise xh=0 and xc=0, which implies that x=0. But, if xf=0 and
xg ] 0, then mf, g=0.

Suppose that mf, g=0. Then we show that also mb, c=0, md, e=0, and
hence b and c are connected by at least two edges and d and e are con-
nected by at least two edges. This graph G clearly has a K24-minor. Again
using Theorem 6.2, there is a faithful orthogonal representation
f: VGQ C4. We may assume that f(a)=(1, 0, 0, 0), f(c)=(0, 1, 0, 0),
f(f)=(0, 0, 1, 0), and f(h)=(0, 0, 0, 1). This implies that we may write
f(b)=(b1, b2, b3, 0), f(d)=(0, d2, 0, d4), f(e)=(e1, 0, e3, 0), and f(g)=
(0, g2, 0, g4) (as mf, g=0). Hence f(d) and f(e) are orthogonal, which
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means that d and e must be connected by at least two edges. Because f(b)
and f(d) are orthogonal, b2d2=0. Hence b2=0 or d2=0. Suppose d2=0.
Then g4=0, as f(g) and f(d) are orthogonal, and hence f(g)=
(0, g2, 0, 0). But since f(g) and f(b) are orthogonal, b2=0. If b2=0 then
f(b) and f(c) are orthogonal, which means that b and c are connected by
at least two edges.

Suppose that me, f=0. Then using Theorem 6.2, there is a faithful
orthogonal representation f: VGQ C4. We may assume that f(a)=
(1, 0, 0, 0), f(c)=(0, 1, 0, 0), f(f)=(0, 0, 1, 0), and f(h)=(0, 0, 0, 1).
This implies that we may write f(b)=(b1, b2, b3, 0), f(d)=(0, d2, 0, d4),
f(e)=(e1, 0, 0, 0), and f(g)=(0, g2, g3, g4). Since e and b are not adja-
cent, e1b1=0, so b1=0, for e1=0 implies that me, e=0. Since b and d
are not adjacent, b2d2=0, so b2=0 or d2=0. If b2=0, then f(b)=
(0, 0, b3, 0) and f(g)=(0, g2, 0, g4). Then b and c are connected by at least
two edges, as are f and g, and e and d. Hence G has a K24-minor. So we
may assume that d2=0. Then f(g)=(0, g2, g3, 0). Then c and d are con-
nected by at least two edges, as are e and f and h and g. But also in this
case G has a K24-minor.

Hence we may assume that a and e are connected by at least two
edges. We may, furthermore, assume that there are no parallel edges on
the Hamilton circuit of G, as that case was handled above. Since
corank(M)=4, there is a nonzero vector x ¥ ker(M) with xb=xh=xf=0.
This implies that xa=0, which implies xc=0, and this implies xg=0. Then
xd=xe=0 follows, and hence x=0, which gives a contradiction. L

7. ROOTED GRAPHS

A rooted graph (G, (s1, ..., st)) is a pair, where G is a graph and
s1, ..., st ¥ V(G).

Let G and H be graphs. The following few definitions are taken from
[13]. A model f of H in G assigns to each edge e of H an edge f(e) of G
and to each vertex v of H a nonnull connected subgraph f(v) of G, such
that

(i) the graphs f(v), v ¥ V(H), are mutually vertex-disjoint, the edges
f(e), e ¥ E(H), are all distinct, and for v ¥ V(H) and e ¥ E(H),
f(e) ¨ E(f(v));

(ii) for e ¥ E(H), if e has ends u and v, then f(e) has one end in
V(f(u)) and the other in V(f(v)).

So, if f is a model of H in G, then H is isomorphic to a minor of G.
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Let (G, (s1, ..., st)) and (H, (r1, ..., rt)) be rooted graphs. A model f of
(H, (r1, ..., rt)) in (G, (s1, ..., st)) is a model of H in G such that
si ¥ V(f(ri)), 1 [ i [ k. We say that (H, (r1, ..., rt)) is isomorphic to a
minor of (G, (s1, ..., st)) if there is a model of (H, (r1, ..., rt)) in
(G, (s1, ..., st)). We say that (G, (s1, ..., st)) has an (H, (r1, ..., rt))-minor if
(H, (r1, ..., rt)) is isomorphic to a minor of (G, (s1, ..., st)).

