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Atrial Fibrosis: Mechanisms
and Clinical Relevance in Atrial Fibrillation

Brett Burstein, BSC, Stanley Nattel, MD

Montreal, Quebec, Canada

Atrial fibrillation (AF) is the most common arrhythmia in the clinical setting, and traditional pharmacological ap-
proaches have proved to have important weaknesses. Structural remodeling has been observed in both clinical
and experimental AF paradigms, and is an important feature of the AF substrate, producing fibrosis that alters
atrial tissue composition and function. The precise mechanisms underlying atrial fibrosis are not fully elucidated,
but recent experimental studies and clinical investigations have provided valuable insights. A variety of signaling
systems, particularly involving angiotensin II and related mediators, seem to be centrally involved in the promo-
tion of fibrosis. This paper reviews the current understanding of how atrial fibrosis creates a substrate for AF,
summarizes what is known about the mechanisms underlying fibrosis and its progression, and highlights emerg-
ing therapeutic approaches aimed at attenuating structural remodeling to prevent AF. (J Am Coll Cardiol 2008;
51:802–9) © 2008 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2007.09.064
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n recent years, atrial fibrillation (AF) has increasingly
ecome a focus of attention because it remains the most
ncountered arrhythmia in clinical practice (1) and a major
ause of morbidity and mortality (2). The fundamental
echanisms underlying AF have long been debated, but

lectrical, contractile, and structural remodeling are each
mportant synergistic contributors to the AF substrate
3–5). Fibrosis is a hallmark of arrhythmogenic structural
emodeling (4,5). Tissue fibrosis results from an accumula-
ion of fibrillar collagen deposits, occurring most commonly
s a reparative process to replace degenerating myocardial
arenchyma with concomitant reactive fibrosis, which
auses interstitial expansion (6,7). Animal models indicate
egional differences in fibrotic remodeling (8), with the atria
eeming to be more sensitive than the ventricles (9). Atrial
brosis occurs as a convergent pathological end point in a
ariety of settings, such as senescence (10,11), cardiac
ysfunction (12), mitral valvular disease (13,14), and possi-
ly myocardial ischemia (15). Atrial fibrosis involves multi-
actorial processes that result from complex interactions
mong neurohormonal and cellular mediators. Interven-
ions that prevent atrial fibrosis may be useful in prevent-
ng AF occurrence (1). An understanding of the mecha-
isms underlying atrial fibrosis is relevant to designing

rom the Research Center and Department of Medicine, Montreal Heart Institute
nd Université de Montréal, and Department of Pharmacology and Therapeutics,

cGill University, Montreal, Quebec, Canada. Supported by the Canadian Institutes
f Health Research, the Mathematics of Information Technology and Complex
ystems Network of Centers of Excellence, and the Quebec Heart and Stroke
oundation.
t
Manuscript received June 21, 2007; revised manuscript received August 16, 2007,

ccepted September 7, 2007.
mproved strategies for preventing AF-promoting struc-
ural remodeling.

linical Relationship
etween Atrial Fibrosis and AF

trial fibrosis is a common feature of clinical AF (16).
trial fibrillation is thought to be secondary to underlying
rganic heart disease in approximately 70% of patients, with
one AF occurring in the absence of any detectable etiology
n approximately 30% of cases (17). Increased collagen
eposition has been documented in lone-AF patients com-
ared with sinus rhythm control subjects (18), and in
atients with AF secondary to mitral valve disease versus
hose in sinus rhythm (19). Extracellular matrix (ECM)
olume and composition correlate with AF persistence (20).
hese findings highlight the association between atrial
brosis and AF, although determining the causal impor-
ance of tissue fibrosis in AF occurrence and persistence
emains an important challenge. Experimental models have
elped to develop an appreciation for the relationship
etween atrial fibrosis and AF (Table 1). Ventricular
achypacing (VTP) induces congestive heart failure (CHF)
n dogs by causing a tachycardiomyopathy (21), and pro-
uces atrial interstitial fibrosis comparable to atrial pathol-
gy in many forms of clinical AF (4). In the dog model,
trial fibrosis causes localized regions of conduction slowing,
ncreasing conduction heterogeneity and providing an AF
ubstrate (4). Conduction abnormalities provide a basis for
nidirectional conduction block and macro–re-entry
22,23); however, there is also evidence for focal atrial

