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Abstract 

Let (L, <~, v. A) be a complete and completely distr;butive I,ttice. A vector ~ is said to 
be an eigenvector of a square matrix A over the lattice L ifA~ = 2~ for some 2 E L. The 
elements ,;. are called the associated eigenvalues, in this paper we characterize the eigen- 
values and the eigenvectors and also the roots of the characteristic equation of A. 
© 1998 Elsevier Science Inc. All rights reserved. 

I. Introduction 

The eigenvector-eigenvalue problem (eigenpro!~h,m for short) of matrices 
over distributive lattices seems to have appeared firstly in the work of Ruther- 
ford [2]. Since then, a number of works in this area were published (see e.g. [3- 
5]). But the background hittices are usually assumed to be some given Boolean 
algebras (see e.g. [2--4]) or Bottleneck algebras (see e.g. [51). Of course this is too 
restricted to be satisfied. 

in the present work, we consider the eigenprob!em of matrices over more 
general lattices, namely in a class of complete and completely distributive lat- 
tices. Our main results generalize corresponding results in [2] or [3]. 
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2. Definitions and preliminary lemmas 

Let L be a lattice, a,b E L; the largest x E L satisfying the inequality 
a A x ~< b is called the relative pseudocomplement of a in b, and is denoted by 
awb. If for any pair of elements a, b E L, awb exists, then L is said to be a 
Brouwerian lattice. Dually, for a, b E L, the least x E L satisfying a V x >i b is 
called the relative lower pseudocomplement of a in b, and is denoted by 
arab. If for any pair of elements a,b E L, arab exists, then L will be said to 
be a dually Brouwerian lattice. 

A lattice L is said to be completely distributive, if for any x E L and any 
family of elements {y~li 6. I}, / being an index set, there are always 

\ iE! / iE! 

(CD,.) x V ( A y ,  l = Ac, x X,' y,). 
\ i~:l / iEi 

It is known (ill, p. 128) tha!: a complete lattice L is Brouwerian, iff(CDi) is 
sail, v/led in L, and L is dually Brouwerian, iff (CD2) is satis/ied in L. 

Therefore. a compk, te lattice L is both Brouwerian and dually Brouwerian, if[ 
L is com'.~:letely distributive. 

In thi'~ paper, L denotes a complete and completely distributive lattice with 
the greatest element I and the least element 0. Unless otherwise specified all 
matrices and vectors are o1" order n. 

The following notations are used: 
[a, b] = {x E Llu ~ x ~ b} is an interval in L; 
(a] = {x 6. L[x <~ a} is the principal ideal generated by a E L; 
[a) = {x E Lix >i a} is the principal dual ideal generated by a E L. 
From the definition of relative pseudocomplement (relative lower pseu- 

docomplement), we see that inequality a Ax<~b(a V x >t b) is always solv- 
able and its entire solution set is the ideal (awb] (the dual ideal [aa~b)) 
of L. 

The set V,(L) of all column vectors over L forms a complete and completely 
distributive lattice isomorphic to the nth direct power of L if we make the 
following definitions. 

I il Iiil Ix vl 
,, . Xn V ~' . I I  

xlYl 1 

.Xny, 

where xv = x A v. 
p 
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Let 

o [i] e [] 
The vector o is called the zero vector of Vn(L). 

The multiplication of the vector ¢ by a scalar a is defined by 

Iil 
a ~  "-- . 

n 

~T denotes the row vector whose transpose is ~ and ~' is defined by 

where x' = x w o. 
A nonempty subset V of V~(L) is called a vector space in V,(L) if it is closed 

under "x/" and under multiplication by scalars (elements of L). 
Likewise the set M.(L) of all n x n matrices over L forms a complete and 

completely distributive lattice if we make the following definitions. 
For A = (ao), B = (b~j), C = (co) E M,,(L), 

A V B = C ~ a,j V bij = cij ( i , j  = 1 ,2 , . . . ,n ) ;  

A A B = C ¢=~ aij A bij = c~j ( i , j  = !,2 . . . .  ,n); 

A ~ B c=~ ai~ <<. b o ( i , j  = 1,2 , . . . ,n ) .  

An additional operation of matrix multiplication in M;,(L) can be introduced 
by the definition 

t l  

AB = C ¢=~ Va~kbkj = c,j (i , j  = 1 ,2 , . . . ,  n). 
k=!  

It is clear that for any A, B, C ~ M,,(L), 

A(B v C) = ,4B v AC, (B v C)A = B,4 v CA, 

A(B A C) <~ AB A aC,  (B A C)A <~ BA A CA, 

(AB)C = A(BC); A <~ B ~ AC <~ BC and CA <~ CB. 

The multiplication of a matrix A by a scalar 2 is defined by 

2,4 = B ~ 2aij = b~j ( i , j  = 1,2 , . . . ,n) .  
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The premultiplication of a vector ~ by A is defined by 

n 

A~ = q ~ Va!/xj = y 
j=! 