Let (A, B) be a separation of G with V(A 5 B)={s1, ..., sk}. If
(AŒ, (r1, ..., rk)) is isomorphic to a rooted minor of (A, (s1, ..., sk)), then,
after identifying ri with si for i=1, ..., k, AŒ 2 B is isomorphic to a minor
of G. So if (AŒ, B) is a separation of a graph containing an excluded minor
and (AŒ, (r1, ..., rk)) is isomorphic to a rooted minor of (A, (s1, ..., sk)),
then, after identifying the roots of (AŒ, (r1, ..., rk)) with those of
(A, (s1, ..., sk)), A 2 B contains the excluded minor as well. So only
separations (A, B) are allowed where (AŒ, (r1, ..., rk)) is not isomorphic to a
minor of (A, (s1, ..., sk)).

If (G, (s1, ..., st)) is a rooted graph, then a separation (A, B) with si ¥ B,
for 1 [ i [ t, and |A0B| > 0 is called an internal separation; |V(A 5 B)|
is called the order of the separation. We say that a rooted graph
(G, (s1, ..., st)) is internally t-connected if there is no internal separation of
(G, (s1, ..., st)) of order [ t.

Let K4r be the rooted graph (K4, (s1, s2, s3)), where s1, s2, and s3 are
three distinct vertices of K4.

Lemma 7.1. Let (G, (s1, s2, s3)) be an internally 3-connected rooted
graph. Then, (G, (s1, s2, s3)) has no K4r-minor if and only if G has no
K4-minor.

Proof. The difficult part is to prove that if G has a K4-minor, then
(G, (s1, s2, s3)) has a K4r-minor. So suppose that G has a K4-minor. Then
G has a subdivision of K4 as a subgraph. Now let K be any subdivision of
K4 in G. If there are only two vertex-disjoint paths between S={s1, s2, s3}
and K, then clearly there is a ( [ 2)-separation (A, B) with (A0B) 5 S=”
and |A0B| > 0. So there are three vertex-disjoint paths between S and K.
Let t1, ..., t4 be the vertices of degree 3 in K and let P1, ..., P6 be the paths
of K between the vertices t1, ..., t4. If the paths from S to K do not end in
one path Pi for some i then (G, (s1, s2, s3)) clearly has a K4r-minor.

So, for any subdivision K of K4 in G, the paths from S to K end in one
path, say P1. We take K such that the length of the path P1 onto which the
paths from S to K end is as short as possible. Let Q1, Q2, Q3 be three
vertex-disjoint paths from S to P1. Let t1 and t2 be the ends of P1. Since
there is no ([ 2)-separation (A, B) with (A0B) 5 S=” and |A0B| > 0
(so especially there is no such separation (A, B) with V(A 5 B)={t1, t2}),
there must be a path P from K−V(P1) to Q1 2 Q2 2 Q3 2 P1. We may
assume that P has no internal vertices in Q1 2 Q2 2 Q3 2K. If P has one
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end in (Q1 2 Q2 2 Q3)0V(P1), then we can find three vertex-disjoint paths
which do not all end in P1. Hence P has one end in P1. Let u1, u2 be the
vertices of two paths of Q1, Q2, Q3 ending in P1 so that the other path of
Q1, Q2, Q3 ends in P1 between the vertices u1 and u2. If P has one end in P1
between u1 and u2, not including u1 and u2, then we can find a subdivision
KŒ of K4 in G such that not all paths from S to KŒ end in one path between
the vertices of degree 3 of KŒ. So P has one end in P1 which does not lie
between u1 and u2 (but we allow that the end of P is u1 or u2). Then we can
find a subdivision KŒ of K4 in G such that the path of KŒ onto which all
paths from S to KŒ end has shorter length. This gives a contradiction, so
(G, (s1, s2, s3)) has a K4r-minor. L

Let C23r be the rooted graph (C23, (s1, s2, s3)), where s1, s2, and s3 are
three distinct vertices of C23.