achyarrhythmias (24). Extracellular matrix genes are in-
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uced early after VTP onset in the dog (25), with a time
ourse paralleling the development of fibrosis and AF
ustainability (26). Extracellular matrix gene expression
hanges in human AF patients show similar profibrotic
atterns (27). Figure 1 illustrates the pathophysiology of AF
ssociated with CHF. In addition to inducing fibrosis, CHF
lso affects atrial ionic current (28) and Ca2� handling
roperties (29). Atrial tachycardia itself alters atrial electrical
roperties in a way that promotes AF induction and
aintenance (“AF begets AF” [3]). Tachycardia-induced

onic remodeling in the presence of CHF, as occurs when
F develops in a CHF patient, differs from that of CHF or
F alone, and from simple additive effects (30). Atrial

achypacing with ventricular rate control produces ECM
ccumulation (31,32), suggesting that AF itself promotes
trial fibrosis.

ltrastructural Alterations

yocyte loss, either by apoptosis or necrosis (9,26), is
bserved in parallel with the onset of fibrosis. Reparative
brosis replaces degenerating myocardial cells (33), whereas
oexisting reactive fibrosis causes interstitial expansion be-
ween bundles of myocytes (7,34), as shown in Figure 2.
athologically produced collagen differs from that in normal
yocardium, with altered ratios of collagen subtypes

20,35). Dense and disorganized collagen weave fibrils
hysically separate remaining myocytes (36), and can create
barrier to impulse propagation.
Fibrosis interferes with conduction by impairing inter-
yocyte coupling. Myocardial electrical continuity is main-

ained by specialized proteins called connexins located in
ap junctions, which form cell-to-cell connections that
aintain low-resistance intercellular coupling. Alterations

n ventricular expression and function of the major cardiac
onnexin, connexin 43, are observed in CHF and correlate
ith proarrhythmic conduction slowing (37). Hypophos-
horylation of connexins and their redistribution to lateral
ell borders are the salient features (37,38), with connexin
isorganization correlating with fibrosis (39). Studies of
ap-junctional remodeling in the atria have produced dis-
repant results (40), and changes may depend on the degree
nd/or type of underlying pathology (41). Atrial gap junc-
nimal Models With Selective Atrial Fibrosis Associated With AF

Table 1 Animal Models With Selective Atrial Fibrosis Associate

Animal Model

Dog VTP Atrial fibrosis, AF

Dog Aging Atrial fibrosis, AF

Dog Mitral regurgitation Atrial fibrosis, AF

Dog Atrial tachypacing with ventricular rate control Qualitative incre

Pig Atrial tachypacing with ventricular rate control Atrial fibrosis, AF

Transgenic
mouse

Cardiac overexpression:

ACE Atrial fibrosis, AF

TGF-�1 Atrial fibrosis, AF
CE � angiotensin-converting enzyme; AF � atrial fibrillation; CHF � congestive heart failure; TGF � tra
ion remodeling seems to reverse
lowly (42), but it is still unclear
ow much connexin disruption is
equired to observe an effect on
onduction.

echanisms of Atrial
ibrosis

rofibrotic signals. Atrial fi-
rosis results from a variety of
ardiac insults that share com-
on fibroproliferative signaling

athways. Several secreted fac-
ors that cause profibrotic re-
ponses often work in concert in
he clinical setting (43). Angio-
ensin II (AngII) is a well-
haracterized profibrotic mole-
ule, along with prominent downstream mediators like
ransforming growth factor (TGF)-beta 1. Other potential
ediators such as platelet-derived growth factor (PDGF)

nd connective tissue growth factor have recently become of
nterest.

The renin-angiotensin-aldosterone system is involved in
yocardial fibrosis in hypertensive heart disease, CHF,
yocardial infarction, and cardiomyopathy (44). Patients
ith primary hyperaldosteronism have an increased inci-
ence of AF (45), and locally produced AngII is associated
ith cardiomyocyte apoptosis and reactive interstitial fibro-

is (46). Increased AngII production in transgenic mice with
ardiac-restricted angiotensin-converting enzyme (ACE)
verexpression causes marked atrial dilation with focal
brosis and AF (47). Atrial AngII levels increase early in the
ourse of VTP-induced CHF (26,48). Mitogen-activated
rotein kinases are important potential mediators of AngII
ffects on tissue structure (49–51), and overactivity of this
athway may also directly influence cardiomyocyte gap-

unctional coupling and conduction properties (52).
Transforming growth factor-�1 is central to signaling

ascades implicated in the genesis of cardiac fibrosis (53), for
xample as a primary downstream mediator of AngII effects
54,55). AngII induces TGF-�1 messenger ribonucleic acid

