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Abstract

Diagnostic checking for multivariate parametric models is investigated in this article. A nonparametric
Monte Carlo Test (NMCT) procedure is proposed. This Monte Carlo approximation is easy to implement
and can automatically make any test procedure scale-invariant even when the test statistic is not scale-
invariant. With it we do not need plug-in estimation of the asymptotic covariance matrix that is used
to normalize test statistic and then the power performance can be enhanced. The consistency of NMCT
approximation is proved. For comparison, we also extend the score type test to one-dimensional cases.
NMCT can also be applied to diverse problems such as a classical problem for which we test whether or
not certain covariables in linear model has significant impact for response. Although the Wilks lambda,
a likelihood ratio test, is a proven powerful test, NMCT outperforms it especially in non-normal cases.
Simulations are carried out and an application to a real data set is illustrated.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose that a response vector Y = (y1, . . . , yq)τ depends on a vector X = (x1, . . . , x p)
τ of

covariables, where τ denotes transposition. We may then decompose Y into a vector of functions
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m(X) = (m1(X), . . . , mq(X))τ of X and a noise variable ε, which is orthogonal to X, i.e., for
the conditional expectation of ε given X, we have E(ε|X) = 0. When Y is unknown, the
optimal predictor of Y given X = x equals m(x). Since in practice the regression function m
is unknown, statistical inference about m is of importance. In a purely parametric framework,
m is completely specified up to a parameter. For example, in linear regression, m(x) = βτ x,
where β = (β1, . . . , βq) is an unknown p × q matrix which needs to be estimated from
the available data. More generally, we can study a nonlinear model with m(x) = G(β, x) =

(g1(β1, x), . . . , gq(βq , x))τ , where the vector of the link function G(·) may be nonlinear but is
specified.

When the dimension q = 1, the estimation and statistical inference have been studied
extensively in the literature. In recent years, checking the adequacy of such parametric models
becomes one of the central problems in regression analysis because any statistical analysis
within the model, to avoid wrong conclusions, should be accompanied by a check of whether
the model is valid or not. The literature is much elaborate. To review only a few contributions,
Cox et al. [3] introduced tests of the null hypothesis that a regression function has a particular
parametric structure. Azzalini et al. [1] considered nonparametric regression as an aid to model
checking. Eubank and Spiegelman [7] considered spline approaches to testing the goodness-
of-fit of a linear model. Simonoff and Tsai [17] proposed diagnostic methods for assessing the
influence of individual data values on goodness-of-fit tests based on nonparametric regression.
Gu [10] used spline methods in a diagnostic approach to model fitting. Eubank and La Riccia
[6] derived properties of two-sided tests in nonparametric regression based on Fourier methods.
Härdle and Mammen [11] considered comparisons between parametric and nonparametric fits
and used the wild bootstrap for the computation of critical regions. Härdle et al. [12] investigated
testing for parametric versus semiparametric modelling in Generalized Linear Models, again
using the wild bootstrap. Stute, Thies and Zhu [20] proposed an innovation process approach.
Two comprehensive reference books are Hart [13] and Zhu [24].

The above tests are almost in the class of locally smoothing methods. When the covariables
are high-dimensional, the data sparseness in high-dimensional space causes a serious problem
when nonparametric smoothing is used in the construction of tests. Another class consists of
globally smoothing methods. Stute [18] proposed a nonparametric principal component analysis.
Some optimally powerful tests can be constructed. Stute et al. [19] and Stute and Zhu [21]
recommended an innovation process method. Fan and Huang [8] proposed adaptive Neyman
tests. Stute et al. [19] also used the wild bootstrap.

It is worthwhile to note that the above methods focus on constructing omnibus tests. However,
when we have prior knowledge about the alternative, more powerful test should be constructed
invoking the prior information. Recently, Stute and Zhu [22] studied a score type test for Single-
Index model. The score type test is of optimality for directional alternatives. The test statistic is
the sum of weighted residuals. The optimality of the test can be achieved through selecting an
appropriate weight function.

For the models with multivariate responses, in principle, Stute and Zhu’s methodology can
be extended to tackle the testing problem. We will define a score type test using similar idea.
However, to define a scale-invariant test, an estimator of the limiting variance is often used to
standardize the test. Note that such an estimator is model-dependent, and under alternative is
consistent with larger value than the one under the null. As a result, the power is deteriorated.
Take these problems into account, we propose a nonparametric Monte Carlo test (NMCT)
procedure. This Monte Carlo procedure is used to approximate the null distribution of test
statistic. With the help from it, we do not need to construct scale-invariant test because this test
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procedure can make any test scale-invariant. Particularly in our case, estimating the variance is
unnecessary. In the simulations, we will make a comparison to the score type test. Furthermore,
NMCT can fully apply the structure of the response/error, for instance the elliptical symmetry
of the distribution, in the construction of NMCT. As we know, there are several proposals of
Monte Carlo approximations available in the literature such as time-honored Bootstrap [5,2] is
also a comprehensive reference. But these existing methods still involve the estimation for the
asymptotic covariance. In these methods, the semistructure of the response/error cannot be used
in the construction of the approximation.

Furthermore, NMCT can also be applied to some classical problems with multivariate linear
models. To investigate which covariable(s) insignificantly affects the response, the likelihood
ratio test called Wilks lambda is a standard test contained in the textbooks. The p-values can
be determined by chi-square distribution, see e.g., [14]. When the underlying distribution of
the error is normal, the Wilks lambda has been proved to be very powerful. However, it is not
true when normality is violated. In this article, We will theoretically and empirically show how
NMCT works. The limited simulations show that the power performance of NMCT is better,
even in the normal case, than that of the Wilks lambda.