Theorem 7.2. Let (G, (s1, s2, s3)) be an internally 3-connected rooted
graph,. Then G has no C23- and no K4-minor if and only if (G, (s1, s2, s3)) has
no C23r- and no K4r-minor.
Proof. If G has no C23- and no K4-minor, then clearly (G, (s1, s2, s3))

has no C23r- and no K4r-minor.
For the converse we may assume, by Lemma 7.1, that G has no
K4-minor. Suppose to the contrary that G has a C23-minor. We assume that
G is a minimal counterexample, that is, GŒ has no C23-minor for each
proper minor GŒ of G.

It is clear that we may assume that G is connected.
Suppose G is not 2-connected. Let r be a cut-vertex of G. Since
(G, (s1, s2, s3)) is internally 3-connected, each component C of G−{r}
either contains at least two vertices of {s1, s2, s3} (and hence exactly two
vertices) or consists of only one vertex, and this vertex is one of the vertices
of {s1, s2, s3}. Let C1 be a component of G−{r} consisting of one vertex,
which we may assume is s1 without loss of generality. Then (G−s1,
(r, s2, s3)) has no C23r-minor, and hence G has no C23-minor. Thus G is
2-connected.

Suppose that G has a K2, 3-minor. Then there are two distinct vertices p1
and p2, three openly vertex-disjoint paths P1, P2, and P3 connecting p1 to
p2, and each of these paths has more than one edge. If there is a path from
an internal vertex of one path to an internal vertex of another path, then G
has a K4-minor. Hence {p1, p2} is a vertex cut of G, and each path in
{P1, P2, P3} belongs to a component of G−{p1, p2}. Let C1, C2, and C3 be
the components of G−{p1, p2}. Since (G, (s1, s2, s3)) is internally 3-con-
nected, each component Ci, i=1, 2, 3, contains a vertex of {s1, s2, s3}; we
may assume that si ¥ V(Ci), i=1, 2, 3. Let Gi, for i=1, 2, 3, be the graph
obtained from G[V(Ci) 2 {p1, p2}] by adding two edges connecting p1
and p2. Then (G1, (s1, p2, p3)) is isomorphic to a minor of (G, (s1, s2, s3)).
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Similar statements hold for (G2, (p1, s2, p3)) and (G3, (p1, p2, s3)). By
minimality, Gi, i=1, 2, 3 has no C23-minor. But then G has no C23-minor.

Hence G is outerplanar; we assume that G is embedded into the plane.
Let C be the circuit bounding the infinite face. If C has no chord, then G
has at most three vertices. But then clearly G has no C23-minor if
(G, (s1, s2, s3)) has no C23r-minor. So we may assume that C has a chord.
Let p1 and p2 be the ends of a chord. Let C1 and C2 be the components of
G−{p1, p2}, and let Gi for i=1, 2 be the graph obtained from
G[V(Ci) 2 {p1, p2}] by adding an edge between p1 and p2. So, in Gi,
i=1, 2, at least two edges are connecting p1 and p2. Suppose that C1
contains exactly one vertex of {s1, s2, s3}, say it contains s1. Then
(G1, (s1, p1, p2)) or (G1, (s1, p2, p1)) is isomorphic to a minor of
(G, (s1, s2, s3)), and hence, by minimality, G1 has no C23-minor. Almost the
same argument applies to the case when C1 contains two vertices of
{s1, s2, s3}, and similarly for C2. So G1 and G2 have no C23-minor. But then
G has no C23-minor, a contradiction. L

Let K r3p :=(G, (u, v, w)), where G is the graph with vertex set {u, v, w, x}
and edge set {uv, ux, vx, xw}; see Fig. 4, where bold vertices are the roots
of K r3p.

Proposition 7.3. Let (G, (s1, s2, s3)) be an internally 3-connected rooted
graph. Suppose K r3p is not isomorphic to a minor of (G, (s1, s2, s3)). Then the
underlying simple graph of G−s3 is a subgraph of a path.

Proof. Add to (G, (s1, s2, s3)) an edge connecting s1 and s3, and one
connecting s2 and s3; let the rooted graph obtained be (GŒ, (s1, s2, s3)). As
(G, (s1, s2, s3)) has no K r3p-minor, (GŒ, (s1, s2, s3)) has no K4r-minor, and
hence, by Lemma 7.1, GŒ has no K4-minor.

Suppose that there is no path from s1 to s2 disjoint from s3. Then, as
(G, (s1, s2, s3)) is internally 3-connected, V(G)={s1, s2, s3}, and the
proposition is clear.