th AF

Finding Clinical Correlate Ref. #

uction heterogeneity CHF 4

Ageing 10,11

Mitral valve disease 14

atrial fibrosis Atrial tachycardia remodeling 14

Atrial tachycardia remodeling 31,32

al ventricular structure and function Atrial pathology in CHF 47

al ventricular structure and function Atrial pathology in CHF 63,64

Abbreviations
and Acronyms

ACE � angiotensin-
converting enzyme

AF � atrial fibrillation

AngII � angiotensin II

AT1 � angiotensin II type 1

CHF � congestive heart
failure

ECM � extracellular matrix

PDGF � platelet-derived
growth factor

TGF � transforming growth
factor

VTP � ventricular
tachypacing
d Wi

, cond

ase in

, norm

, norm
nsforming growth factor; VTP � ventricular tachypacing.
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xpression, protein elaboration and activity in vitro (56) and
n vivo (57,58), and blockade of the angiotensin II type 1
AT1) receptor suppresses TGF-�1 upregulation (59–61).
rimarily, TGF-�1 acts through the SMAD signaling
athway to stimulate collagen production (60,62). As for
issue AngII, rapid increases in atrial expression of activated
GF-�1 occur in VTP-induced CHF (9). Targeted cardiac
verexpression of constitutively active TGF-�1 causes se-

Figure 1 Mechanisms by Which CHF Leads to AF

In turn, AF causes changes that can impair cardiac function, leading to potentially
positive-feedback systems. Figure illustration by Rob Flewell. AF � atrial fibrillation

Figure 2 Schematic Illustrating How Fibrosis Disrupts Myocyte

Cardiomyocytes in normal myocardial tissue (A) are electrically coupled primarily i
results in extracellular matrix expansion between bundles of myocytes (B), while r
bution become exaggerated during structural remodeling. Figure illustration by Rob
ective atrial fibrosis, conduction heterogeneity, and AF
ropensity (63,64). Normal ventricular structure and func-
ion in this model, despite equal overexpression, implies
hat: 1) TGF-�1 may be a key mediator of atrial fibrosis, 2)
brosis-related promotion of AF can occur in the absence of
entricular dysfunction, and 3) regional differences exist in
tructural remodeling vulnerability, with the atria particu-
arly prone to fibrosis. The latter notion is consistent with

rious
� congestive heart failure.

pling

nd-to-end fashion by intercellular gap-junctional complexes. Reactive fibrosis
ive fibrosis replaces degenerating myocytes (C). Both patterns of collagen distri-
ll.
delete
; CHF
Cou

n an e
eparat
Flewe
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he predominant atrial versus ventricular fibrosis observed in
xperimental CHF (9).

Platelet-derived growth factor, a member of the PDGF/
ascular endothelial growth factor family, is highly ex-
ressed in the myocardium throughout development and
dulthood. It stimulates proliferation, migration, differen-
iation, and physiological function of mesenchymal cells
65); however, its role in cardiac fibrosis has only recently
een investigated. Transgenic mice with cardiac-specific
DGF overexpression show cardiac fibrosis followed by
ilated cardiomyopathy and cardiac failure (66,67). Atrial
brillation susceptibility has not been evaluated in these
nimals but would be interesting to address, given the
xistence of a fibrotic and potentially arrhythmogenic sub-
trate. Connective tissue growth factor has emerged from
athway analysis in a genomic study of the CHF-related AF
ubstrate (26).
ellular mediators. Fibrosis results when circulating and

ocally synthesized profibrotic factors act on resident cardiac
ells to increase collagen production without offsetting
ncreases in collagen degradation. Cardiomyocytes account
or approximately 45% of the atrial myocardium by volume,
ompared with approximately 76% in the ventricles (68,69).
onmyocytes are thought to compose approximately 70% of

ardiac cells by number (70): atrial–ventricular differences in
he composition of this heterogeneous population of cells
ay contribute to the greater atrial ECM volume compared
ith ventricles in normal hearts (68,69), which becomes

