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A LINEAR AXIOMATIZATION 
OF NEGATION AS FAILURE 

SERENELLA CERFUTO 

D This paper is concerned with the axiomatization of success and failure in 
propositional logic programming. It deals with the actual implementation 
of SLDNF in PROLOG, as opposed to the general nondeterministic 
SLDNF evaluation method. Given any propositional program P, a linear 
theory LT, is defined (the linear translation of PI and the following 
results are proved for any literal A: soundness of PROLOG evuha- 
tion (if the goal A PROLOG-succeeds on P, then LT, kli,, A, and if 
A PROLOG-fails on P, then LT, I-,~” Al), and completeness of PROLOG 
evaluation (if LT, I-,~” A, then the goal A PROLOG-succeeds on P, and 
if LT, +,in A’ , then A PROLOG-fails on PI. Here l-,in means provabil- 
ity in linear logic, and Al is the linear negation of A. a 

INTRODUCTION 

This paper is concerned with the axiomatization of success and failure in proposi- 
tional logic programming. One wants to prove something like 

A succeeds iff A is provable, 

A fails iff the negation of A is provable, 

where “provable” means provable in a certain theory TMP) depending on the 
program P that we are considering. 

A basic choice has to be made: either 

(i) we decide-as in most of the literature (see [ll] for a general reference)-to 
axiomatize the general SLDNF method (or a variant of it, as for example 
the algorithm studied in 116]), or 

(ii) we decide to treat the implemented version of SLDNF, i.e. PROLOG. 
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Here we choose the second alternative. (The only works of this kind are [12] and 
[15], as far as we know.) 

The fact that (9 and (ii) lead to different answers is illustrated by the different 
treatment of the notion of failure for a propositional conjunctive query A AND B: 

A AND B fails w.r.t. SLDNF when either A fails or B fails; 

A AND B fails when either A (which is the first subgoal tested) 
fails, 

(Thus if A loops query A AND B fails w.r.t. SLDNF but does not 
fail w.r.t. PROLOG.) 

There is a second choice to be made, namely between 

(iii) a nonlogical axiomatization and 

(iv) a logical one. 

In the first case, what is given is a precise formal description of the evaluation 
algorithm considered, but no logical relation (in terms of connectives) between the 
several queries of a program is exhibited. This is the case, for example, of the 
formal calculus proposed in [12]. In the second case, one should use, if possible, a 
logical operation of negation to exchange success and failure, a logical operation of 
disjunction to express, for example, a statement like “either A fails or A succeeds,” 
etc. Moreover, the axiomatization TMP) proposed for a given program P should 
be as modular as possible, in the sense that a local modification of the program P 
should induce just a local modification of TMP). For example, Clark’s completion, 
which has been proposed as an axiomatization w.r.t. SLDNF, is modular in,the 
sense that if one modifies just the clauses of head A of a given program P, only 
the component “definition of A” has to be modified in Camp(P) [2]. 

Here, we make the choice (iv). Now the question is: which logic may one use to 
formulate TMP)? There are some difficulties to face: 

(a) 

(b) 

Classical logic cannot be used, since there are situations where we need a 
commutation of the connectives with provability which classical logic does 
not provide: typically, the classical provability of A V B does not imply that 
either A is provable or B is provable (see Example 1 below). 

Intuitionistic logic obviates the above difficulty but is far from being free of 
defects. In contrast with classical logic, it lacks an involutive negation (i.e., 
the double negation of A is not equivalent to A); therefore it is not able to 
express the exchange of success and failure. Moreover, it joins classical logic 
in leading to some undesired situations which are illustrated by Example 2 
below. 

In both classical and intuitionistic logic there is a hidden principle, namely 
Gentzen’s “contraction rule” (see [3}, [61, or [8]), which seems to be responsible for 
some of the inadequacies of the axiomatizations so far proposed (for example 
Clark’s completion: see the examples below). When we remove contraction (and 
also another rule, namely weakening), we obtain linear logic (see 151 and [7]). This 
last is the logic that we have chosen. 

This paper proves the following result by using linear logic: given any proposi- 
tional PROLOG program P, there is a theory LT, such that for any propositional 
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literal 

(a) 

(b) 

A one has: 

Soundness of propositional PROLOG evaluation. If A PROLOG-succeeds 
on P, then A is a theorem of LT,, and if A PROLOG-fails on P, then the 
negation of A is a theorem of LT,. 

Completeness of propositional PROLOG evaluation. If A is a theorem of 
LT,, then A PROLOG-succeeds on P, and if the negation of A is a 
theorem of LT,, then A PROLOG-fails on P. 

Now let us go into more detailed explanations. First of all, let us see some 
examples which show the kind of difficulties that classical logic and intuitionistic 
logic cannot solve. 

Example 2. Let P, be the program 

(1) R:- P 

(2) R :- NOT(P) 

(3) P:-P 

The query R PROLOG-loops on this program (and indeed, also SLDNF-loops: 
the specific search strategy used by PROLOG does not play an essential role here). 
Now, given the way in which negation is implemented (namely by the negation- 
as-failure rule), one may expect that an axiomatization via classical logic of this 
program will contain something like 

R~*(PVTP) and P++P 

as theorems (these are actually the axioms of Clark’s completion). Thus, R will be 
a theorem, since P v -I P is classically valid. The point is that PROLOG’s internal 
logic is such that a disjunction A V B is “provable” if and only if either A is 
“provable” or B is “provable”, and classical disjunction does not behave like that. 
Notice that any proof of the excluded-middle principle in the Gentzen formaliza- 
tion of classical logic does essentially use the contraction rule. 

Example 2. Let P2 be the trivial program whose only clause is A :- NOT(A). 

