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Abstract

Let (L, <.V.A) be a complete and completely distributive luttice. A vector ¢ is said to
be an eigenvector of a square matrix A over the lattice L if A = 4 for some £ € L. The
elements / are called the associated eigenvalues. In this paper we characterize the eigen-
values and the eigenvectors and also the roots of the characteristic equation of A.
© 1998 Elsevier Science Inc. All rights reserved.

1. Introduction

The eigenvector—cigenvalue problem (cigenproblem for short) of matrices
over distributive lattices seems to have appeared firstly in the work of Ruther-
ford [2]. Since then, a number of works in this area were published (see e.g. [3-
5)). But the background lattices are usually assumed to be some given Boolean
algebras (see e.g. [2-4]) or Bottleneck algebras (see e.g. [5)). Of course this is too
restricted to be satisfied.

In the present work, we consider the cigenproblem of matrices over more
general lattices, namely in a class of complete and completely distributive lat-
tices. Our main results generalize corresponding results in [2] or [3].
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2. Definitions and preliminary lemmas

Let L be a lattice, a,b € L; the largest x € L satisfying the inequality
aAx < bis called the relative pseudecomplement of a in b, aid is denoted by
awb. If for any pair of elements a, b € L, aWb exists, then L is said to be a
Brouwerian lattice. Dually, for a,b € L, the least x € L satisfyingavx > b is
called the relative lower pseudocomplement of @ in b, and is denoted by
amb. If for any pair of elements a,b € L, amb exists, then L will be said to
be a dually Brouwerian lattice.

A lattice L is said to be completely distributive, if for any x € L and any
family of elements {y;|i € I}, I being an index set, there are always

0= () = Vs

i€l iel

(CD:)  xV (/\x) = Ax v ).
i€l il

It is known (j1], p. 128) that: a complete lattice L is Brouwerian, iff (CD,) is
satisfied in L, and L is dually Brouwerian, iff (CD») is satisfied in L.

Therefore, a complete lattice L is both Brouwerian and dually Brouwerian, iff
L is con:pletely distributive.

In this paper, L denotes a complete and completely distributive lattice with
the greatest element 1 and the least element 0. Unless otherwise specified all
matrices and vectors are of order .

The following notations are used:

[a.b] = {x € Lla<x<b} is an interval in L;

(@] = {x € L|x < a} is the principal ideal generated by a € L;

[@) = {x € L{x = a} is the principal dual ideal generated by a € L.

From the definition of relative pseudocomplement (relative lower pseu-
docomplement), we see that inequality a Ax< b(aVx = b) is always solv-
able and its entire solution set is the ideal (aWbd] (the dual ideal [amb))
of L.

The set V,(L) of all column vectors cver L forms a complete and completely
distributive lattice isomorphic to the nth direct power of L if we make the
following definitions.

X) oY X Vny XN

Xn Y Xa V Y XnYu

where xy = v Ay
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Let
0 1
o= |: and e=
0 1

The vector o is called the zero vector of V,(L).
The multiplication of the vector ¢ by a scalar « is defined by

ax)
at =
ax,
T denotes the row vector whose transpose is ¢ and ¢’ is defined by
X,

where X' = xWo.
A nonempty subset V of V,(L) is called a vector space in V(L) if it is closed
under “Vv”’ and under multiplication by scalars (elements of L).
Likewise the set M,(L) of all n x n matrices over L forms a complete and
completely distributive lattice if we make the following definitions.
For 4 = (a;;), B = (by), C = (c;j) € M,(L),
AVB= C(=>a,~_,-VbU = Cjj (l,j= l,2,...,n):
ANB = C4=>a,-.,-/\b,-j = Cjj (l,j= l..2....,");
A <B = a,-jsb,-,- (l,j-_'- l,2,...,n).
An additional operation of matrix multiplication in M, (L) can be introduced
by the definition

AB =C <= \fauby =c, (i.j=12,....n).
k=1

It is clear that for any 4,8,C € M,(L),

A(BV C) =ABVAC, (BV C)4d=BAV CA,
A(BAC)SABAAC, (BAC)A<BANCA,
(AB)C = A(BC); A<B=>AC<BC and CA<CB.