Therefore, NMCT shares the following desired features.

• As an alternative to the existing resampling methods, NMCT is especially suitable for the
problems with semiparametric structured models where the errors are of semiparametric
distributions such as elliptically symmetric distribution.

• NMCT is a self-scale-invariant. It does not involve the estimation of asymptotic covariance
matrix which is model-dependent and often deteriorates the power performance when we use
it in the test statistic.

• NMCT is a generic methodology which can be applied to other testing problems.

Since NMCT is based on a variant of score type test without scaling, we will study the
score type test first so that we can similarly obtain the asymptotic properties of NMCT. It is
worth mentioning that, in univariate response cases, although the score type test mainly deals
with directional alternatives, it can be used to tackle composite alternatives through the residual
plots to search for the weight function involved in the test. We will briefly discuss this issue for
multivariate response cases in Sections 3 and 4. On the other hand, we also note that when the
alternative is nonparametric, it is of importance to find how to make score type test possible to
construct omnibus test. Technically, we could use the idea in [22] to do so when we use a set of
weight functions. However, for multivariate cases, the structure of test statistic is rather complex
and it is not easy to implement. This deserves further study.

The paper is organized as follows. The next section describes the construction of the score
type test and its asymptotic behavior. Section 3 presents the algorithm of NMCT. The simulation
study and an application are reported in Section 4. The technical proofs are presented in the
Appendix.

2. Score type test

Suppose that {(x1, y1), . . . , (xn, yn)} is a sample drawn from a population which follows the
model as:

Y = m(X) + ε, (2.1)
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where ε = (ε1, . . . , εq)T is a q-dimensional error vector independent of X. For model checking,
we want to test the null hypothesis: for some matrix β = (β1, . . . , βq) almost surely

H0 : m(·) = G(β, ·), (2.2)

where for each i with 1 ≤ i ≤ q , mi (·) = gi (βi , ·). Let e = Y − G(β, X). Clearly, H0e = ε

and then E(e|X) = 0. It implies that for any q-dimensional weight function W(β, ·) of X,
E(e • W(β, X)) = 0 where the dot product “•” stands for the multiplication componentwise.
From which we can define a score type test through an empirical version of E(e • W(β, X)). Let

Tn =
1
n

n∑
j=1

ê j • W(β̂, x j ), (2.3)

where ê j = y j − G(β̂, x j ) and β̂ is a consistent estimator of β. The resulting test statistic is

a quadratic form Tn = Tτ
n Σ̂

−1
Tn where “τ” stands for transposition and Σ̂ is a consistent

estimator of the covariance matrix of Tn .
There are three quantities in the test statistic to be selected: two estimators β̂ and Σ̂ and

weight function W(β, ·). The two estimators are for the consistency of the test statistic to obtain
a tractable limit null distribution of Tn . The selection for weight function is to enhance power
performance of the test.

In this paper we use the least squares estimators β̂i that are the solutions of the following
equations:

n∑
j=1

g′

i (βi , x j )(y
(i)
j − gi (βi , x j ))

τ
= 0, (2.4)

where g′ is the p × 1 derivative vector of g with respect to βi provided that gi are differentiable.
As we know, each of β̂i has an asymptotically linear representation. For model (2.1), y(i)

j =

mi (x j ) + e(i)
j , j = 1, . . . , n. Denote η = G(β, X) − m(X), and η j = G(β, x j ) − m(x j ). Then

(η1, . . . , ηn) are i.i.d . random variables. The asymptotically linear representations of β̂i are as
follows:

β̂i − βi =
1
n

n∑
j=1

S−1
ni g′

i (βi , x j )e
(i)
j +

1
n

n∑
j=1

S−1
ni g′

i (βi , x j )η
(i)
j + op(1/

√
n), (2.5)

where Sni =
1
n

∑n
j=1(g

′

i (βi , x j ))(g′

i (βi , x j ))
τ .

Note that in probability, the first sum is of the rate O(1/
√

n) and under fixed alternatives,
Sni → Si := E

(
(g′

i (βi , X))(g′

i (βi , X))τ
)
, and the the second sum converges to Ci :=

S−1
i E

(
g′

i (βi , X)η(i)
)
. Thus, β̂i converges to βi + Ci , and Ci 6= 0 corresponds to the alternative

H1. In the following, we study the asymptotic behavior of the test statistics under both H0 and
H1. To present the results, we give some conditions.

1. The second derivatives of gi and the first derivative of W(i) with respect to x and β are
continuous and can be bounded by a function M(·) with E(M(X))2 < ∞.

2. The second moments of gi , W(i) and e(i) are finite.
3. The asymptotic representation of β̂ in (2.5) holds.
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From the above conditions, we can easily obtain

√
nTni =

1
√

n

n∑
j=1

{
W(i)(βi , x j ) − E[(W(i)(βi , X))(g′

i (βi , X))τ ]S−1
i (g′

i (βi , x j ))
}

e(i)
j

+
1

√
n

n∑
j=1

{
W(i)(βi , x j ) − E[(W(i)(βi , X))(g′

i (βi , X))τ ]S−1
i (g′

i (βi , x j ))
}

η
(i)
j

+op(1)

=:
1

√
n

n∑
j=1

V(i)
j e(i)

j +
1

√
n

n∑
j=1

V(i)
j η

(i)
j + op(1), (2.6)

where V(i)
j =

(
W(i)(βi , x j )

)
− E[(W(i)(βi , X))(g′

i (βi , X))τ ]S−1
i (g′

i (βi , x j )).
Theorem 2.1 states the asymptotic results of Tn = (Tn1, . . . , Tnq)τ .