The query A PROLOG-loops for this program (and, indeed, SLDNF-loops too). 
However, it is reasonable to ask for A * 7 A to be a theorem of any logical 
axiomatization of this program (once again, this is the case for Clark’s completion), 
so that if the underlying logic is classical or intuitionistic, we will get an inconsis- 
tent theory which trivially proves A. Notice that in the absence of the contraction 
rule the provability of 

A+TA and TA*A 

does not lead to the provability of every formula (see Section III for a more 
detailed discussion). 

So far, we have seen two difficulties which haunt the axiomatization of some 
programs where the specific PROLOG search strategy does not play any essential 
role (which therefore also exploit the possibility of fully axiomatizing SLDNF via 
classical or intuitionistic logic). But there are also problems which are specific to 
PROLOG and which are illustrated by the following example. 
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Example 3. Let P3 be the program whose only clause is A :-A, B. Given the 
selection rule of standard PROLOG, which treats literals in the body of a clause 
from left to right, we have that the query A loops on P3. (Of course, if another 
selection rule were chosen, A would fail.) A fair axiomatization of this PROLOG 
program should be able to express the following facts: 

(1) A fails if either A fails or A succeeds and B fails, 

(2) B fails. 

Now, a translation of (1) and (2) into logic language will give us 

(1) TAV(AA TB)+ -A, 

(2) -, B, 

and if one uses classic or intuitionistic logic, one will prove 7 A. 

The above examples should clarify why we have chosen linear logic for our 
axiomatization rather than classical or intuitionistic logic. The kind of proof theory 
used is linear sequent calculus; it is described in this paper, but some familiarity 
with Gentzen classical and intuitionistic calculi is assumed (see [3], [6], or [8]). 

We will use the sequent notation 

A l,...,A,t-B 

rather than the standard expression B :-A,, . . . , A, to denote a clause whose head 
is B and whose body is A,, . . . , A,. 

Plan of the Paper 

This paper is organized as follows: 

Section I: Description of the tools that we use (quick description of linear logic 
and definition of the system LL). 

Section ZZ: Formulation and proof of our results. 

Section ZZZ: Discussion. 

I. THE TOOLS THAT WE USE: LINEAR LOGIC 

We give here a quick survey of the basic ideas of linear logic, and we introduce the 
formal system that we will use. For a more precise account of linear logic see [51 
and [71. 

Linear sequent calculus-as well as the better-known intuitionistic sequent 
calculus-is essentially a modification of the Gentzen classical sequent calculus. A 
classical sequent is an expression of the form I’ t- A, where P and A are finite 
sequences of formulas. A classical sequent 

G ,,..., G,,+D, ,..., 0, 

is true when the implication 

G,A ..a r\G,-+D,v ..* vD,,, 



LINEAR AXlOMATlZATlON OF NEGATION AS FAILURE 5 

is true. In an intuitionistic sequent A contains at most one formula. This restriction 
has an immediate effect on the inference rules; for example, in the intuitionistic 
calculus one no longer has the right-contraction rule. The modifications brought 
about by the linear approach to the classical calculus are more dramatic: basically 
the sequents keep the same form as in the classical case, but the structural rules of 
weakening and contraction are eliminated from the calculus, and this seemingly 
local modification has far reaching consequences for the structure of the whole 
calculus and for the very nature of the logical connectives. 

But let us go to the core of the matter. In the presence of the structural rules of 
weakening, 

l-+A 

l-,_4,A(rW)Y 

and contraction, 

l-FA,A,A 

l-‘kA,A (rC)’ 

I’,A,Ai-A 

I’,A+A (“)’ 

there are two equivalent formulations for the right rule for conjunction, namely the 
mulriplicative formulation 

I’t-A,A AkB,l-I 

I’,At-Ar\B,A,Il (r A) 

and the additive formulation: 

I-t-A,A Tt-B,A 

TkAr\B,A 
(r/Y*). 

However, once weakening and contraction are dropped, (T A > and (r A* > are no 
longer equivalent; they actually correspond to two different connectives (the linear 
conjunctions), namely 

8 (read “times”), 

& (read “with”). 

Of course, these two distinct conjunctions do not represent truth functions, 
because it is well known that there are exactly 16 binary boolean operators and 
that all of them are definable in terms of standard negation, conjunction, and 
disjunction. Evidently, the semantics of the linear connectives Q and & is not the 
usual Tarski one (see [5] for a formal definition of such semantics). However, it is 
not so surprising that there are propositional connectives which are not truth-func- 
tional: the meaning of intuitionistic connectives cannot be explained in terms of 
truth either, but rather via Heyting’s semantics of proofs (see [8]). 

The difference between the two linear conjunctions may be roughly explained as 
follows. Linear logic is sensitive to how many times a formula is used as hypothesis 
in a proof; thus, using a formula C twice as. hypothesis in a linear proof of a 
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formula A from some hypotheses I actually counts as using rwo hypotheses of the 
form C. In other words, a set of hypotheses I should be seen as a set of 
occurrences of formulas rather then as a set of formulas. Now, in order to have a 
proof .9 of A 0 B from some hypotheses I, a proof _9i of A and a proof _!?S2 of B 
have to be joined; I will be the set of occurrences of formulas obtained by taking 
the union of the hypotheses used in _9i and the hypotheses used in _5S2. For 
example, if we have a proof of A which uses the hypothesis C exactly once and a 
proof of B which uses the hypothesis C exactly once: 

then we have a proof of C, C + A 8 B, but we do not have a proof of C I- A @ B, 
because C is used twice in the pair (_?Si, .9r). On the other hand, in order to have 
a proof _53 of A & B from I, we must have a proof 9, of A and a proof 9, of B 
where each one of the two proofs uses exactly I as set of hypotheses; _9 “proposes 
a choice” between .9i and 9,. Thus, if we take 9, and 2S2 as in the above 
example, we have a proof of C I- A &B, but we do not have a proof of C, C t-A & B, 
because C is used once in _9i and the same happens with 9,. In other terms, 
C I-A &B means “using C once, you can get either A or B, as you wish”. 