The multiplication of a matrix 4 by a scalar 4 is defined by

M—':B@Aa,‘j':b,'j (i,j=l,2,...,n).
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The premultiplication of a vector £ by 4 is defined by

Aé =n <= \/’a,-,-x,- =y (i=12,...,n).
=1
AT denotes the transpose of 4.
The following lemmas in the next paragraphs are used:

Lemma 2.1 ([6], Lemma 6). For any a,b € L, we have avb = aW(ab).
Lemma 2.2. If b € L, {a;li € I} C L, where 1 is a certain index set, then

(1) A(a;wb) = ('\/la,) wh;

i€l

2) A(bwa,) = bw (/\a,);

i€l icl

3) ((Va,-) wb) ANai=a;\b foralli€l.

jet

Proof. (1) According to the definition of pseudocomplement, a; A (a;Wbh) < b
foralliel. Letx = A, (a;Wwh). Then x <a; Wb and 5o a; Ax <aiA (a;Wh) < b
for all i € 1. Hence (V,,ai) Ax<b. It follows that x < (Vg 4;)W b. On the
other hand, let y = (V,; a;)Wwb. Then (., a;) Ay < b. It follows thata; A y< b
and so y<a;Wh for ali i € /. Hence, we have y < A, (a;Wh). This proves (1).
(2) is proved in Zhao ([6}, Lemma 7). (3) Since (\/,c, a;)Wbh = b, we have
(Ve a))wb)Aa; 2 a;nb for all iel. On the other hand, since
(Vjer @) A((V,epa;)wh) < b, we have a,/\(\/je,u_,)/\ (Vjeraj)wvb)<ainb
and so ((\/ el a,)tUh) Na;<a; Abfor all i € I. This proves (3). O

Lemma 2.3. For any a.b € L, we have awb = ad' Vv b.

Proof. Since aA(ad'Vvb)=(aAd)V(aAb) and aAd =0, we have
anN(a@ Vvb)=aAnb<bandsoad Vvb<awh. This proves the lemma. O

Lemma 2.4. For any a,b € L, we have
(D) (@avh) =da A}
(2) d" =d', where a" = (a") and a" = (a')’;
3)(ava) =0.

Proof. (1) Since (aA(aV))V(bA{avh))=(aVb)A(aVb) =0, we have
an(avb) =0 and bA ( Vv b)' 0. It follows that (aVvbh)<a and
{(aVvb) <¥. Hence (aVh) <a Ab. On the other hand, since aA (a’ A¥)
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<anad =0and bA(dAV)<bOAD =0, we have (aVb)A(d Ab)=0. It
follows that a’ A b’ < (a Vv b) . This proves (1).
(2) Since @' Aa =0, we have a<4a". It follows that a” <a'. On the other
hand, since a” Aa’ = (a') Aa’ = 0, we have a’' < (a")’ = a". This proves (2).
(3) (aVva') =a Aa" =0. This proves (3). O

Lemma25. Let A€ L. If A Vvi=1, then ' =i

Proof. It is clear that A" >4 On the other hand, " =21"(AV )=
A'Av A" = A"A. Tt follows that 4> 4". Consequently A" = A'. This proves
the lemma. [

Lemma 2.6. For any a,b€ L, (aWb) Ab <d'.

Proof. Since a A (aWbh) < b, we have a A (aWb) Ab <bA B = 0. It follows that
(awb) Ab' <d'. This proves the lemma. O

Lemma 2.7. For any a,b,c € L, we have

(av(bc)) Aa = abc.

Proof. It is clear that (aW(bc)) Aa>=abc. On the other hand, since
aA(aV(bc)) < bc, we have a A (aW(bc)) =an(aAN(aV(bc)))<abe. Conse-
quently, (aW(bc)) A a = abc. This proves the lemma. [

Lemma 2.8. For any a,b € L, we have
(1) bv (amb) = b,
(2)av(amb) =aVb.

Proof. (1) According to the definition of lower pseudocomplement and using

the fact a v b = b, we have b > amb, and so bV (amb) = b. This proves (1).
(2) Since a vV (amb) > b, we have aV (amb) =a V (aV (amb)) ZaV b. On

the other hand, since b > amb, we have a VvV b = a V (amb). This proves (2). O

Lemma 2.9. For any A = (a,;) € M, (L), 4" = 4"*'e.