Theorem 2.1. Suppose that the above conditions hold.

(1) When H0 holds,
√

nTni H⇒ Ti following normal distribution N (0, σi i ) where the notation
“H⇒” stands for weak convergence and σi i is the variance of V(i)

j e(i)
j . Therefore letting T =

(T1, . . . , Tq)τ ,
√

nTn H⇒ T following normal distribution N (0,Σ ) with Σ = (σlm)1≤l,m≤q

and σlm is the covariance between V(l)
j e(l)

j and V(m)
j e(m)

j for any pair of 1 ≤ l, m ≤ q. This
results in that Tn is asymptotically chi-squared with degree of freedom q.

(2) When H0 is false and for some i with 1 ≤ i ≤ q, if
[

1
√

n

∑n
j=1 V(i)

j η
(i)
j

]2
→ ∞,

then Tn → ∞ in probability; and if
[

1
√

n

∑n
j=1 V(i)

j η
(i)
j

]
→ Bi , a constant, then Tni

converges in distribution to Ti + Bi where Bi = E
[
V(i)η(i)

]
. Let T = (T1, . . . , Tq)τ and

B = (B1, . . . , Bq)τ . Tn then converges in distribution to (T + B)τΣ−1(T + B) that is a
non-central chi-squared random variable with the non-centrality BτΣ−1B.

This theorem shows that the test can detect the alternatives n−1/2 distinct from the null
hypothesis if the non-centrality BτΣ−1B is not zero. In the following, we discuss the selection
of W.

When q = 1, the situation is reduced to the case similar to [22,25]. The distribution of
(T+B)τΣ−1(T+B) is actually non-central chi-squared with the non-centrality BτΣ−1B. When
we consider the one-sided test, its power function is G(−cα/2+Σ−1/2B)+G(−cα/2−Σ−1/2B)

where cα is the upper (1 − α)-quantile of the normal distribution. It is easy to prove that this
function is a monotone function of |Σ−1/2B|, and then the power function is a monotone function
of the non-centrality BτΣ−1B. For the multivariate response case, we have the following lemma.

Lemma 2.1. Under the conditions of Theorem 2.1, the power function relating to the distribution
of (T + B)τΣ−1(T + B) is a monotone function of BτΣ−1B.

From Lemma 2.1, we can see that to enhance the power, we should select W to allow∑q
i=1 v2

i = BτΣ−1B as large as possible.

Lemma 2.2. Under the conditions of Theorem 2.1, the optimal choice of W satisfies the
equation that Σ−1/2V = [E(η2)]−1/2η where [E(η2)] is an diagonal matrix each element on
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the diagonal is E(η(i))2 where V = (V(1), . . . , V(q))τ and V(i) depending on the weight W are
defined in Theorem 2.1.

Remark 2.1. Lemma 2.2 provides a way to search for an optimal weight through solving
an equation. In a special case, the solution has a closed form. When W is orthogonal to
g′, V is actually equal to W. If the components of W are orthogonal to one another, ε is
independent of X and has a common variance, σ 2, of all components e(i), we have that Σ is
also a diagonal matrix each element on the diagonal being σ 2 E(W(i)), i = 1, . . . , q. Hence,
Σ−1/2V = σ 2

[E(W2)]−1/2W = [E(η2)]−1/2η. This means that W can be selected as η because
σ 2 is a constant. Furthermore, W = η should be a good weight function even when the above
conditions on the model structure is violated because W exactly matches the directional departure
η from the null model. The test should have good power performance. In univariate response case,
a similar discussion can be seen in [22,25]. On the other hand, when we do not have much prior
information on the alternatives, η is unknown and is not even estimable. Thus, this optimal weight
cannot be used. To make use of the score test procedure, a more practically useful method is to
choose it through residual plots of Y against G. We will describe this residual-guided graphical
method in Section 4. Clearly, it deserves further study on how to construct omnibus score type
test. But this is beyond the scope of this paper.

3. Nonparametric Monte Carlo test

From Theorem 2.1 we can easily determine p-values through chi-square distributions.
However, for Tn a deterioration for the power comes from a plug-in estimation for the covariance
matrix Σ = Cov(V • ε). This is because under the alternative ε is no longer centered and this
covariance matrix will be larger than that under H0. In this section, we propose a nonparametric
Monte Carlo test (NMCT) procedure to approximate the null distribution of a test. An interesting
point of this approximation is that although the test itself we will use is not scale-invariant
because we do not use a plug-in estimator of the covariance matrix, NMCT can be scale-invariant.
In comparison with the existing proposals for approximating the null distributions of the tests,
for instance, classical bootstrap Efron [5], and their variants such as the wild bootstrap [11,19],
we know that a bootstrap procedure also requests the estimation for Σ . More importantly, NMCT
has a special usefulness in multivariate response cases because if the distribution of the error is
of semiparametric structure, we can benefit from it to better mimic the null distribution, and if
the error is fully nonparametrically distributed, NMCT is also consistent. To this end, we first
give a definition about the independent decomposition for a random variable.