In [7] Girard suggests the following story to give some intuition about the 
meaning of the two linear conjunctions: take C to be “I spend one dollar”, A to be 
“I can get a packet of Marlboros”, B to be “I can get a packet of Camels”; then 
C + A @J B may be read as “For one dollar I can get a packet of Marlboros and a 
packet of Camels” and is false, where C, C I- A 8 B may be read as “For two 
dollars I can get a packet of Marlboros and a packet of Camels”. On the other 
hand, C I- A & B says “For one dollar I can get a packet of Marlboros; for one 
dollar I can also get a packet of Camels; however, I must make a choice between 
the two possibilities because one dollar suffices just for one packet of cigarettes”. 
Notice that & is not a disjunction: in order to prove A & B both a proof of A and 
a proof of B must be available, and the following linear sequents are valid: 
A&B+Aand A&BkB. 

Linear negation is denoted by “l” (read “orthogonal”) and has the property 
for any formula A, ALL means exactly the same thing as A (from this point of 
view, it has a rather classical flavor). 

Classical disjunction obeys De Morgan’s rule: . 

A V B is logically equivalent to 7 ( 1 A A 7 B) . 

Corresponding to the two linear conjunctions @ and & we have two linear 
disjunctions, namely: 

18 (read “par”) 

$ (read “plus”) 

which satisfy de Morgan’s rules: 

A 78 B is logically equivalent to (A L 8 B ’ 1 L ; 

A 8 B is logically equivalent to (A L & B L ) L . 
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We have two right rules for the “plus” disjunction: 

It is easy to see from the above rules that Q behaves as an intuitionistic 
disjunction: a proof 23 of A d B from the empty set of hypotheses is either a proof 
of A or a proof of B. 

On the other hand, the “par” disjunction has a rather classical flavor: a proof of 
A IB B tells us that either A holds or B holds but does not tell us which one. Its 
right rule is the following: 

A proof .9 of A 78 B from r behaves in such a way that if a proof of A L from r’ 
is provided, then a proof of B from I, r’ is obtained, and if a proof of B ’ from r” 
is provided, then a proof of A from I, r” is obtained. 

The connectives 8, v are called multiplicative connectives, while @ and & are 
the additive ones. Another multiplicative connective is linear implication, which is 
defined by 

A_, B = A ’ 78 B (read “A linearly implies B”). 

The intended meaning of a linear sequent 

G 1 ,..., G,t-D ,,..., D,,, 

is 

G,@ **a @G,,_, DIP *a-TO,,,. 

So far we have seen the propositional linear connectives. With linear logic one 
wants to be able to make finer distinctions than in classical or intuitionistic logic 
(for example between @ and la); however, one does not want to lose the 
expressive power of intuitionistic calculus. This is why the so-called exponential 
modalities: 

! (read “of course”) 

? (read “why not?“) 

are introduced: by their means it is possible to translate intuitionistic logic into 
linear logic (see [5]). Intuitively, “! A” means that we can have as many occurrences 
of type A as we want (a more suitable name for this modality might be ad Zibitum). 
The modality ? is the dual of !. Finally, there are the linear quantifiers, which have 
more or less the standard meaning. However, in this paper we will work just with 
the finite propositional fragment of linear logic, which contains neither exponen- 
tials nor quanitifers. 

Linear logic has two proof systems, namely linear sequenr calculus and proof 
new here, we use the first one. 
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After this quick description of linear logic, we can now give the definition of the 
formal system which we use. Since any linear sequent 

G ,,..., G,,kD ,,..., D,,, 

has the same meaning as the right-handed sequent 

t-G; ,..., G,,$D, ,..., D,, 

we will write just right-handed sequents. By using this trick, we can formulate the 
calculus writing just the right rules. 

I. 1. The Language b. 

Let P ,,..., Pi ,... and PII ,..., Pi’ ,... be infinite sequences of propositional vari- 
ables. The language II contains the formulas built out of such propositional 
variables by using the following binary connectives: 

multiplicative connectives: 8, 9; 

additive connectives: 9, @. 

The linear negation is a defined connective; if Sr is a formula of [I, its linear 
negation F* is defined as follows: 

for propositional variables, we have two distinct kinds of variables in the syntax, 
i.e. Pi (positive literal) and Pi’ (negative literal); 

(P,‘)’ = Pi; 

(FE3 mL= 9-LT8L; 

(9-~F)*=9-~sFL; 

(Fc13.F)L=9-LTFL; 

(F:DF)L= FL @FL. 

Also linear implication is a defined symbol: 

1.2. The System LL 

A (right-handed) linear sequent of [I is an expression of the form I- I’, where r is a 
finite sequence of formulas G,, . . . , G, of [L; the implicitly defined meaning of the 
linear sequent I- r is G, 78 G, * * * G,,_, 38 G,,. 

Logical axioms: 

I-A,Al. 

Cut rule: 

+-,A t--Al,A 

F r,A 
(CUT). 
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Exchange rule: 

+r 
- (EXCH), 
E r’ 

where P’ is a permutation of P. 

Additive rules: 

I-r,A +r,B 

t-r,A??B P), 

i-r,A 

kr,A@B (“)’ 

I-r,B 

kr,AeB (e2)* 

Multiplicative rules: 

kr,A kB,A 

I-r,A@B,A 

+r,A,B,A , 

(@I¶ 

t-r,A ‘&‘B,A @‘)’ 

1.3. Some Properties of the System LL 

Proposition I (Cut-elimination theorem for LL). Let k A be a linear sequent, and H 
be a set of linear sequents of IL. Zf k A is LL-derivable from the set of nonlogical 
axioms H, then there is a proof 9 of k A from H such that if 

t-r,A I-A’,Z 

t- r,c 

is a cut in 3, then either A or A 1 is a formula of a sequent in H. 