Proof. Since Ae < e, it follows that
A'le = A'(de) < A'e

for all i, hence in particular 4"''e = \/,,, A'e. Now, any term ¢ of the kth entry
of A"e is of the form ay,ai;, - - - a;, ,i,» Where 1 <iy,ia, -+, i, <n. Since the num-
ber of indices in ¢ is greater than n, a repetition among them must occur. Let us
cail the sequence of entries between two occurrences of one index a cycle. If we
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repeat the cycle twice in a succession, the value of ¢ will not change, due to id-
empotency, but what we now get, is a term in the kth entry of 4”e for some
m > n. Hence A"e< \/,_ A"e = A""e.

Therefore

m>n
Ae=A""e.

This proves the lemma. O

Corollary 2.1. If & = A"e, then A = ¢.

Lemma 2.10. If AZ = &, then ¢ < A"e.

Proof. Since ¢ <e for any &,

E=Al=A=-..=4"¢<A. O

Y

Lemma 2.11. Let A= (a,) € M,(L),2€L and ivi =1, &= (x1,...,x,)"
€ Vy(L). If 24 = 0, then

- -
Va,'l We
il
n )
Va.,.)\U/.

L \i-l .

g i
N

Proof.

IE=0= }.(‘\/ai,x,-) =0 (i=12,....n)
-1

= ia,x; =0 (i,j=1,2,...,n)
= a,x; = (AV A)ayx, = dayx; V dapx; = Fagx; (,j=1,2,...,n)
= x; <a;V(Layx))

= (a; V&) A (a,Wa;) A (a,;,Vx;) (by Lemma 2.2 (2))

<a, Wi (i.j=1.2,... .n)

n

=%, < \(@,v2)
[

= ( ai,)wi.' (by Lemma 2.2 (1)) (j=1,2,....n)
|

{
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"/ n -
(Va,'l) UJ).'
i=1
n
(Va;,,) w;tl
L \i=1 .

This proves the lemma. [

Lemma 2.12. For any A € M, (L), A(ATe)' = 0.

Proof. Let 4 = (a;;),,,,- Then the jth element of 4(4%¢)’ is

'
n n n

vajlc (Va”") < \/a,-,..a_',k =0. ()

k=1 i=1 k=1

3. Eigenvectors and eigenvalues

Definition 3.1. Let 4 € M, (L), an eigenvector of A is a vector ¢ € V(L) such
that, ’

AS = i¢

for some scalar 4. The element / is called the associated eigenvalue.

It will transpire that every element of L is an eigenvalue of every matrix A
and that a given cigenvector may have a variety of eigenvalues. In the classical
case only the zero vector has a range of eigenvalues and it is usual to stipulate
that an eigenvector is non-zero. In the case of matrices over a lattice there
seems to be no advantage in making this restriction and we shall therefore ad-
mit the possibility that an eigenvector is the zero vector.

We first consider a given eigenvector & of a matrix 4 in M, (L) and determine
the range of its eigenval.s.

Theorem 3.1. Let A = (a;) € My(L). If & = (x1,....X,)" is an eigenvector of A,
then the eigenvalues of & form a sublattice of L consisting of the interval [i°, 4*),
where

A =e"4E and P = (e"E)WA.
Proof. If A& = A = &, then

AL =25V pué = (4 V g,

AL = 2E A pé = (AN ),
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from which it appears that the eigenvalues of ¢ form a sublattice of L with a
greatest element 2 and a least element 2°. Since

eTAS = eT(48) = Ae"E) < 4,

it follows that eTA¢ is a lower bound for 4°. This lower bound is attained, since

Xy Xy
(€"AE)E = AMeTEE = A(xy V-V x,) = £ = 1= A
X, Xy
Hence
A=t
From A& = "¢ = /", we obtain
Ay =A% (=12.....n)
By Lemma 2.1 we have
2 Exu(iy) =50l (= 12.....n)

and so

PAES /\(.\‘, wi') = \/x, wi’ (by Lemma 2.2 (1)) = (¢"é)wi".
j 1

;!

e af) o v ae . . . .
Thus (¢"&)w 2" is an upper bound for 2°. This upper bound is attained, since

i {(("..;'“)u}/‘.“).\'n ((:le') U)/:.").\‘l

((e'Hwi")E = : -

L ((e"E)wil)x, ((\"/x,) Lu).“)x,,
| il -

B <)
/X

= : [ (by Lemma 2.2 (3)) = "¢ = 4¢.