So we may assume that there is a path P from s1 to s2 disjoint from s3;
we take this path as short as possible. Suppose that G−({s3} 2 V(P)) is

FIGURE 4
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nonempty; let C be a component of G−({s3} 2 V(P)). If N(C) has more
than two vertices, then GŒ has a K4-minor; so N(C) has at most two
vertices. But this contradicts the fact that (G, (s1, s2, s3)) is internally
3-connected. Hence V(G)=V(P) 2 {s3}. Since P is as short as possible,
there is no edge connecting two nonadjacent vertices of P. So deleting s3
from G gives a graph whose underlying simple graph is a path. L

8. TREE-DECOMPOSITIONS

A tree-decomposition of a graph G=(V, E) is a pair (T, W) where T is a
tree and W=(Wt | t ¥ V(T)) is a family of subsets of V with the following
properties.

(i) 1 {Wt | t ¥ V(T)}=V,
(ii) every edge of G has both ends in someWt, and

(iii) if t1, t2, t3 ¥ V(T) and t2 lies on a path from t1 to t3, then
Wt1 5Wt3 ıWt2 .

The subsets Wt are called the bags of the tree-decomposition. The width of
a tree-decomposition is max(|Wt |−1 | t ¥ V(T)), and the tree-width of G is
the minimum width of any tree-decomposition of G. See [12].

Let (T, W) be a tree-decomposition of G with Ws ıWt for adjacent ver-
tices s and t of T. Let TŒ be the tree obtained from T by contracting the
edge connecting s and t; let the new vertex be r. Let Wr=Wt. Then (TŒ, W)
is a tree-decomposition of G with width equal to the width of the tree-
decomposition (T, W). We call a tree-decomposition (T, W) such that
there are no adjacent vertices s, t with Ws ıWt, a nice tree-decomposition.
By the construction given above it is possible to find a nice tree-decompo-
sition for every tree-decomposition.

If GŒ is a minor of G, then the tree-width of GŒ is at most the tree-width
of G. Hence the class of graphs G with tree-width at most k can be charac-
terized by a finite family of excluded minors. For k=1 the only excluded
minor is K3. For k=2 the only excluded minor is K4. For k=3 the
excluded minors are given in the following theorem.

Theorem 8.1. A graph G has tree-width [ 3 if and only if G has no K5,
K2, 2, 2, C5×K2, or V8-minor.

See [1] for a proof of the excluded minors characterization of the class
of graphs with tree-width [ 3. We use this characterization of graphs with
tree-width [ 3 in the proof of the characterization of the graphs G with
n(G) [ 3. As a matter of fact the tree-decompositions we use are very
special as Lemma 8.3 shows. We first state a lemma.
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Lemma 8.2 [12, Lemma 3.4]. Let (T, W) be a tree-decomposition of G.
Let rs be an edge of T and let T1 and T2 be the two components of T0rs.
ThenWs 5Wr separates 1 {Wt | t ¥ V(T1)} and 1 {Wt | t ¥ V(T2)}.

Lemma 8.3. Let G be a 3-connected graph of tree-width 3. If G has no
Q3- or Q3YD-minor, then there is a nice tree-decomposition (T, W) of width 3
of G, where for each Wt ¥W, there are at most two sets At and Bt of size 3,
such that for each component D of G−Wt either N(D) ı At or N(D) ı Bt.

Proof. The 3-connectivity of G implies that if (T, W) is any nice tree-
decomposition of width 3 of G, then |Wt |=4 for all t ¥ V(T). For suppose
that |Wt | [ 3 for some t ¥ V(T). Let f be an edge of T one end of which
is t, and let s be the other end of f. Let T1, T2 be the components of T0f.
By Lemma 8.2, Wt 5Ws separates B1 :=1 {Wr | r ¥ V(T1)} and B2 :=
1 {Wr | r ¥ V(T2)}. Since (T, W) is a nice tree-decomposition, B1 0(Wt 5Ws)
]” and B2 0(Wt 5Ws) ]”. Hence Wt 5Ws is a vertex cut of G. But
|Wt 5Ws | [ 2, contradicting the 3-connectivity of G.