PROOF OF PROPOSITION 1. By a straightforward adaptation of the standard proof of 
cut elimination for Gentzen classical calculus (see [6] or [8]). q 

Proposition 2 (Subformula property for LL). Let k A be a linear sequent, and H be 
a set of linear sequents of II. Zf k A is LL-derivable from the set of nonlogical 
axioms H, then there is a proof _9 of F A from H such that each formula ,F 
occurring in 9 is either: 

(9 a subformula of a formula in A, or 

(ii) a formula in a sequent of H or 

(iii) the linear negation of a subformula of a formula in a sequent of H. 

PROOF OF PROPOSITION 2. As for Gentzen’s calculus, the subformula property is a 
corollary of the cut-elimination theorem. Let 9 be the proof of I- A from H 
given by Proposition 1. A rather straightforward induction on the height h of _9 
shows that _9 satisfies the conditions of Proposition 3. q 
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Proposition 3 (Distributivity properties). 

(i) @ is distributive w.r.t. @, i.e., any formula of the form 

A@(B@C) 

is logically equivalent to 

(A@B)e(A@C). 

(ii) 79 is distributive w.r.t. &, i.e., any formula of the form 

AT(B&C) 

is logically equivalent to 

(A’BB)&(A38C). 

(iii) @ is semidistributive w.r.t. &, in the sense that any formula of the form 

A@(BTC) 

logically implies the formula 

(A@B)‘B(A@C) 

(the converse is not generally true). 

(iv) 79 is semidistributive w.r.t. (3, in the sense that any formula of the form 

(ATsB) @(AK) 

logically implies 

A78(B@C) 

(the converse is not generally true). 

PROOF OF PROPOSITION 3. The reader can find semantical proofs of the above 
properties in [5]; here we give syntactical proofs just of the first two properties. 

In order to prove property (9, we must prove that: 

(a) there is a linear sequent deduction of (A @ B) @ (A Q C) from the hypothe- 
sis A @(B @ 0, and 

(b) there is a linear sequent deduction of A @ (B 8 C) from the hypothesis 
(A @JB) 63 (A 0 C). 

A proof of (a) is just an LL proof of the right-handed sequent 

ä (Ae(BeC))I,(AsB)e(AsC), 
i.e. of the sequent 

ä (AI39(BI&CI)),(A~B)~(A~C). 

A proof of (b) is just a LL-proof of the right-handed sequent 

ä ((A~p)~(A~C))*,A8(BdC), 

i.e. of the sequent 

ä (A17sBI)&(A178CI),A~(B~C). 

(ff) 

(PI 
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Proof of C(u): 

I-A*,A I-Bl,B I-A,Al + C,C’ 

(@I (@) 

+A1 ,AeB,Bl t-Al,A@C,C* 

(Ex~H) (EXCH) 

k-AAl,BL,A@B I-AL,CL,AeC 

(@l) (e2) 

FA~,B*(A@B)@(A@C) I-AL,CL,(AoB)e(AsC) 

(ExcH) (EXCH) 

I-AL,(A@B)6s(A@C),BL I-A',(AsB)e(A@C),C' 

(&) 
~AAI,(A~B)~(AsC),BI&C* 

(EXCH) 

ä AI,B'&C*,(A~B)~(AeC) 
(18) 

~AAI&(B'9CI),(A~B)~(AQDC) 

Proof of (PI: 

I-B',B FCl,C 

(631) (e2) 

I-B*,B eC t-Ci,B@C 

(EXCH) (EXCH) 

k-A,Al t-BeC,BL t-A,AA I-BeC,C' 

(@) (e) 
I-A~,A@(B~C),B~ FA~,A@(B@C),C' 

(EXCH) (EXCH) 

I-A@(B~BC),A~,B~ I-Ao(B@C),AL,C* 

(78) (,T) 
t-As(B@C),A178BL kA@(BeC),A%'C* 

(8d 

t_A~(B8C),(A'~B*)&(A*~CI) 

(EXCH) 

In order to prove (ii) we must prove the sequents 

I- (A'e(BQP)),(A78B)&(A&C), (Y) 
I-(AL@BL)@(AQKL),A18(B&C). (6) 

It suffices to remark that moduio the replacement of the formulas A, B,C with 
their duals A I, B I, C I, the sequent (7) is just a permutation of the sequent (PI, 
and the sequent (8) is just a permutation of the sequent C(Y). 
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II. SOUNDNESS AND COMPLETENESS OF PROLOG 

II.I. Translating a PROLOG Program P into IL 

Let P be a normal PROLOG program. Our goal is to provide a “translation” LT, 
of a PROLOG program P in II in such a way that LT, “expresses” what it means 
for an atomic goal A to PROLOG-succeed with respect to P and what it means 
for A to PROLOG-fail. We recall that the search strategy over the clauses that we 
consider is the standard PROLOG one, namely, the clauses are tried in the order 
in which they are written, and that to evaluate a goal B the atoms in the body of 
the clause 

A l,...,A,t-B 

are evaluated in the order A,, . . . , A,. 
Before giving the formal definition of such a translation, let us consider some 

examples. 

Example 4. Let P4 be a PROLOG program whose clauses with head C are the 
following (in their order of appearance in P): 

(1) A,Bi-C, 

(2) D, E I- C, 

(3) t-c, 

(4) F k C. 