Definition 3.1. A random vector X is said to be independently decomposable if X = U •

V in distribution, U and V are independent and U • V is a dot product, that is U •

V = (U (1)V (1), . . . , U (d)V (d)) if both U and V are d-dimensional vectors, and U • V =

(U (1)V, . . . , U (d)V ) if V is scalar, where the U (i)’s are the components of U; similarly,
U • V = (U V (1), . . . , U V (d)) if U is scalar.

There are several distribution families satisfying the independent decomposition including
elliptically symmetric, reflectively symmetric, Liouville–Dirichlet and symmetric scale mixture
distributions. These distributions are respectively the generalizations of normal, symmetric, Beta
and stable distributions. See [9] and the references therein. To motivate our NMCT procedure,
we first describe the algorithm with a simple case. When either U or V has an analytically
tractable distribution, the above decomposition motivates the following NMCT procedure. Let
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x1, . . . , xn be an i.i.d . sample of size n. A test statistic T (x1, . . . , xn), say, can be rewritten as
T (u1•v1, . . . , un ·vn), if the xi ’s are independently decomposable with xi = ui •vi under the null
hypothesis. Then the unconditional distributions of T (x1, . . . , xn) and T (u′

1 • v1, . . . , u′
n • vn)

are identical, and due to the independent decomposition, when v1, . . . , vn is given the conditional
distribution of T (x1, . . . , xn) is also identical to that of T (u′

1 • v1, . . . , u′
n • vn). These facts show

that the expectation of tail probability of the conditional distribution over (v1, . . . , vn) is equal
to tail probability of the unconditional distribution. Thus, the p-values based on the conditional
distribution are reasonable estimators of the true p-values. Also from Theorem 3.1 below, we
can see the consistency of such estimators as sample size goes to infinity. Therefore, we then
propose a Monte Carlo procedure to simulate the conditional distribution of T (x1, . . . , xn) when
(v1, . . . , vn) are given. We generate a reference set of values of the test statistic by sampling
from T (u′

1 • v1, . . . , u′
n • vn), where u′

1, . . . , u′
n have the same distribution as that of u1, . . . , un .

That is, conditionally on v1, . . . , vn , the Monte Carlo calculations can be performed based on
u′

1, . . . , u′
n , where u′

1, . . . , u′
n are drawn independently from the distribution of U. The p-value

of the test statistic T can be estimated as follows. Suppose that the null hypothesis will be rejected
for large values of T ; for two-sided tests, modifications are done easily. Let the values of T be
T0 for the original data set and T1, . . . , Tm are obtained from the Monte Carlo procedure. The
p-value is estimated as

p̂ = k/(m + 1),

where k is the number of values in T0, T1, . . . , Tm that are larger than or equal to T0. Therefore,
for a given nominal level α, whenever p̂ ≤ α, the null hypothesis will be rejected. See for
example [15,27,28].

3.1. NMCT in regression

When we apply NMCT to regression problems, some modification is needed because test
statistic is based on the residuals that are not of a direct independent decomposition, and also
we cannot simply simulate the residuals to approximate the null distribution because under
the alternative, the conditional distribution of NMCT based on the simulated residuals is not
an approximation to the null distribution, but an approximation to the distribution under the
alternative. Therefore, we have to study the structure of the test first to see how NMCT should
be constructed.

Recalling the format of Tn in Section 2, it is a standardized quadratic form of Tn with an
estimator of Σ so that the test statistic is scale-invariant. However, to avoid the use of Σ̂ , we
use a test Tτ

n Tn with the help of NMCT to avoid the problem created by such a standardization.
For the sake of notational simplicity, we only present an algorithm with elliptically symmetric
distribution of the error, similarly with other classes of distributions.

• Step 1. Generate independent identically distributed random variables ui = Ni/‖Ni‖, i =

1, . . . , n where Ni has normal distribution N (0, Iq). Clearly, ui is uniformly distributed on
the sphere surface. Let Un := {ui , i = 1, . . . , n} and define the conditional counterpart of Tn
as

T̃n(En) =
1

√
n

n∑
j=1

V̂ j • u j • ‖ê j‖, (3.1)

where V̂ j =

{
W(β̂, x j ) − Ê[(W(β̂, X))(g′(β̂, X))τ ]Ŝ−1(g′(β̂, x j ))

}
.
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The resulting conditional counterpart of the test statistic T ′
n = Tτ

n Tn is

T ′
n (U) =

[
T̃n(Un)

]τ [
T̃n(Un)

]
. (3.2)

• Step 2. Generate m sets of Un , say U(i)
n , i = 1, . . . , m and get k values of T ′

n (Un), say
(T ′

n (Un))(i), i = 1, . . . , m.
• Step 3. The p-value is estimated by p̂ = k/(m + 1) where k is the number of (T ′

n (Un))(i)’s
which are larger than or equal to T ′

n . Reject H0 when p ≤ α for a designated level α.

Remark 3.1. From the above procedure, we can see that the test statistic T ′
n does not involve

Σ , thus is different from Tn . Also T ′
n is not scale-invariant. However, in the Monte Carlo test

procedure, we compute the conditional approximation T ′
n (Un), and the p-values are computed

by comparing the simulated values of the approximation with the original value of Tτ
n Tn . Such

a comparison makes any constant scalar to be eliminated and then makes no impact for the
computation of p-values. The following result states the consistency of the approximation. On
the other hand, note that when Tn is applied, the optimal weight is related to Σ . Such an optimal
weight is not used in T ′

n . However, we commented it in Remark 2.1, W = η is actually a good
weight and the selection by residual plot is also constructive. Thus, in our simulations, we do not
use the optimal weight.