Suppose to the contrary that there is no nice tree-decomposition (T, W)
of width 3 of G, where, for each Wt ¥W, there are at most two sets At and
Bt of size 3 such that for each component D of G−Wt either N(D) ı At or
N(D) ı Bt. Call a bagWt for which there are no two sets At and Bt of size 3
such that for each component D of G−Wt either N(D) ı At or N(D) ı Bt
a bad bag. Take a nice tree-decomposition (T, W) such that the number of
bad bags is minimal. LetWs be a bad bag of (T, W).

Let D1, ..., Dk be the components of G−Ws. Since G is 3-connected,
|N(Di)|=3 for i=1, ..., k. Suppose that among the family of sets N(Di),
i=1, ..., k, there are four distinct sets As, Bs, Cs, Ds. Let D1, D2, D3, D4 be
components of G−Ws such that N(D1) ı As, N(D2) ı Bs, N(D3) ı Cs, and
N(D4) ı Ds. Contracting these components to a point and deleting all
other components of G−Ws shows that G has a Q3-minor in this case.
Hence there are at most three distinct sets among N(Di), i=1, ..., k.

Suppose there are three distinct sets As, Bs, Cs among N(Di), i=1, ..., k.
Let A be the subgraph of G induced by As and by all components D of
G−Ws for which N(D) ı As. Define in the same way the subgraphs B
and C. Let w be the common vertex of As, Bs, and Cs; we write
{w, w1, w2}=As, {w, w2, w3}=Bs, and {w, w3, w1}=Cs. If the rooted
graphs (A, (w1, w2, w)), (B, (w2, w3, w)), and (C, (w3, w1, w)) all have a
K r3p-minor, then G has a Q3YD-minor. So at least one of the rooted graphs
has no K r3p-minor; we may assume that (A, (w1, w2, w)) has no K r3p-minor.
Let T1, ..., Tr be the components of T−s such that for each vertex t ¥ V(Ti),
i=1, ..., r, Wt ı B. Let ti, i=1, ..., r, be the vertex of Ti adjacent to s.
Define similarly T −1, ..., T

−

rŒ and t −1, ..., t
−

rŒ, except for C instead of B. By
Proposition 7.3, A has a nice tree-decomposition (P, U) of width [ 2 with
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P a path. Let pi, i=1, 2 be the vertex of P such that Upi ¥ U contains wi
and w. Let W −

p=Up 2 {w}, p ¥ V(P), and p ] p1, p2; let W −

p1=Bs 2 Up1
and W −

p2=Cs 2 Up2 . Let W −

t=Wt, t ¥ V(T) and t ] s. Let S be the tree
obtained from T1, ..., Tr, T

−

1, ..., T
−

rŒ and P by connecting the vertices ti,
i=1, ..., r to p1, and t −i, i=1, ..., rŒ to p2. Then (S, WŒ) is a nice tree-
decomposition of G with one bad bag less, which contradicts the assump-
tion that (T, W) is a tree-decomposition with a minimum number of bad
bags. Hence there is a nice tree-decomposition (T, W) of width 3 of G,
where, for each Wt ¥W, there are at most two sets At and Bt of size 3 such
that for each component D of G−Wt either N(D) ı At or N(D) ı Bt. L

We use the following lemma on tree-width in Lemma 8.5.

Lemma 8.4 [12, Lemma 3.5]. Let (T, W) be a tree-decomposition of G
with |V(T)| \ 2. For each t ¥ V(T) let Gt be a connected subgraph of G with
V(Gt) 5Wt=”. Then there exist t, tŒ ¥ V(T), adjacent in T, such that
Wt 5WtŒ separates V(Gt) and V(GtŒ) in G.

Lemma 8.5. Let G=(V, E) be a graph, and let (T, W) be a tree-
decomposition of G. LetM ¥MG be positive semidefinite matrix fulfilling the
SAP. Then there is a bag Wt ¥W such that either Wt=V(G) or MV(G)0Wt is
positive definite.