(i = 1 ,2 , . . . , n ) .  

A T denotes the transpose of  A. 
The following lemmas in the next paragraphs are used: 

Lemma 2.1 ([6], Lemma 6). For toO' a,b E L, we have awb = aw(ab). 

Lemma 2.2. I f  b E L, {aili E I} C_ L, where i is" a cert.~in index set, then 

(l) A(a, w b ) =  ( V a , ) w b :  
i61 \ i  .:.I / 

(2) A(bwai) = bw (Aa,~" 
iEI \ i E !  , /  

Proof. (I) According to the definition of pseudocomplement,  ai A (aiwb)<~b 
for a l l / E  1. Let x = A,~l(a, wb). Then x ~a, wb ancl so ai Ax  <~aiA (aiwb)<~ b 
for all i e I. Hence (V,~tm) ^x<~b. It follows that x~< (V,~tai)w b. On the 
other hand, let y = (V,~t a~)~b. Then (V~c/a,) ^ y~< b. it follows that a~ A y~< b 
and so y<~a~wb for all i ~ !. Hence, we have y~< Ai~t(a~wb). This proves (1). 
(2) is proved in Zhao ([6], Lemma 7). (3) Since (Vic ta / )wb >i b, we have 
((Vj, laj)wb) Aa, ~ ai/~ b for all i e / .  On the other hand, since 
(V/etaj) A ((V/claj),vh) ~b, we have a,. A (V/~tai)A ((Vj~taj)wb) ~a, Ab 
and so ((Victaj)wb) ^a~<~a~ Ab for all i ~ / .  This proves (3). 121 

Lemma 2.3. For any a, b E L, we have awb >t a' v t,. 

Proof, Since a A (a' V b) = (a A a') V (a A b) and a A a' = O, we have 
a A (a' V b) = a A b ~< b and so a' v b <~ awb. This proves the lemma. 1:3 

Lemma 2.4. For an), a, b E L, we have 
{I) (a V b)' = a '  Aft; 
(2) a" = a', where a'" = (a")' and a" = (a')'; 
(3} (a v a')' = 0. 

Proof, (I) Since (a A (a v b)') V (b ^ (a v b)') = (a V b) ^ (a v b)' = 0, we have 
a A ( a V b ) ' = O  and b A ( a V b ) ' = O .  It follows that (aVb) '<,a '  and 
(a v b)' ~< b'. Hence (a v b)' ~< a' A b'. On the other hand, since a A (a' A b') 
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<~ a A a' = 0 and b A (a' A b') <~ b A b' = 0, we have (a V b) A (a' A b') = 0. It 
follows that a" A b' ~< (a V b)' .This proves (1). 

(2) Since a ' A  a = 0, we have a <~ a". It follows that a'<~ a'. On the other 
hand,  since a" A a' = (a') '  A a' = 0, we have a' < (a")'  = a" .  This proves (2). 

(3) (a V a ' ) '  = a'  A a" = 0. This proves (3). 71 

[,emma 2.5. Let  2 E L. I f  2' V ;t = 1, then 2" = 2. 

Proof. It is clear that 2"~> 2. On the other hand, 2 " =  2 " ( 2 v 2 ' ) =  
2"2 v 2"2' = 2"2. It follows that 2 >i 2". Consequently 2" = 2'. This proves 
the lemma. D] 

Lemma 2.6. For any a, b E L, (aW b) A b' <~ a'. 

Proof. Since a A (awb)  <~ b, we have a A (awb)  A b' ~< b A b' = O. It follows that 
(awb)  A b' <~ a'. This proves the lemma. I--1 

Lemma 2.7. For any a, b, c E L, we have 

(aw(bc) )  A a = abe. 

Proof. It is clear that ( a w ( b c ) ) / x a > ~ a b c .  On the other hand,  since 
a A (aw(bc))<~bc,  we have a A (aW(bc))  = a A ta A (aw(bc) ) )  <~abc. Conse- 
quently, ( a w ( b c ) ) / x  a = abe. This proves the lemma. 71 

Lemma 2.8. For all), a, h E L. we have 

( I ) b V ( a m b )  = b ,  
(2) a V (atr, b) = a V b. 

Proof. (1) According to the definition of lower pseudocomplement  and using 
the fact a v b .>i b, we have b >f arab, and so b V (acnb) = b. This proves (l). 

(2) Since a v (arab) >t b, we have a V (arnb) = a V (a V (arab)) >. a V b. On 
the other hand,  since b >1 arnb, we have a v b >t a V (arab). This proves (2). !-1 

Lemma 2.9. For any A = (ao) E M,  (L) ,A"e = A"+le. 