Theorem 3.1. Assume that 1/n
∑n

j=1(V j • η j )(V j • η j )
τ converges to zero in probability and

the conditions of Theorem 2.1 hold. Then we have that, for almost all sequences {(xi , yi ), i =

1, . . . , n, . . . ,}, the conditional distribution of T ′
n (Un) converges to the limiting null distribution

of Tn . When 1/n
∑n

j=1(V j •η j )(V j •η j )
τ converges in probability to a constant matrix, T ′

n (Un)

converges in distribution to T which may have a different distribution from the limiting null
distribution of Tn .

When the distribution of ε does not have a semiparametric structure, we can also construct a
NMCT that is easy to implement. Other than Step 1, the others are the same. The modified Step
1 is as follows.

• Step 1′. Generate independent identically distributed random vectors ui , i = 1, . . . , n with
bounded support and mean 0 and covariance matrix 1. That is, all components are identical.
Let Un := {ui , i = 1, . . . , n} and define the conditional counterpart of Tn as

T̃n(Un) =
1

√
n

n∑
j=1

V̂ j • u j • ê j , (3.3)

where V̂ j =

{
W(β̂, x j ) − Ê[(W(β̂, X))(G′(β̂, X))τ ]Ŝ−1(G′(β̂, x j ))

}
.

The resulting conditional counterpart of T ′
n is

T ′
n (Un) =

[
T̃n(εn)

]τ [
T̃n(Un)

]
. (3.4)

Remark 3.2. In this algorithm, any kind of random vectors ui satisfying the conditions in Step 1′

can be used. The following theorem shows that the consistency of the conditional approximation
holds. That is, the asymptotic validity is true. On the other hand, choosing an optimal distribution
to generate data is of great interest. It deserves further research. However, since the distribution
family in which the distribution satisfies the conditions is very large, the optimality issue is a
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very difficult problem, and is not even possible. Thus, it might be a way to do so when we restrict
ourselves to a smaller family.

Remark 3.3. In univariate response cases, Step 1 and Step 1′ are similar to the wild bootstrap
that was used by [11], and particularly to the one used by [19,26]. Specifically, Step 1 for
elliptically symmetric distribution is to generate ui = ±1 that is a special case of Step 1′.
However, the major difference is as follows. With NMCT, we assign ui in the summands when the
test statistic can be asymptotically expressed as a linear statistic. This algorithm can ensure the
consistency of NMCT. In contrast, for the wild bootstrap, the random variables are weighted on
the residuals directly. When the underlying model is linear, these two algorithms are equivalent,
however, for nonlinear models the consistency of the wild bootstrap test may not always hold.
The readers can refer [23] for details. The special case is Zhu and Neuhaus [27].

Theorem 3.2. Assume that 1/n
∑n

j=1(V j • η j )(V j • η j )
τ converges to zero in probability and

the conditions in Theorem 2.1 hold. Then the conclusion of Theorem 3.1 holds.

3.2. NMCT for regression parameters

Consider the linear model

Y = βτ X + ε, (3.5)

where ε is independent of X. To check whether some component of X has impact for Y, we want
to test the hypothesis

H0 : βτ
(1) = 0,

where βτ
= (βτ

(1), β
τ
(2)), βτ

(1) is a q × l matrix and βτ
(1) is a q × (p − l) matrix. Let

xτ
= ((x(1))τ , (x(2))τ ) with (x(1))τ being a l-dimensional row vector and (x(1))τ being a (p − l)-

dimensional row vector. Under H0, the model becomes

Y = βτ
(2)X

(2)
+ ε.

In any textbook of multivariate analysis, the likelihood ratio test: the Wilks lambda is a standard
test, see, e.g. Johnson and Wichern [14]. When {(x1, y1), . . . , (xn, yn)} is a sample, by least
squares, we can separately obtain the least squares estimators β̂

τ
and β̂

τ

(2) of βτ and βτ
(2)

respectively. Hence two sums of squares and cross-products can be derived as

Σ̂ =

n∑
j=1

(y j − β̂
τ
x j )(y j − β̂

τ
x j )

τ
;

Σ̂2 =

n∑
j=1

(y j − β̂
τ

(2)x
(2)
j )(y j − β̂

τ

(2)x
(2)
j )τ .

A modified logarithm of the likelihood ratio test, popularly called Wilks lambda, is

Λn = −[n − p − 1 − 1/2(q − p + l + 1)] ln
(
|Σ̂ |/|Σ̂2|

)
. (3.6)

Under H0, this statistic converges to a chi-square distribution with q(p − l) degrees of freedom.
Study the structure of the Wilks lambda first. Let Y = (y1, . . . , yn), X = (x1, . . . , xn),

X(2) = (x(2)
1 , . . . , x(2)

n ), E = (e1, . . . , en) be, respectively, the q × n response matrix, p × n
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and (p − l) × n covariate matrices and q × n error matrix. Note that β̂ = (XX τ )−1 XYτ and

β̂(2) =

(
X(2)X τ

(2)

)−1
X(2)Yτ . It is easy to obtain that

Y − YX τ
(
XX τ

)−1 X = E
[
I − X τ

(
XX τ

)−1 X
]
,

Y − YX τ
(2)

(
X(2)X τ

(2)

)−1
X(2) = E

[
I − X τ

(2)

(
X(2)X τ

(2)

)−1
X(2)

]
,

where I is an n × n identity matrix. From the definition of Σ̂ and Σ̂2 above, we can rewrite them
as

Σ̂ =

[
Y − YX τ

(
XX τ

)−1 X
] [
Y − YX τ

(
XX τ

)−1 X
]τ

= E
[
I − X τ

(
XX τ

)−1 X
]
Eτ

;

Σ̂2 =

[
Y − YX τ

(2)

(
X(2)X τ

(2)

)−1
X(2)

] [
Y − YX τ

(2)

(
X(2)X τ

(2)

)−1
X(2)

]τ

= E
[

I − X τ
(2)

(
X(2)X τ

(2)

)−1
X(2)

]
Eτ .