Proof. Suppose to the contrary that there is no bag Wt ¥W such that
Wt ] V(G) orMV(G)0Wt is positive definite. Then |V(T)| \ 2, and we can use
Lemma 8.4. For each Wt we take the component Gt of G−Wt with MV(Gt)

singular. By Lemma 8.4, there exist t, tŒ ¥ V(T), adjacent in T, such that
Wt 5WtŒ separates V(Gt) and V(GtŒ). Hence Gt and GtŒ belong to different
components of G−(Wt 5WtŒ). By Propositions 2.1 and 4.4, M does not
fulfill the SAP, a contradiction. L

Lemma 8.6. Let G=(V, E) be a graph, and let (T, W) be a tree-
decomposition of G of width 3, where for each Wt ¥W, there are at most two
sets At and Bt of size at most 3, such that for each component D of G−Wt
either N(D) ı At or N(D) ı Bt. Let M ¥MG be positive semidefinite with
corank at least 4. Let Wt ¥W such that MV(G)0Wt is positive definite. Let w1
be the vertex in At 0(At 5 Bt), let w2 be the vertex in Bt 0(At 5 Bt), and
assume that w1 and w2 are connected by at least one edge. Then M has
corank 4 and w1 and w2 are connected by at least two edges.

Proof. Suppose to the contrary that there is exactly one edge connect-
ing w1 to w2. Let DA be the set of vertices of all components D of G−Wt
with N(D) ı At, and let DB be the set of vertices of all components D of
G−Wt with N(D) ı Bt. We leave the cases where DA or DB is empty to the
reader; they can be done similarly. Since MV(G)0Wt is positive definite, MDA
andMDB are positive definite. We may write
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M=R
MDA MDA, Wt 0

MWt, DA MWt MWt, DB

0 MDB, Wt MDB

S .
Let

P :=R
I −M−1

DAMDA, Wt 0

0 I −M−1
DBMDB, Wt

0 0 I

S .
Sylvester’s law of inertia tells us that

PHMP=R
MDA 0 0

0 MWt −MWt, DAM
−1
DAMDA, Wt −MWt, DBM

−1
DBMDB, Wt 0

0 0 MDB

S
is positive semidefinite and that it has the same corank asM. So

L=(li, j) :=MWt −MWt, DAM
−1
DAMDA, Wt −MWt, DBM

−1
DBMDB, Wt(3)

has corank at least 4. Note that MWt, DAM
−1
DAMDA, Wt can have nonzero

entries only for those row and column indices in At and that
MWt, DBM

−1
DBMDB, Wt can have nonzero entries only for those row and column

indices in Bt. As there is only one edge connecting w1 to w2,
lw1, w2=mw1, w2 ] 0. This is absurd as the only matrix of corank at least 4
with at most four rows and four columns is the 4×4 all-zero matrix. It also
follows thatM has corank 4. L

9. EXCLUDED MINORS

In this section we first give the excluded minors for the class of graphs G
with n(G) [ 3 if G has tree-width at most 3. Then using the fact that V8 is a
splitter for the class of graphs with no K5-minor, we can give the complete
family of excluded minors for the class of graphs with n(G) [ 3.

Lemma 9.1. Let G be a graph with tree-width [ 3. If G has no minor
isomorphic to a graph in the K24-family, then n(G) [ 3.
Proof. Suppose to the contrary that n(G) > 3. LetM=(mi, j) ¥MG be a

positive semidefinite matrix with corank(M) > 3 and which fulfills the
SAP. By Proposition 5.5, we may assume that G is 3-connected. By
Lemma 8.3, there is a nice tree-decomposition (T, W) of width 3 of G, where,
for each Wt ¥W, there are two sets At and Bt of size 3 such that for each
component D of G−Wt either N(D) ı At or N(D) ı Bt. By Lemma 8.5,
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there is a bag Wt of the tree-decomposition (T, W) such that for each
component D of G−Wt, MV(D) is positive definite. Let w1 be the vertex in
At 0(At 5 Bt), and let w2 be the vertex in Bt 0(At 5 Bt). Let {u1, u2} :=
At 5 Bt. By Lemma 8.6, w1 and w2 are connected by at least two edges, and
corank(M)=4.

Let DA be the set of vertices of all components D of G−Wt with
N(D) ı At, and let DB be the set of vertices of all components D of G−Wt
with N(D) ı Bt. Let A be the graph induced by At 2 DA and let B be the
graph obtained from the subgraph of G induced by Bt 2 DB by deleting all
edges connecting the vertices u1 and u2. So A and B have no edges in
common.

In some of the following formulas we assume that DA and DB are
nonempty. We leave it to the reader to provide the formulas when DA or
DB is empty.