Let C be a goal for Pd. The situation in which C succeeds at the first attempt 
(namely, when the first clause with head C is tried) can be described by the linear 
formula: 

A@B,C (a) 

because the success of C is caused by the success of A followed by the success of 
B. When C succeeds at the second attempt (after failure of the first one), we have 
that either A has failed or A has been successful but B has failed (failure w.r.t. 
the first clause), and both D and E have been successful, namely, 

(A*e(AcoB*))s(DeE),C. 0) 

When C is successful at the third attempt, we have 

(ALe(AsBL))s(DL@(D@EL)),C. (c) 

Clearly, PROLOG never tests the last clause. 
We define the success set of the atom C as the set 

s,= (a,b,c}. 

The program P4 will halt with failure of C if all the clauses of P4 fail; here, such a 
situation cannot arise [thanks to the presence of the clause (311; thus, the failure set 
of the atom C is empty: 

F, = 0 

If we apply the distributivity of 6~ with respect to $, we can rewrite S, as the set 



LINEAR AXIOMATIZATION OF NEGATION AS FAILURE 13 

of formulas whose elements are 

A@B,C, 

Al @(D@EL,C, 

(A@JB~)@(DOE)-C, 

Al @DL,C, 

A’ 8(D8EL),C, 

(A8B1)8DL-,C, 

(A@B*)s(D@EL),C. 

Now, we can express each formula in this set as a right-handed atomic linear 
sequent, thus getting the set SFq whose elements are 

kA*, B’,C, 

I-A,D’,El,C, 

(Notice that formulas in the antecedent of an implication change sign when they 
are put on the right of a right-handed sequent: AL becomes A, and A becomes 
A L ; also remember that A I’ = A.) 

Clearly 

FW = c 0. 

Example 5. Let Ps be such that the only clauses with head C are: 

(1) A, NOT(B) I- C, 

(2) D, NOT(E) k c. 

The success of the negative goal NO~B) is the same thing as the failure of B, 
and its failure is the same thing as the success of B (likewise for E). Thus the 
success set for C is given by 

S,= (A@B’ -_&(A%(Aci3B))s(DsEL)-C). 

Here we have 

Fc={(AL@(AeB))e(DL@(D@E))-CL}, 

because Ps halts with failure of C when all the clauses of Ps with head C fail. The 
set SFq now has as elements 

t-AL, B,C, 

kA, DA, E,C, 

I--AA,BL,DL,E,C, 
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while FFq has the elements 

I-A,D,CI, 

t-A, DL, EL,CL, 

I-A’,B’,D,Cl, 

I-A’,B’,D’,E’,C’. 

Let P be a normal PROLOG program whose atoms are all propositional 
letters, as in the examples above. Let A be one such atom, and let Szq and FTq be 
defined as the above examples suggest (see below for the formal definition). We 
define the definition of A, for the given program P, as the following set of linear 
sequents: 

DA = STq u FTq 

Let Al,..., A,, be the atoms in P. The linear translation LT, of the program P 
will be defined by 

LT,= u DA,. 
i==l,...,n 

One may observe that it would be possible to formulate LT, in such a way to 
have a much smaller number of axioms. For example, in the case of the program 
P5 above, one might choose the sequents 

t-A8BL-,C, 

I-(A’~(A@B))@(D@E~),C 

as components of the set SFq, and the sequent 

~(A*b(A8B))s(DI~(D~E)),C’) 

as the unique component of the set Fyq. The advantage of having just sequents 
which do not contain any connective as nonlogical axioms of the linear theory LT, 
is that it is particularly easy to study the structure of sequent proofs where all the 
axioms have such a form. 

The discussion of the examples given above should suffice to motivate the 
following definitions. Let AU(P) be the set of the atoms of a program P, and let A 
be an element of AU(P). Let Clauses(A) be the sequence of clauses of P whose 
head is A, taken in their order of appearance in the program P. 

Let B,, . . .) B, I- A be the jth element of Clauses(A). Let (B$ be F if Bi is a 
positive literal F, and FL if Bj is NOT(F). 

Definition 1. If M is different from 0, then for 1 I z I m 

I-(A)j=(B,)“’ ,...,(B,-,)“L,(B,)“, 

and for z = 0 

T(A);= (B,)“‘,...,(B,,J*. 

When m = 0, IYA)i is the empty sequence for any positive integer n. 
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Thus, for example, if the first clause in Clauses(C) is A, NO-~(B) I- C, then 

I(C):,=AL,B, 

r(c): =A, 

r(C):=A*,B+ 

Definition 2. 

(a> 

(b) 

If Clauses(A) is empty, then Szq is empty, 
else let k be the length of Clauses(A), and for 1 2 j I k, define 

ST,‘“(j) = {t--T(A)~o,,...,I(A)(~jl-l,,I(A)~,A: 

1 <z(i) <m(i) for i= l,...,j- 1). 

The set of sequents STq< j) expresses what it means for A to succeed via the 
jth clause in Clauses(A). For example, if the first clause of Clauses(A) is 

B,NoT(C) FA 

and the second is 

D,NOT( E) I-A, 

then STq(2) contains the sequents 

t- I(A):J(A);,A, 

t- I(A):J(A);,A, 
namely the sequents 

kB,D’,E,A, 

t-BBI,CL,DL,E,A. 
Now we can define 

STeq = LJ S?‘“(j). 
j=l,...,k 

If Clauses(A) is empty, then Fpq = { t-A ‘1; 
else, 
if there is a clause in Clauses(A) whose body is empty, then FFq is empty, 
else let k be the length of Clauses(A): 

I?;‘= {~r(A)‘,(,,,...,r(A),k~!l),r(A)r(k),AI : 

1 <z(j) <m(j) for j= l,...,k). 

Intuitively, a sequent in FTq says that if: 

(1) the atoms B,, . . . , B, _ 1 in the body of the first clause whose head is A all 
succeed but B, fails, and 

(2) the atoms B 1,. . . , B,._ 1 in the body of the second clause whose head is A 
all succeed but B,. fails, and 

(k) the atoms B ,, . . . , B,._ 1 in the body of the last clause whose head is A all 
succeed but BZ. fails, 

then A fails. 
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For example, if the first clause of Clauses(A) is B, NON I--A and the second 
is D, NOT(E) I--A, and there are no other clauses with head A, then FTq contains 
the sequents 

namely, the sequents 

Definition 3. 