From these two formulae, we now define a NMCT. Like that in Section 3.1, we generate q × n
random matrix Un = (u1, . . . , un), and define

Σ̂ (Un) =

(
Un • Ê

) [
I − X τ

(
XX τ

)−1 X
] (
Un • Ê

)τ

;

Σ̂2(Un) =

(
Un • Ê

) [
I − X τ

(2)(X(2)X τ
(2))

−1X(2)

]
(Un • Ê)τ .

Repeat this step m times to generate m values of Λn(Un) = −[n − p − 1 − 1/2(q − p + l +

1)] ln
(
|Σ̂ (Un)|/|Σ̂2(Un)|

)
, say Λn(U (1)

n ), . . . ,Λn(U (m)
n ); and count the number k of Λn(U (i)

n )’s

which are greater than or equal to Λn to obtain the estimated p-value k/(m + 1).
Similar to Theorem 3.1, we have the asymptotic equivalence between Λn(Un)) and Λn .

Theorem 3.3. Assume that the fourth moment of X and Y exists. Then for almost all sequences
{(x1, y1), . . . , (xn, yn)}, the conditional distribution Λn(Un) converges to the limit distribution of
Λn .

4. Simulations and application

In this section, we include three simulated examples and the application to a real dataset. The
first two examples are for model checking and the third example is for diagnostic checking for
regression parameters in the multivariate linear model. In all the cases, the sample sizes were
n = 20, 40, 60, the experiments were repeated 1000 times to compute the power of the tests and
for NMCT, 1000 reference datasets were generated.

Example 1. The model is with continuous response, namely

Y = (βτ X) + cX2
+ ε, (4.1)

where Y is q-dimensional and X p-dimensional, X and ε are independent, and X is multivariate
normal N (0, Ip). To check the performance of NMCT procedure, we considered three
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Fig. 1. The plots of residuals Yi − βτ
i X i = 1, 2 against the fitted linear models βτ

i X with model (4.1) when c = 0.5.

Table 1
The empirical size of the tests in the examples at the normal level 0.05

Example 1 NMCT Score test
n Normal chi-square Uniform Normal chi-square Uniform

20 0.064 0.070 0.061 0.026 0.073 0.030
40 0.060 0.056 0.062 0.038 0.104 0.029
60 0.054 0.060 0.065 0.044 0.116 0.044

Example 2 NMCT Score test
n Normal chi-square Uniform Normal chi-square Uniform

20 0.067 0.065 0.075 0.0350 0.082 0.042
40 0.058 0.060 0.064 0.0390 0.078 0.060
60 0.051 0.056 0.052 0.0500 0.084 0.048

Example 3 NMCT Wilks’ lambda
n Normal chi-square Uniform Normal chi-square Uniform

20 0.061 0.057 0.058 0.057 0.057 0.046
40 0.060 0.056 0.054 0.058 0.052 0.057
60 0.054 0.060 0.053 0.044 0.058 0.045

distributions of the error ε: N (0, Iq), normal; Uq(−0.5, 0.5), uniform on the cube (−0.5, 0.5)q ,
and χ2

q (1) all components following chi-square with degree of freedom 1 respectively. The null
hypothesis is H0 : m(X) = βτ X. Therefore the null model holds if and only if c = 0. In
the simulation, we considered c = 0, 0.1, 0.2, . . . , 1 and p = 3 and q = 2 and the matrix
β = [1, 0; 1, 1; 0, 1].

When we regard the alternatives as directional ones, the weight function can be selected as
X2. As we discussed before, the residual plots of ε against X is also informative. We plotted all
the components of ε against all the components of X, and associated linear combinations βτ

i X. In
Fig. 1, we only report the plots of the residuals against βτ

i X with 300 generated data points. The
plots indicate a pattern of quadratic curve and then suggest W(X) = X2 as a weight function.

Since this is the first research work with multivariate responses in this area, there are no
other competitors in the literature, we compared the power performance of the score type test in
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Fig. 2. The plots of residuals Yi − βτ
i X i = 1, 2 against each covariable xi with model (4.2) when c = 0.5.

Section 2 and NMCT. From Table 1, we can see that although NMCT is a little bit conservative,
it can better maintain the significance level while the score type test has difficulty to do so. From
Fig. 3, we can clearly see that NMCT can gain the power much faster, while departing from the
null, than the score type test does, especially when the sample size is n = 20. In all the cases with
different error distributions, NMCT performs better than the limit distribution although when
sample size is large, the powers with these two testing procedures are very close one another.