Let

N :=(ni, j)=MAt −MAt, DAMDAMDA, At .(4)

From (3) it follows that the only possible nonzero entries of N are nu1, u1 ,
nu2, u2 , nu1, u2 . Let

P=(pi, j) :=R
MDA MDA, w1 MDA, u1 MDA, u2

Mw1, DA mw1, w1 mw1, u1 mw1, u2
Mu1, DA mu1, w1 mu1, u1 −nu1, u1 mu1, u2 −nu1, u2
Mu2, DA mu2, w1 mu2, u1 −nu2, u1 mu2, u2 −nu2, u2

S ,
and let

Q=(qi, j) :=R
nu1, u1 nu1, u2 mu1, w2 Mu1, DB

nu2, u1 nu2, u2 mu2, w2 Mu2, DB

mw2, u1 mw2, u2 mw2, w2 Mw2, DB

MDB, u1 MDB, u2 MDB, w2 MDB

S .
Then P and Q are positive semidefinite matrices, each of corank 3, which
follows from (3).

We distinguish several cases. The first case is where nu1, u2 ] 0.
Let AŒ be the graph obtained from A by adding a new edge between u1

and u2. We claim that n(AŒ) \ 3. To see this, we take the matrix P. The
matrix P is a positive semidefinite matrix and has corank 3. As AŒ has an
additional edge between u1 and u2, P ¥MAŒ. So it remains to show that P
fulfills the SAP (w.r.t. AŒ). Suppose to the contrary that P does not fulfill
the SAP. Then there is a nonzero Hermitian matrix
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Y=(yi, j) :=R
YDA yw1 yu1 yu2
yHw1 0 yw1, u1 yw1, u2
yHu1 yu1, w1 0 0

yHu2 yu2, w1 0 0

S ,
with yi, j=0 if i=j or if i and j are adjacent, such that PY=0. Let

X=(xi, j) :=R
YDA yw1 yu1 yu2 0 XDA, DB
yHw1 0 yw1, u1 yw1, u2 0 Xw1, DB
yHu1 yu1, w1 0 0 0 0

yHu2 yu2, w1 0 0 0 0

0 0 0 0 0 0

XDB, DA XDB, w1 0 0 0 0

S
be the Hermitian matrix where

XDB, DA :=−M
−1
DBMDB, {u1, u2}

Ry
H
u1

yHu2
S ,

XDB, w1 :=−M
−1
DBMDB, {u1, u2}

Ryu1, w1
yu2, w1
S ,

and XDA, DB :=X
H
DB, DA , Xw1, DB :=X

H
DB, w1 . Then MX=0. Since xi, j=0 if

i=j or if i and j are adjacent, M does not fulfill the SAP. This contradic-
tion shows that P fulfills the SAP. Thus n(AŒ)=3, and hence AŒ has a
K4- or a C23-minor. Since (AŒ, (w1, u1, u2)) is internally 3-connected,
(AŒ, (w1, u1, u2)) has a K4r- or a C23r-minor by Theorem 7.2. Hence
(A, (w1, u1, u2)) has an H1r- or an H2r-minor, where H1r is a rooted graph
obtained from K4r by deleting one edge connecting s2 and s3 and where
H2r is a rooted graph obtained from C23r by deleting one edge connecting s2
and s3. Let BŒ be the graph obtained from B by adding an edge connecting
u1 and u2. We claim that n(BŒ) \ 3. To see this, we take the matrix Q. Then
Q is a positive semidefinite matrix with corank(Q)=3, and Q ¥MBŒ. With
the same argument as above one shows that Q fulfills the SAP (w.r.t. BŒ).
Hence n(BŒ) \ 3, which implies that (B, (w2, u1, u2)) has an H1r- or an
H2r-minor. But then G has a minor isomorphic to a graph in the
K24-family.
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So we may assume that nu1, u2=0. Suppose that yu1, u2=0 for every
Hermitian matrix Y=(yi, j) with yi, j=0 if i=j or if i and j are adjacent in
A and with PY=0. Then the argument given above shows that P fulfills
the SAP (w.r.t. A), and hence n(A) \ 3, which implies that (A, (w1, u1, u2))
has a K4r- or a C23r-minor. Add two edges in parallel to B between the
vertices u1 and u2, and denote the graph obtained by BŒ. Then in the same
way as above it can be shown that (BŒ, (w2, u1, u2)) contains a K4r- or a
C23r-minor. Hence (B, (w2, u1, u2)) contains a Fr-minor, where Fr is the
rooted graph obtained from C23r by deleting the two parallel edges between
s2 and s3. But then it can clearly be seen that G has a minor isomorphic to
a graph in the K24-family.