DA = FTq u STq, 

LT,= U DA. 
AEAT 

Example 6. Let P6 be 

C,=B,AkE, 

C,=D,Ct-E. 

The elements of LTp, are 

kB’,Al,E, 

I-B’,A,DI,C’,E, 

k-B,D’,C’,E, 

I-B,DL,C,Ei, 

t-B,D,E’, 

I-BI,A,D’,C,El, 

I-B’,A,D,E’, 

t-AA, 

k-BBI, 

t-CL, 

kDL. 

Notice that the translation LT, is modular, i.e., if just those clauses of P whose 
head is A are modified, only the component DA of LT, will be modified. 
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11.2. Soundness and Completeness of PROLOG 

Let P be a normal propositional PROLOG program and A a literal of P. We get 
the following theorems: 

Theorem 1 (Completeness of PROLOG). 

(a) Zf I- A is LL-prouuble from LT,, then the goal A PR/OLOG-succeeds on P. 

(b) If I- A 1 is LL-provable from LT,,, then the goal A PROLOG-fails on P. 

Theorem 2 (Soundness of PROLOG). 

(a) If A PROLOG-succeeds on P, then I- A is LL-provable from LT,. 

(b) If A PROLOG-fails on P, then I- A’ is LL-prouable from LT,,. 

(In the above formulation of our theorems, we identify the NOT operator 
occurring in a literal A of P with the linear negation operator ‘.I 

These two theorems may be seen respectively as a completeness result and a 
soundness result for the PROLOG evaluation algorithm with respect to the notion 
of linear logical consequence of the set of nonlogical axioms of LT,; the theory 
LT, gives a semantics to the program P and plays a role w.r.t. PROLOG 
somewhat similar to the one that Clark’s completion is intended to play w.r.t. 
SLDNF. 

To prove Theorem 1 we need a lemma. 

Lemma 1. Let P be a propositional PROLOG program. Let L be an expression of the 
form F or F I, where F is an element of AT( P), and let L* be the sentence defined 
as follows : 

if L is a positive literal F, then L* is “F PROLOG-succeeds on P”; 

if L is a negative literal F I, then L* is “F PROLOG-fails on P”. 

For any sequent S given by 

A A,, ,,“‘, 

and any literal Ai in S, let S*(Ai) be the sentence 

“If (A:)*and... and (A,i_,)*and (Ail,,)*and...and (At)* thenAT”; 

let S* be the sentence 

“S*( A,) and S*( A,) and.. . and S*( A,)“. 

(a) Gicen any sequent S in LT,, the sentence S* is true. 
(b) Given any logical axiom S, the sentence S’ is true; moreover, the truth of S* 

is stable under application of cut and exchange. 

REMARKS ON LEMMA 1. The intuitive meaning of part (a) of this lemma is the 
following. For the sake of explanation, let us suppose that our sequent S is such 
that A , , . . . , A, _ 1 are all negative literals and that A, is positive; for example, let 
us take F A I, B I, C as S. Such a sequent belongs to LT, for any program P 
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whose first clause with head C is 

A,Bl-c. (1) 

Let us pick C as the literal of S. The right sequent I- A I, B ‘, C has exactly the 
same meaning as the two-sided sequent 

A,BkC. 

This remark suggests the following reading for S: 

If A PROLOG-succeeds on P and B PROLOG-succeeds on P, then C 
PROLOG-succeeds on P. 

Lemma l(a) tells us that such a reading is correct. Now let us select the literal B L 
in S. We can write S as 

A,C*kBl 

and read it as saying: 

If A PROLOG-succeeds on P and C PROLOG-fails on P, then B PROLOG- 
fails on P, 

which is, once again, correct. Finally, by selecting the literal A we get 

B,Clt-A’- 

and the reading 

If B PROLOG-succeeds and C PROLOG-fails on P, then A PROLOG-fails 
on P, 

which is also correct. In other words, Lemma l(a) tells us that one can read any 
sequent in LT, as expressing the relations of success and failure between its atoms. 
In particular, when the sequent S has the form +A, then it may be read as “A 
PROLOG-succeeds”, and when S has the form t-AL, then it may be read as “A 
PROLOG-fails”. 

Part (b) of the lemma essentially says that if the reading above suggested is 
correct for the sequents which are the premises of a cut rule or an exchange rule, 
then it is also correct for the sequent which is the conclusion of such a rule. It is 
interesting to notice that (b) would no longer be trUe if we considered also the 
contraction rule. For example, consider the program P whose only clause is 
NOT(A) I- A. The sequent I- A, A is an element of LT,, and may be correctly read 
as “if A PROLOG-fails on P then A PROLOG-succeeds on P”. However, if we 
contract such a sequent to I- A, the reading “A PROLOG-succeeds on P” is 
false. This suggests that an attempt to construct LT, as a set of classical or linear 
sequents would not work (see below h.ow we use Lemma 1 to get a proof of 
Theorem 1, and see also the discussion of some specific examples in Section III). 