Example 2. The model is as

Y1 = βτ
1 X − 2 + 2 cos(c πx1) + ε1

Y2 = βτ
2 X + 2 sin(c πx2

2) + ε2, (4.2)

where Y = (Y1, Y2)
τ , ε = (ε1, ε2)

τ is independent of X = (x1, x2, x3)
τ . X is normally

distributed as N (0, Ip). Let p = 3 and in this example, q = 2. Like that of Example 1,
c = 0 corresponds to the hypothetical model, that is, the linear model. Again β = (β1, β2) =

[1, 0; 1, 1; 0, 1], and c = 0.1, 0.2, . . . , 1 were for power study. The three distributions of the
error ε were the same as those in Example 1.

Clearly, we cannot consider this model with a directional alternative because c is inside
the sine and cosine functions and with different c, the alternative regression function is rather
different. Thus, we used the residual plots to provide idea for selecting the weight function.
We used 300 generated data points from model (4.2) with c = .5 to obtain the residual plots
presented in Fig. 2, we can clearly see the patterns of periodicity of the function. Hence, we used
W(X) = (cos(πx1), sin(πx2

2))τ .
The results in Table 1 show that the score type test, especially in chi-square case, is rather

conservative in both of Examples 1 and 2, and Fig. 4 suggests that even though it cannot gain
higher power. Also when c is large the model becomes of high frequency, such an alternative is
very difficult to detect. But compared with the score type test, NMCT also outperforms in all of
the conducted cases.
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Fig. 3. The plots of the power against the departure with c for testing model (4.1). The first row is for normal error and
the second row for chi-square error and the third row for uniform error.

Example 3. Consider the linear model as

Y = c(β(1)X
(1)) + (βτ

(2)X
(2)) + ε, (4.3)

where Y is q-dimensional, X = (X(1), (X(2))τ )τ where X(1) is one-dimensional, X(2) is (p − 1)-
dimensional independently of ε, X is multivariate normal N (0, Ip). The three distributions of the
error in Example 1 were considered. The hypothetical regression function is βτ

(2)X
(2). Therefore

the null model corresponds to c = 0. In the simulation, β(2) = (1, 1; 0, 1) and β1 = (1, 0).
Again Table 1 provides the results that show a slightly more conservativeness of NMCT than the
Wilks’ lambda. Fig. 5 reports the power. We can find that NMCT outperforms the Wilks’ lambda
in all of the cases especially when sample size is small.
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Fig. 4. The plots of the power against the departure with c for testing model (4.2). The first row is for normal error and
the second row for chi-square error and the third row for uniform error.

We also did some simulations with other distributions such as Student t (5). Since the results
are very similar to those with normal distribution, we then did not report them in this paper.

Application

The 1984 Olympic records data on various track events were collected as reported by [14]. For
a relevant dataset of Women’s track records, [4] used principal component analysis to study the
athletic excellence of a given nation and the relative strength of the nation at the various running
distances. Zhu [23] studied the relation between the performance of a nation in long running
distance and short running distance. For 55 countries winning times for women’s running events
at 100, 200, 400, 800, 1500, 3000 m and the Marathon distance were reported in, say, [14].
Now we want to know whether women of a nation whose performance is better in running long
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Fig. 5. The plots of the power against the departure with c for model (4.3). The first row is for normal error and the
second row for chi-square error and the third row for uniform error.

distances may also have greater strength at short running distances. To make the analysis more
reasonable, the winning time is transformed to speed. Let these speeds be x1, . . . , x7. We regard
100, 200 and 400 m as short running distances, 1500 m and longer as long running distances.
The hypothetical model is linear by considering the speed of the 100, 200 and 400 m running
events (x1, x2, x3) as the covariates and the speed of the 1500, 3000 m and the Marathon running
events (Y1, Y2, Y3) as covariates.

To test the linearity, we used the proposed test Tn in Section 2 and NMCT associated with
T ′

n in Section 3. For NMCT, we assumed two cases: the error follows an elliptically symmetric
distribution and a general distribution respectively. Therefore, we used respective algorithms
to construct NMCT statistics T ′

n (Un) and T ′
n (En) as reported in Section 3. From Fig. 6, we

found that the nonlinearity may be mainly from Y3, the Marathon. There might be quadratic
curves in the plots of Y3 against X i , i = 1, 2, 3. Hence, we chose X2

3 as a weight function
W . With these three tests, the p-values are, respectively, 0.09 with Tn ; 0.0001 with T ′

n (Un)

under the elliptical distributional assumption and 0.03 with T ′
n (Un) under a general distribution

assumption. Clearly, NMCT suggests a rejection for a linear model. Furthermore, the quadratic
curves of Y3 against X i , i = 1, 2, 3 implies that the nation with either great strength or weak
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Fig. 6. The plots of the responses Y1, Y2, Y3 against the covariates X1, X2, X3 for the 1984 Olympic records data.

strength at short running distance may not have good performance in running the Marathon. We
then fit a model linearly with X1, X2, X3 and X2

3 . The p-values with the three tests are: 0.97 with
Tn ; 0.34 with T ′

n (Un) under the elliptical distribution assumption and 0.99 with T ′
n (Un) under a

general distributional assumption. These tests strongly suggested the tenability of the model with
a two-order polynomial of X3.