Figure 3 Cardiomyocyte–Fibroblast Crosstalk

Autocrine and paracrine mechanisms act to amplify humoral and mechanical stimu
angiotensin II; AT-R � angiotensin receptor; ECM � extracellular matrix; TGF � tra
xaggerated with remodeling (9). There is a complex inter-
lay among these cell types, the most numerous of which is
he cardiac fibroblast. The fibroblast was traditionally
hought to be a passive bystander in the myocardium, but is
ow recognized to participate actively in shaping and
esponding to the cardiac milieu (71). Figure 3 is a sche-
atic representation of cardiomyocyte–fibroblast crosstalk

n the promotion of atrial fibrosis.
Exposure to AngII (72) or TGF-�1 (73) dramatically

nfluences cardiac fibroblast function, upregulating ECM
rotein synthesis and secretion. Both AngII production and
T1 receptor expression are increased during remodeling in
broblasts in vivo (74). Increases in AngII and activated
GF-�1 concentrations reciprocally enhance each other’s
roduction (56,75), and induce expression of additional
rofibrotic molecules in fibroblasts (76,77), creating positive
eedback cycles for fibrosis. Mechanical stretch induces
ollagen synthesis (78), along with increased AngII and
GF-�1 expression in cardiac fibroblasts (79), and thus

hronic atrial dilation may contribute to structural remod-
ling and the domestication of AF (80). Fibroblast stretch-
ensing mechanisms show exquisite sensitivity, with differ-
nt types of deformation causing differential ECM
xpression profiles (81). In addition to profibrotic actions,
echanical stretch of fibroblasts can directly modulate
yocyte electrical activity, a potentially proarrhythmic
echanism called mechanoelectric feedback (82).

lting in tissue fibrosis. Figure illustration by Rob Flewell. Ang II �

ing growth factor; TGF�-R � trasforming growth factor beta receptor.

li resu
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Although cardiomyocytes probably do not directly syn-
hesize collagen (83), they can importantly influence struc-
ural remodeling through interactions with neighboring
broblasts. Mechanical stretch induces cardiomyocyte
itogen-activated protein kinase signaling through direct

ctivation of AT1 receptors (84). Angiotensin II is pro-
uced by stretched cardiomyocytes (85), with direct
broblast-activating consequences. Furthermore, AngII acts
s a paracrine/autocrine hypertrophic signal, and eventual
yocyte failure and death further promotes fibroblast che-
otaxis. Rapid cardiomyocyte activation seems to cause
ngII upregulation (52,86) and tachypaced atrial cardiomy-
cytes secrete factors that cause differentiation to a secretory
henotype in cardiac fibroblasts (87). In coculture experi-
ents, cardiomyocytes potentiate AngII-stimulated colla-

en synthesis in fibroblasts (88,89). The potential impor-
ance of cardiomyocyte–fibroblast interactions in fibrillating
tria has recently been emphasized based on observations on
trial myocytes from AF patients (90).

herapeutic Implications

onventional antiarrhythmic drug approaches have limited
ffectiveness and are associated with risks of serious com-
lications, particularly proarrhythmia (91). Accordingly,
ttenuation and reversal of structural remodeling have in-
reasingly become the focus of attempts at therapeutic
nnovation, and several agents have shown efficacy in animal

odels (Table 2). Several ACE inhibitors reduce fibrosis,
ormalize connexin 43 abnormalities, and improve AF

ndices in experimental models (26,48,92–94). Retrospec-
ive analyses point to the value of ACE inhibitors in AF
revention, particularly in patients at the highest risk of
tructural remodeling (95). Angiotensin II type 1 receptor
lockers seem to offer a benefit similar to that of ACE
nhibition, with improvement in both AF susceptibility and
tructural remodeling (96–98). Antialdosterone therapies
lso seem to reduce atrial fibrosis (99). Pirfenidone,
-methyl-1-phenyl-2(1H)-pyridone, an antifibrotic agent,
educes TGF-�1 levels and prevents development of the AF

ibrosis-Targeted Therapies With Antiarrhythmic Efficacy in Animal

Table 2 Fibrosis-Targeted Therapies With Antiarrhythmic Effica

Drug Class Mechanism

ACE inhibitors Inhibitors of ACE, reduce AngII
production

ARBs AT1 receptor antagonist

Spironolactone Aldosterone antagonist

Pirfenidone Unknown, antifibrotic, anti-inflammatory

Statins HMG-CoA reductase inhibitors

Omega-3 poly-unsaturated
fatty acids

Attenuate CHF-induced atrial fibrosis
and hemodynamic deterioration
ngII � angiotensin II; ARB � angiotensin II type 1 receptor blocker; AT1 � angiotensin II type 1; HMG-C
ubstrate in VTP-induced CHF (100). Both CHF-induced
trial structural remodeling and AF promotion are also
ttenuated by the 3-hydroxy-3-methylglutaryl coenzyme A
eductase inhibitor simvastatin, which improves hemody-
amic function and directly inhibits profibrotic atrial fibro-
last responses (101). Recently, omega-3 poly-unsaturated
atty acids have been found similarly to prevent the CHF-
ssociated AF substrate (102).