2y,
Hence
2= (VWi
If 2" <A< then
A =13 iéK £E = AE,

which demonstrates that Z is also an eigenvalue. This proves the theorem. O
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Theorem 3.2. If an cigenvector & has a unique eigenvalue, then (e'é)' = 0.

Proof. From Theorem 3.1, this clearly requires A* = i°, or ¢74¢ = (eTE)w "
But (eT¢)wi’ > 2% v (eT¢) (by Lemma 2.3). It follows that (eT¢) <eTAe.
However, eT4<e", so the uniqueness of the eigenvalue demands that
(eT&) < e'¢, which is only possible (¢T¢)' = 0. This proves the theorem. O

We next suppose that 4 is a given eigenvalue of a matrix 4 and proceed to
determine its eigenvectors.

Theorem 3.3. Let A€ M,(L) and ~ be a given cigenvalue of A. Then the
eigenvectors of 4 form a subspace of V, (L) with the greatest element &, namely
the union of all eigenvectors of 4, and the smallest element o.

Proof. If A = 4 and An = 4y, then
ACEVN =AEV Ay = /v i = 2(EV ).

A(al) = a(AE) = a(i&) = 4{aé) for all a € L. The eigenvectors of 4 therefore
form a subspace of V(L) with the greatest element &' and the smallest ele-
ment o. This proves the theorem. O

Theorem 3.4. For A. 4, & in Theorem 3.3, we have
(1) & = ide v X(ATe),
(2) If 7 satisfies AN A =1, then

=A% v i(Ave).

Proof. (1) By Lemmas 2.9 and 2.12, we have

A(jA"e v X (ATe)) = id" e v A d(AVe) = id"e = i(iA" Vv i (Ae)').
Thus,

& zid"eV i (Ae).

This proves (1).
(2) If A = A&, then A'A¢ = 2'2& = 0. Then by Lemmas 2.5 and 2.11

- /o -
Vag |W2
il
n
vain We

L\ i
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from which we obtain

i ((S/la”) w,&) A ;,’—
! ((V.“) w;ﬁ) "t

p- -

(Fer)

b N
Uaty
N

N

(by Lemma 2.6)

and so
FELH (ATe).
On the other hand,
A(AE) = 2AE = A28 = ¢,
so by Lemma 2.10, 4i¢ < A"¢ and indeed
rEL ide.
Thus
E=(AVA)E=advaiigidlev i(dle).
and so
ELidev i (Ave).
By (1), we have
E=d" v i (AVe).
This proves (2). [
We now suppose that 4 is a given element in L and ¢ is a given vector in

V,(L) and proceed to determine the matrix .1 such that ¢ is an eigenvector of
it and 4 is the associated eigenvalue.

Definition 3.2 [3]. By a gerbier we shall mean a semigroup which is also a v-
semilattice in which the multiplication is distributive (on both sides) with
respect to V.
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It is readily established that M, (L) is a gerbier in which the multiplication is
the matrix multiplication defined above.
Theorem 3.5. For any given 4 ¢ L and & = (x,... ..\',,)T € V,(L), define
T(A, &) ={A4eM,(L),A¢ = i&}.

Then T(4,&) is ¢ subgerbier of M,,(L), the maximum element of T(%, &) being the
matrix M whose (i, j)th element is m;; = x;\V (ix;).

Proof. Let 4 = (a;;), B = (b;j) € T(4,&). Then it follows that
(AB)E = A(BE) = A(AL) = A(AS) = A(AS) = AL

Hence, 4B € T(4,¢) and so T(4, &) is a subsemigroup of M, (L). Moreover, for
each i,

(AV B)E), = \[((ay v b,) A x)) = (v (a; A ) ) (Vw,, Ax) )
Jj=1 il

= (4&), V (BS), = (45), V (£5), = (49),

and so (4 V B)E = A&, from which it follows that T(~, &) is a V-subsemilattice of
M,(L). We thus have that T(4, &) is a subgerbier of M, (L) since the multiplica-
tion in M, (L) is doubly distributive with respect to V and it must necessarily be
so in every V-subsemilattice of M, (L).