PROOF OF LEMMA 1. (a) is almost evident by the construction of LT,; (b) is also 
straightforward. 0 

PROOF OF THEOREM 1 (Completeness of PROLOG). Since a query NOT(A) suc- 
ceeds when A fails and fails when A succeeds, and since the linear formula A” 
is the same thing as A, it suffices to prove the theorem for any positive literal A of 
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P. Thus, let A be a positive literal such that t-A is a theorem of LT,. By 
Proposition 2, we get that there is a proof 9 of k A such that any formula 
occurring in _9 is either A, or a formula occurring in a sequent of LT,, or the 
linear negation of a subformula of a formula occurring in a sequent of LT,. Thus, 
since sequents of LT, are sequents of literals and for any propositional letter P 
the linear negation of P ’ is just P, we have that each formula occurring in _9 is a 
literal. It follows that the only rules used in 9 are cut and exchange. Thus, by 
Lemma 1, the sentence A* is true, that is, A PROLOG-succeeds on P. The same 
argument shows that if I-A 1 is a theorem of LT,, then A PROLOG-fails on P. 

0 

PROOF OF THEOREM 2 (Soundness of PROLOG). Let P be a PROLOG proposi- 
tional program, and L be a literal of P; let w(L) be the number of calls to atomic 
subgoals in the PROLOG evaluation of L w.r.t. the program P. [For example, if 
our program contains just the clauses NOVA), B I- C, and I-B, then w(C) = 2, 
because in the evaluation of C we have a call to A and a call to B, while if our 
program has just ~o-rf(A) I- A as a clause, then w(A) and w(~odAN are infinite.] 

Once again, since a query NOT(A) succeeds when A fails and fails when A 
succeeds, and since the linear formula AI’ is the same thing as A, it suffices to 
prove the theorem for any positive literal A of P. Thus, suppose that A is an 
atomic query which succeeds or fails; clearly w(A) is finite in both cases. We prove 
by induction on n = w(A) that if A PROLOG-succeeds then I- A is a theorem of 
LT,, and if A PROLOG-fails then I- A ’ is a theorem of LT,. 

Base: n = 0. If A succeeds without any call to atomic subgoals, it must be the 
case that the first clause in Clauses(A) is t-A. Then by construction of LT, we 
have that t-A is a sequent in LT,. If A fails without any call to atomic subgoals, it 
must be the case that Clauses(A) is empty. Then by construction of LT, we have 
that I-A’ is a sequent in LT,. 

Inductive step: n > 0. Case 1: A PROLOG-succeeds. Suppose that A succeeds 
at the ith attempt, i.e., the ith clause in Clauses(A) causes the success of A. Let 
the following be the first i clauses in Clauses(A): 

(1) B:,...,B&,,t-A, 

(i- 1) Bi-‘,...,B$:_,,kA, 

(i) B[,...,BA,,,t-A. 

For each p such that 1 sp I i - 1 there is a z(p) such that BP,. . . , B&,,_ 1 all 
succeed but B&,, fails, while Bi,. . . , B,&, all succeed. Clearly the evaluation of 
each one of these queries B,k calls a number of atomic subgoals strictly inferior to 
n. [Notice that some of these queries may be negative literals rather than atoms, so 
that at first sight it seems we cannot apply the inductive hypothesis. However, a 
negative query NOT(F) succeeds iff the atom F fails and fails if the atom F 
succeeds; moreover w(No’I(F)) = w(F).] Thus we can apply the inductive hypothe- 
sis to get + L+ for any literal L which belongs to the list 

B:,...,B~o,,...,BI-l,..., B;&B;,...,B&,,, 
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where L+ is defined as follows: 

L+= FI 

i 

F if L is the atom F and L succeeds, 
FL if L is the atom F and L fails, 

if L is NOT(F) and L succeeds, 

F if L is NOT(F) and L fails. 

By construction of LT, we get that the following is a sequent of LT,: 

--(A)~cl,,..., I’(A)‘;;;:‘_i,,I-(A);, A. (ff) 

[Recall the definitions of Section II.1 to grasp the form of such a sequent, which is 
an element of the set of sequents STq (clause (9.1 Thus by a series of cuts we get a 
proof 9 of t-A from LT,. 

Let us see an example. Suppose that A succeeds at the second attempt, where 
the first two clauses in Clauses(A) are 

(1) NOT@),Ct- A, 

(2) NOTt(E),D+ A. 

Suppose also that z(l) = 2, so that NOT@) succeeds and C fails, while NOT@) 

succeeds and D succeeds. Here our sequent (Y is 

kB,C,E,DI,A, 

and our proof _9 of t-A is obtained by using the sequents 

I-Bl, 

I- Cl, 

I- E I, 

I-D 

already obtained by the induction hypothesis to make successive cuts which 
eliminate the formulas B, C, E, D ’ from (Y. 

Case 2: A PROLOG-fails. The reasoning is very similar to that of the previous 
case. Here the role of the nonlogical axiom C(Y) is played by the sequent: 

+I(A):cr,,..., I(A):&, P(A):(k), Al, (a’) 

where k is the length of Clauses(A), and the values of z(l), . . . , z(k) are given by 
the actual evaluation of A. Notice that the sequent ((u’) is a member of the set of 
sequents FFq defined in Section 11.1. q 

III. DISCUSSION AND CONCLUDING REMARKS 

It is clear that the notion of success in the standard formulations of SLDNF 
completeness and soundness is different from our notion of PROLOG success; 
there, “A succeeds” means that there is a way of performing a search which leads 
to the answer TRUE for A, while the sense in which the term “success” is used in 
our theorems is linked to a fixed search procedure, the standard PROLOG one. 
Our translation of a given PROLOG p.rogram P is done in such a way as to build 
in not only the declarative meaning of the clauses of P, but also a logical 
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description of such a procedure. Notice that if one wanted to construct different 
linear translations for propositional PROLOG programs which use different search 
strategies, in principle this could be done. 

Now let us see how our approach deals with the “difficult” examples given in 
the introduction. 

First, we have considered the program P,: 

(1) PI-R 

(2) NOT(P) I-R 

(3) PI-P 

and we have seen that a good axiomatization of such a program should not have R 
as a theorem. Now we have that the elements of LTp, are 

I-PPI,R, 

+PP,P,R, 

kP,Pl,Rl, 

k-PpI,P 

I-P,PL, 

and I- R is not LL-provable from LTp,. 
Our second example was the program P2, whose only clause is NOT(A) t-14. 