The potential for reversing fibrosis is of particular clinical
nterest because it is often not possible to begin treatment in
umans before a significant degree of atrial remodeling has
lready occurred. Cessation of VTP without pharmacolog-
cal intervention allows the reversal of CHF and normal-
zation of atrial size and function; however, fibrosis and
onduction abnormalities persist along with a substrate that
an support prolonged AF (103,104). Brilla et al. (105–107)
ave published several reports showing the regression of
stablished fibrosis in the ventricles with ACE inhibition.
imilar investigations of the atria are limited, although one
tudy has shown that rats treated for 1 month with an
ldosterone antagonist beginning 3 months after myocardial
nfarction have less atrial fibrosis than control rats (99),
uggesting possible reversal of fibrosis.

Although animal studies on fibrosis suppression as an
pproach to preventing development of the AF substrate are
romising, confirmatory evidence of clinical value is essen-
ial. A number of clinical trials support the concept
95,108), but to date all of the results available are from
etrospective analyses of databases from ACE inhibitor and
T1-receptor blocker trials with other end points. The

esults of ongoing prospective trials in this area are antici-
ated with interest. In addition, there are theoretical reasons
hy there may be differences in efficacy among compounds
ith closely related mechanisms of action, such as ACE

nhibitors and AT1-receptor antagonists (109). If AF-
reventing efficacy of antifibrotic therapies is confirmed by
rospective trials, it will be important to perform compar-
tive studies between candidate compounds/targets to de-
ermine relative effectiveness.

els of AF

Animal Models of AF

Notes Ref. #

Clinically approved for heart failure; beneficial
effects on atrial fibrosis, reversal of
ventricular fibrosis in animal models

26,48,92–94,
105–107

Clinically approved for heart failure; beneficial
effects on atrial fibrosis in animal models

96–98

Clinically approved for heart failure; reversal of
atrial fibrosis in animal models

99

Investigational 100

Clinically approved lipid lowering agents;
Investigational for CHF, beneficial effects on
atrial fibrosis in animal models

101

Investigational, atrial fibrosis prevention, and
antiarrhythmic efficacy in animal models

102
Mod

cy in
oA � 3-hydroxy-3-methylglutaryl coenzyme A; other abbreviations as in Table 1.
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mportant Unanswered Questions

trial fibrosis plays an important role in the pathophysiol-
gy of AF. Many aspects of the fundamental factors
ontrolling atrial tissue fibrosis remain to be established, as
o the precise ways in which fibrosis alters atrial function
nd interacts with other pathophysiological components to
romote AF occurrence and maintenance. Several key issues
emain to be resolved to better understand the role of atrial
brosis in the development of the AF substrate. It is
nknown whether structural remodeling caused by other
tiologies, such as amyloidosis (110,111), fatty infiltration
112), or hemochromatosis (113), predispose to AF by the
ame mechanisms as fibrosis. Postmortem studies show that
evere atrial pathology does not always result in AF. The
uantitative relationship between fibrosis and AF needs to
e understood, including issues such as the possibility that
here is a threshold for AF promotion and that the fibro-
is–AF relationship may be highly nonlinear, even to the
xtent that very severe fibrosis may make AF less likely.

ore information is needed about the effect of the spatial
istribution and the pattern of fibrosis on atrial conduction
nd AF susceptibility. The precise mechanisms by which
brosis alters conduction need to be understood, as does the
patial scale over which conduction changes with different
ypes of fibrosis. The directionality of fibrosis-related con-
uction changes needs to be appreciated; for example, if
ost fibrosis runs parallel to muscle bundles, fibrosis-related

onduction impairment should be much greater in the
ransverse than longitudinal direction. The potential inter-
ctions between fibrosis and other mechanistic determinants
f AF occurrence, such as repolarization properties and
istribution, source current (sodium current) availability and
ensity, the occurrence and frequency of atrial ectopic
ctivity, and connexin expression, localization, and function,
eed to be appreciated. Finally, it will be crucial to resolve
efinitively the specific causative role of fibrosis in AF
romotion. Although susceptibility to prolonged AF tracks
he extent of fibrosis in a variety of experimental paradigms,
t remains to be proven that fibrosis per se, and not some
ther associated abnormality, is the critical mechanistic
ontributor. A better understanding of the roles and mech-
nisms of fibrosis are likely to help in the development of
ewer and more effective treatment approaches for AF.
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