Consider now the matrix M defined by

m;; = ,\‘,-\U (;..\',').
we have
mx; = (x;W(Ax;))x; = Ax;x; (by Lemma 2.7)

sv that, for each i,

\/mx,) = (ix) A (\/x) - .
A i1

In other words, M¢ = A¢ and so M € T(4.¢).
To show that M is the greatest element of T(4, &), we observe that

AeT(iE)=> \/(a,-,-x,) = jx; forall i
;o1
= a;;x; < ix, forall i.j
= q; <x;V(Av;) forall i,/

=2 4< JW
This proves the theorem. i
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4. The solutions of the characteristic equation

In the classical theory of matrices in a field the eigenvalue problem is closely
associated with the characteristic equation of the matrix concerned. In the case
of matrices over a lattice the relationship is somewhat obscure but the follow-
ing remarks can be made. If the positive and negative terms are placed on op-
posite sides of the equality sign, the classical characteristic equation of a matrix
A takes the form

A pa( AV 4 g (AT 4 pg(A)A 4B
=pi(A)2" " + gV 4 pa )T+ e

In 1994, Zhang Kunlun [7] showed that the corresponding lattice equation
3

ATV pa(A)A IV g (A) AV p(A) AV v b
= p(A)A" Vg (A) APV ps(A)i V- Ve (4.1)

is satisfied by the matrix 4 € M, (L), thus providing a counterpart to the Cay-
ley-Hamilton theorem. Since, in the lattice case, a characteristic equation can-
not be defined determinantally it is natural to choose Eq. (4.1) as the defining
equation. it should be explained that

p(A4) = v Arin(ry i1 Qranira) " Arintr)

RES(Pp ) s s eren

qi (A) = v Ar i) Dranirs) * " Argrirg) s
rES(rp ) < s odd

where S(ry.. ... 1) is the symmetric group over the set {r.....nn} k=1.2,...,
n. b= p,(A4) and ¢ = ¢,(4) when n is even, b = ¢,(A4) and ¢ = p,(4) when n is
odd.

We now assume that the parameter 4 in Eq. (4.1) is an element in L and pro-
ceed to solve this equation. From the idempotency of 4 and the absorption law
it follows that Eq. (4.1) takes the form

AVbh=idVe. (4.2)

where d = p;(A) V ¢q2(4) V pa(A4) V g4(4) V - - - and either b = p,(4).c = g,(4)
with 2 even or b = ¢,(A4). ¢ = p,(4) with n odd.

Lemma 4.1. b <d.

Proof. We recall the facts that any permutation can be expressed as a product
of independent cycles and that an even cycle involves an odd number of letters,
while an odd cycle involves an even number of letters.

(1) Suppose #n is odd. Then b = ¢,(A4) and any term u of b takes the form
Qir(1)A2r2) * * * Aunry» Where 7 is odd. Therefore, # must have at least one odd cy-
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cle n’ as a factor and the cycle ' involves an even number k of letters. It is clear
that k<n. Let 7' =(n,....n), where ry.r,....,rn€{1.2,...,n}, and
U = @pyn(r))@ranirs) " *  Areniry)- Then vis a term of gx(4) and u < v < g4 (4). What-
ever term u is chosen from b, the value taken by A& must be one of
n—1,n-3,n-235,... Hence for each # we have

ugqn—l(A) an~~3(A) Ve qu(A) \<~d

Thus b<d.

(ii)) If n is even, then b= p,(4) and any term u of b takes the form
Qua(1)@2n(2) " * * Anmmy» Where 7 is even. There are now two cases to consider. If
n has an odd cycle =’ as a factor, then, by an argument similar to that employed
in cases (i) the cycle n' gives rise to a term v from one of g,-»(4),
gn-a(A4),....q2(4). o’ cannot give rise to a term of ¢,(4) since this would require
n to be odd. Therefore

u <q"~2(A) \% qn—~4(A) VoV qZ(A) <d.

If, however, © has only even cycles as factors, there must be more than one of
them since otherwise m would be odd since n is even. If one of these even cycles
involves k letters it would give rise to a term v of p;(4) with k odd. In this case
we would have

u gpfhl(“’) VPHJ(A) Vo ('4) < d.
Since u < d in each case, we conclude that h<d. [

We now proceed to solve the characteristic Eq. (4.2).