Suppose that zu1, u2=0 for every Hermitian matrix Z=(zi, j) with zi, j=0
if i=j or if i and j are adjacent in B and with QZ=0. Then with the same
argument as above, Q fulfills the SAP (w.r.t. B), and hence (B, (w2, u1, u2))
has a K4r- or a C23r-minor. Add two edges in parallel to A between the
vertices u1 and u2, and denote the graph obtained by AŒ. Then in the same
way as above it can be shown that (AŒ, (w1, u1, u2)) contains a K4r- or a
C23r-minor. Hence (A, (w1, u1, u2)) contains a Fr-minor. But then it can
clearly be seen that G has a minor isomorphic to a graph in the K24-family.

So we may assume that there is a Hermitian matrix Y=(yi, j) with
yi, j=0 if i=j or if i and j are adjacent in A and with PY=0, such that
yu1, u2 ] 0, and that there is a Hermitian matrix Z=(zi, j) with zi, j=0 if
i=j or if i and j are adjacent in B and with QZ=0, such that zu1, u2 ] 0.
We may, furthermore, assume that yu1, u2=zu1, u2 . Let

X=(xi, j) :=R
YDA yw1 yu1 yu2 xw2 XDA, DB
yHw1 0 yw1, u1 yw1, u2 0 xHw1
yHu1 yu1, w1 0 yu1, u2 zu1, w2 zHu1
yHu2 yu2, w1 yu2, u1 0 zu2, w2 zHu2
xHw2 0 zw2, u1 zw2, u2 0 zHw2
XDB, DA xw1 zu1 zu2 zw2 ZDB

S ,
where

xw2 :=−M
−1
DAMDA, {u1, u2}

Rzu1, w2
zu2, w2
S ,

xw1 :=−M
−1
DBMDB, {u1, u2}

Ryu1, w1
yu2, w1
S ,
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XDB, DA :=−M
−1
DBMDB, {w1, u1, u2, w2}

R
yHw1
yHu1
yHu2
xHw2

S
= −(xw1 zu1 zu2 zw2 ) M{w1, u1, u2, w2}, DAM

−1
DA

=M−1
DBMDB, {w1, u1, u2, w2}X{w1, u1, u2, w2}M{w1, u1, u2, w2}, DAM

−1
DA ,

and XDA, DB=X
H
DB, DA . Note that

(yw1 yu1 yu2 xw2 )=−M
−1
DAMDA, {w1, u1, u2, w2}X{w1, u1, u2, w2},

and

(xw1 zu1 zu2 zw2 )=−M
−1
DBMDB, {w1, u1, u2, w2}X{w1, u1, u2, w2}.

ThenMX=0 and xi, j=0 if i=j or if i and j are adjacent. SoM does not
fulfill the SAP. This contradiction concludes the proof. L

Recall that a graph H is called a splitter for a class C of graphs if each
graph G of C which has H as a proper minor has a 2-vertex cut. For
example, V8 is a splitter of the class of graphs with no K5-minor.

Theorem 9.2. n(G) [ 3 if and only if G has no K5-minor and no minor
isomorphic to a graph in the K24-family.
Proof. We already know that a graph G with a K5-minor or a minor

isomorphic to a graph in the K24-family has n(G) > 3.
For the converse, let G have no K5-minor and no minor isomorphic to a

graph in the K24-family. By Proposition 5.5, we may assume that G is
3-connected. Since K2, 2, 2 belongs to the K24-family, and Q3 is a minor of
C5×K2, G either has a V8-minor or G has tree-width [ 3. Since V8 is a
splitter for the class of graphs with no K5-minor, either the underlying
simple graph of G is isomorphic to V8 or G has tree-width [ 3. From
Proposition 6.6 and Lemma 9.1 it follows that n(G) [ 3. L
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