Let us turn to the classical testing problem with likelihood ratio test. First, we note that
the speeds of 100 and 200 m are greatly correlated with the correlation coefficient 0.9528.
Therefore, we transfer the variables by regressing X2 on X1 to obtain X̂2 = 1.1492X1 and
to get X̃1 = X2 − 1.1492X1, X̃2 = X2 + 1.1492X1. The new model is

Y = aX̃1 + bX̃2 + dX3 + cX2
3 + ε. (4.4)
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The purpose was to test whether X̃1 has a significant impact for Y: that is, the coefficient a = 0
or not. The p-values are: 0.08 for Wilks Lambda; 0.20 for NMCT with uniformly distributed
weights and 0.38 for NMCT with normally distributed weights. All the three tests suggest that
X̃1 has less impact for Y. Hence we can use a model as

Y = bX̃2 + dX3 + cX2
3 + ε.

to establish the relationship between Y and X̃2, X3, X2
3 .
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Appendix

Proof of Lemma 2.1. Note that Σ−1/2(T + S) is normally distributed as N (Σ−1/2S, Iq) where
Iq is a q × q identity matrix. Hence, the components, say, ui i = 1, . . . , q, of Σ−1/2(T + S) are
independent normal with the mean vi and variance 1 where vi ’s are the components of Σ−1/2S.
Therefore, (T+S)τΣ−1(T+S) can be written as the sum of independent non-central chi-squared
variables

∑q
i=1(ui + vi )

2, each has the non-centrality v2
i . From the univariate response case, we

know that P{(ui + vi )
2

≥ c} for any c > 0 is smaller when |vi | gets larger. Consider q = 2.
Note that the distribution of (u1 + v1)

2
+ (u2 + v2)

2 is a convolution of two distributions each
decreasing according to smaller value vi respectively. First note that P{(u1 +v1)

2
+(u2 +v2)

2 >

c} =
∫
(1 − F1,v1(c − x2))d F2,v2(x2) =

∫
(1 − F2,v2(c − x1))d F1,v1(x1). Then for any pairs

(v1, v2) and (v′

1, v
′

2) with |vi | ≥ |v′

i |, because of the independence between u1 and u2, we derive
that

P{(u1 + v1)
2
+ (u2 + v2)

2 > c} =

∫
(1 − F1,v1(c − x2))d F2,v2(x2)

≥

∫
(1 − F1,v′

1
(c − x2))d F2,v2(x2) =

∫
(1 − F2,v2(c − x1))d F1,v′

1
(x1)

≥

∫
(1 − F2,v′

2
(c − x2))d F1,v′

1
(x2) = P{(u1 + v′

1)
2
+ (u2 + v′

2)
2 > c}.

When we use induction, the same can apply to prove the general case, we omit the details. �

Proof of Lemma 2.2. Let V′
= Σ−1/2V =: ((V′)(1), . . . , (V′)(q)). Since Si = E(V(i)η(i)), then∑q

i=1 v2
i =

∑q
i=1 E[(V′)(i)η(i)

]
2. Invoking the Cauchy–Schwarz inequality and the fact that

E[(V′)(i)]2
= 1, we obtain that BτΣ−1B ≤

∑q
i=1(E[η(i)

])2 and the equality holds if and only

if (V′)(i) = η(i)/
√

(E(η(i))2). �

Proof of Theorem 3.1. First note that under the null,

T̃n =
1

√
n

n∑
j=1

V j • e j + op(1). (5.1)
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It is easy to see that when the sequence of {(xi , ‖εi‖), i = 1, . . . , n, . . . , } is given, 1
√

n

∑n
j=1 V j •

e j has the same distribution as 1
√

n

∑n
j=1 V j • u j • ‖e j‖ because ε j/‖ε j‖ is independent of

‖ε j‖, and the distribution of ε j/‖ε j‖ is identical to that of u j and so do the distributions of the
associated unconditional counterparts. This implies that the limit distribution of T̃n is the same
as that of 1

√
n

∑n
j=1 V j • u j • ‖e j‖. Note that this is in turn asymptotically equivalent to T̃n(Un).

The proof can be done as follows.
Note that in

T̃n(Un) =
1

√
n

n∑
j=1

V̂ j • u j • ‖ê j‖, (5.2)

u j are independent of {(x j , y j ), j = 1, . . . , n}, and all estimators involved in V̂ j and ê j are
consistent. Then we can easily derive that, by Taylor expansion,

1
√

n

n∑
j=1

[
V̂ j • u j • ‖ê j‖ − V j • u j • ‖e j‖

]
=

1
√

n

n∑
j=1

u j •

[
V̂ j • ‖ê j‖ − V j • ‖e j‖

]
in probability. The proof is finished. �

Proof of Theorem 3.2. To prove the result, we only need to prove two things: asymptotic
normality of T̃n(Un) and the identical of the covariance matrix to the limiting covariance of
T̃n . Note that u j are independent of {(x j , y j ), j = 1, . . . , n}. Then, when {(x j , y j )} are given,
the covariance matrix of T̃n(Un) is 1/n

∑n
j=1(V̂ j • ε̂ j )(V̂ j • ε̂ j )

τ . By the consistency of the
estimators involved, Taylor expansion and the weak law of large numbers, it is easy to see that
this sum converges to E[(V • ε)(V • ε)τ ]. This is just the limiting covariance of T̃n . As for the
asymptotic normality, we only need to note that when {(x j , y j )} are given, T̃n(Un) is a sum of
i.i.d . random vectors. Combining central limit theorems (see [16]), we can verify that the limit
is distributed as N (0, E[(V • ε)(V • ε)τ ]). This is identical to the limit distribution of T̃n . �

Proof of Theorem 3.3. The proof is almost the same as those for the previous theorems. We
omit the details. �

References
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