Theorem 4.1. The roots of the characteristic Eq. (4.2) are those values of 7 which
satisfy
(emb) vV (bme)< A<d Ve

Proof. If 4 satisfies the Eq. (4.2), then

ASAVb=4dVc<dVe (4.3)
and similarly

b<ivb=idVce<ive.

It follows that

i Zcmb. | (4.4)
We see also from Eq. (4.2) that 2V b = c. It follows that
A= bme. (4.5)

From Egs. (4.4) and (4.5)
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22 (emb)V (hme).
Combining this with Eq. (4.3) we get
(emb)V(bMmec)<A<d Ve
and we now verify that these bounds are attained.
First, put 2 =d V ¢, then
AINb=bVvdVc=dVc(by Lemmad4.l),
tdvVe=(dvce)dve=dVe.
Next, put 2 = (¢cmb) Vv (bMc¢), then

+tVb=bV ((cmb)V (bmc))

=(bV ((cmb)) vV (bmc)
= bV (bmc) (by Lemma 2.8(1))
= bV c (by Lemma 2.8(2)).

MV e = ((emb)V(bMc))d Ve
= (cmb)d V (bMc)d V ¢
= (¢cmb) V ((bmc¢)d V ¢) (because cMb< b < d)
= (¢Mb) V ¢ (because ¢ = hMc)
= bV ¢ (by Lemma 2.8(2)).

This establishes that the bounds are solutions.

Suppose 4 is any element in the interval [(¢mb) v (bMc¢),d V ¢]. Then 4 must
be of the form

i=(emb) v (bme) v (dVe)f. feL.

Therefore
tdVe=({emb)Vv(bme)VvV(dVe)f)dVe
= (({(emb) v (bme))dVe)v((dVe)dVve)f
= ({emb)V (bme) Vb)YV (dVeVb)f
= ((emb) vV (bme) vV (dV)f)V b (because b< d)
=+Vbh.

That is to say. £ = (¢mb) v (bm¢) vV {d V ¢)f is also a solution. This proves the
theorem. [

Theorem 4.2. The largest root of the characteristic Eq. (4.1) is eTA"e.

Preof. First, by Theorem 4.1, the largest root of the characteristic Eq. (4.1) or
Eq. 4.2)is 2 =d v c.
Secondly, w: shall prove that d V ¢ = e'4"e.
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Consider the expression e’ 4"e which, using the notation introduced earlier,
may be written

V ailigaigi_x e ai,i,,‘g'

| R TR AR |

Any term of py(4) V q2(4) V ps(4) V---Ve(=d V ¢) can be shown to be in-
cluded in a term of e"A4"e. The indices in terms of p;(4) and ¢,(4) are derived
from permutations and their form is represented earlier in this paragraph.
On the other hand, for any positive integer /, the indices of entries in a term
of e'.1’e must be successive. Take any term ¢ of say p,(4). Since every permu-
tation consists of (several) cycles, we can choose one such cycle in ¢, drop all the
entries outside it and repeat it several times, until a new expression ¢ with
m > n entries is obtained. Due to properties of the operation A, t< /¢, but ¢
is a term of ¢'A"e.Hence

dVe< \/ e'A"e =e'A"e. (4.6)

mz2=2n

As has been mentioned earlier. A satisfies its own characteristic equation.
That is to say

A"V pry(A)A"2V q3(A)A" 3V - -V BE = pi(A)A"' V g2 (A)A" TV -+ V CE.
Post-multiplying throughout by A"¢ and using the fact that by Lemma 2.9

Ae=A""e=A4"2%=-.
we obtain

A"eV (p(A)V qi(A) V-V b)A"e = (p(A) V q2(A) V -+ - Vo)A e.
Premultiplying throughout by " we have

A"V (p(A)V qy(A) V-V be'A"e = (p(A)V q2(A)V -V cle'4"e
or

eTd% = (p(A)V q2(4) V---Vc)e'de,
which shows that

dVe=p(A)Vg(A)V---Ve=e'de. (4.7)
Combining Egs. (4.6) and (4.7) we have finaily

dVe=p(A)Vgd)V---Vec=eAe.

Thus the largest root of the characteristic equation is e’ 4"e.
This completes the proof of Theorem 4.2. [J
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