Here LTpZ is 

Neither t--A ’ nor i--A 1 is a theorem of such a theory (contraction is forbidden). 
As a matter of fact, unlike Clark’s completion of Pz, LTpZ is consistent and admits 
nontrivial models (see [5] for the model theory of linear logic). 

We considered also the program P3, whose only clause is A, B t-A. There the 
problem was that a good axiomatization of such a program should not have the 
negation of A as a theorem. Our set of sequents LTq, has the following elements: 

kAl,Bl,A, 

I-A,A', 

I-AI,B,AI, 

t-B I, 

and the sequent I- A L is not provable (the sequent I- A ', A L is indeed provable, 
but we cannot contract such a sequent). 

Now let us play the devil’s advocate. A false impression that could arise from a 
quick reading of our work is that the ability of our translation LT, to reflect 
PROLOG success and failure does not depend on the specificity of linear logic: 
LT, is just a paraphrase of how (standard) PROLOG searches through the clauses 
of P, and if one were replacing linear connectives by classical ones, one would 
obtain a translation Cr, which would work as well as LT,, to get Theorem 1 and 
Theorem 2. Discussing the meaning of Lemma 1, we have already observed that 
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the absence of contraction, which is specific to linear logic, does play an essential 
role in the proof of our results. Moreover we have seen that if we were handling 
the axioms of LTp, as classical or intuitionists sequents, we would get an inconsis- 
tent theory. That example was quite interesting because it clearly showed the 
specific role played by linear logic in our translation, independently of the specific 
way in which the PROLOG strategy has been axiomatized. Below, we give two 
additional examples to show once again that if our axioms were treated as classical 
or intuitionistic sequents, then we would get into trouble; both these examples 
consider programs where the PROLOG search strategy does play an important 
role. 

Exumple 7. Let P, be the following program: 

(1) A +A 

(2) A F B 

(3) I-B 

We have LTp, ={I-AA,A, I-A,AI, I- A I, B, I- A, B). The corresponding set of 
classical sequents looks almost the same as LTp,: 

CTp7={k lA,A, +A,-A, I- lA,B t-A,B}, 

but clearly now these sequents must be handled via classical sequent rules. 
Although B PROLOG-loops for the above program, we do get a classical proof of 
the sequent I-B from the set of hypotheses CTp,, namely 

I-A,TA 

(v2) 

t-Av TA,TA 

(ExCH) 

F TA,AV IA I-A,B I- lA,B 

(v2) (A) 

I-A’.’ TA,AV TA I-AA TA,B,B 

(cONTR) (CONTR) 

t-A’.‘TA FAA TA,B 

(CUT) 

I-B 

Notice that the use of the contraction rule plays an essential role in the above 
classical proof. The next example shows, once again, that we cannot treat the 
sequents of our axiomatization as intuitionistic sequents either. 

Example 3 Recisited. Let us consider once again the program Pj seen above, 
whose only clause is A, B t-A. 

We have already seen that once PROLOG tries to answer the question A, a 
loop occurs, and that the sequent I- AL is not LL-derivable from the linear 
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translation of P3. (By the way, observe that if the atoms B and A appear in 
reverse order in the body of the clause, the goal A finitely fails and LTq, is 
modified in such a way that t-A 1 is LL-derivable.) Now consider the correspond- 
ing intuitionistic translation for P+ 

IT~3={B,A~-A,4t- ~A,A,~Bt- lA,+ TB}. 

Here is an intuitionistic proof of + 7 A from ITq,: 

k -lB A,lBt- 1A 

At- -lA 

A,lTAk At-A 

-TTAFTA A ,TAk 

TTA,TTA~- AI- TTA 

T-?Al- (CONTR) TTTA,AF 

I--lT-lA T-ITAI-TA 

l-1 A 

Let us conclude this discussion with a few words of comparison between our 
work and some related results. 

In [12] and [15] Mints proposes an axiomatization for PROLOG evaluation 
which applies to the general class of first-order logic programs; PROLOG is sound 
and complete with respect to such an axiomatization. As we already said, the main 
difference between Mints’s approach and our approach is that Mints’s axiomatiza- 
tion is a formal calculus which provides a paraphrase of PROLOG evaluation, 
rather than a logical theory which analyses such an evaluation by means of logical 
operators of negation, conjunction, disjunction, etc. The advantage of Mints’s 
axiomatization is that it is not limited to propositional programs, while its weak- 
ness-in our opinion-lies in its rather ad hoc nature. 

In [lo] it is shown that SLDNF evaluation on allowed programs (and queries) is 
sound and complete with respect to Clark’s completion if one takes the underlying 
logic to be a specific version of three-valued logic rather than classical logic. In 
particular, SLDNF is sound and complete for propositional programs. The obvious 
difference between Kunen’s approach and the approach of the present paper lies 
in the different aims: here we are interested in the axiomatization of a specific 
implementation of SLDNF, namely PROLOG, rather than in the general SLDNF 
evaluation. However, in [l] we indeed propose a linear version of Clark’s comple- 
tion as semantics for the general SLDNF nondeterministic evaluation, and we 
prove the soundness and completeness of SLDNF with respect such a semantics 
under the same hypothesis on programs and queries as Kunen’s, namely al- 
lowedness. In that paper we compare extensively the linear-completion approach 
and the three-valued-completion approach with respect to the problem of finding a 
good logical axiomatization of SLDNF. 

The author would like to thank Nicole Bidoit, who patiently read the first draft of this paper; her 
remarks lead to substantial improvements. Also, the author wishes to express here indebtedness to 
Jean-Yves Girard; discussion with him has been essential to the development of the paper. 
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