Proof. Since Ae <~ e, it follows that 

AiSle = A' (Ae) <~ Ai e 

for all i, hence in particular A"~le = V~>,,A~e. Now, any term t of  the kth entry 
of  A"e is of  the form ak~,a, ti 2 ...a,,, i~,,, where I ~< il, i . , , ' ' ' ,  i,, <~ n. Since the num- 
ber of  indices in t is greater than n, a repetition among  them must occur. Let us 
call the sequence of  entries between two occurrences of  one index a o ~ l e .  If  we 
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repeat the cycle twice in a succession, the value of  t will not change, due to id- 
empotency, but what we now get, is a term in the kth entry of  Ame for some 
m > n. Hence A"e <~ V , ,> ,  A m e  = A "+ i e .  

Therefore 

A n e  = An+ I e. 

This proves the lemma. n 

Corollary 2.1. If?,  = A"e, then A~ = ~. 

[,emma 2.10. I f  A ~ = : ~, then ?, ~ A"e. 

Proof. Since ~ <~ e for any ~, 

=A?,  =A'-?, = . . .  = A " ~ A ' : e .  E3 

Lemma 2.11. Le t  A = (ai:) E M,,(L),). E L and  2 V 2' = I, ~ = (x , , . . .  ,x,,) T 
E V,,(L). I f  kA?, = O, then 

F I  ) l  
aal 

am • A 

Proof. 

ZA~. = O =. 2 aox i = 0  ( i = 1 , 2 , . . • , n )  
• : : =  

2aox i = 0 ( i , j  = 1 , 2 , . . . , n )  
~l  ,4l 

a,i.v j = (). V 2')a,ix i = 2aox i V z a o x  i = z a , x j  ( i , j  = 1 , 2 , . . . , n )  

x1 <, ao w (;.'aox,) 

= (a, iw2 ' )  A (a, iWaii)  A (aOWxi) (by Lemma 2.2 (2)) 

<. a , ,w2 '  ( i . j  = ! .2  . . . . .  n) 
t !  

x, <. A(a,.,w;.,) 
i ! 

= a o w 2' (by Lemma 2.2 (I)) (j = I, 2 , . . . ,  n) 
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a,t w 2' 

a in klJ 

This proves the lemma, i-7 

Lemma 2.12. For an), A e M,(L), A(ATe) ' = O. 

Proof. Let A = (aij),×,,. Then the j th element of A(ATe) ' is 

(V]'V I1 I I  I1 

V.J, a,~ <~ ai~o.'i, = 0 .  I-1 

3. Eigenvectors and eigenvalues 

Definition 3.1. Let A e M,(L), an eigenvector of A is a vector ¢ e V,(L) such 
that, 

for some scalar 2. The element 2 is called the associated eigenvahee. 

It will transpire that e,~,ery element of L is an eigenvalue of every matrix A 
and that a given cigenvector may have a variety of eigenvalues, in the classical 
case only the zero vector ]aas a range of eigenvalues and it is usual to stipulate 
that an eigenvector is non-zero. In the case of matrices over a lattice there 
seems to be no advantage in making this restriction and we shall therefore ad- 
mit the possibility that an eigenvector is the zero vector. 

We first consider a givea eigenvector ~ of a matrix A in M,,(L) and determine 
the range of its eigenvalJes. 

Theorem 3.1. Let A = (a O) E M,,(L). i f  g., = (xl, . . . .  x,) T is an eigenvector o f  A, 
then the eigenvaltles oJ'~ fi~rm a sublattice of  L consisting of  the #iterval [2°, 2'], 
n,here 

2°=eTA~ and 2 '=: (eT~)w2 °. 

Proof. if A~ = 2~ = ItS, then 

A~ = ;~¢ v tt~ = (~. v ~.)~, 
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from which it appears that the eigenvalues of  ¢ form a sublattice of  L with a 
greatest element 2" and a least element 2 °. Since 

erA¢ = e T ( } . ~ )  - -  2(e "r ¢) ~< 2, 

it follows that e tA¢ is a lower bound for 2 °. This lower bound is attained, since 

(eTA~)~ = z(e ,~)g = z(.rl V . - .  Vx , )  

Hence 

ix!l: ix!l = ;.c~ = A ¢ .  

2 0 = erA¢. 

From A¢ ),o~ = ,;. ~, we obtain 

"" "" 2. n) / . x ; = / . x i  ( j = l ,  . . . .  

By Lemma 2.1 we have 

2" <~ xiw(,;."x,) -- x,w;Y (j = 1.2 . . . . .  n) 

and so 

2" <~ A(xtw,;.") = xt w,;], (by Lemma 2.2 (1)) = (e3~)w,;. °. 
I I 

Thus (er~)w 2" is ~.111 tl[3pcr" bound Ibr 2".This upper bound is attained, since 

i ((cr~)u),;.,,)x I x, w2" .rl 

((e~ ¢ ) w ; ' " ) ¢  = i :- 2 

) ((er~)w2")x" x, w2 ° x,, 

1. Xl 

= i (by Lemma 2.2 (3)) --- ~o~ = A~. 

/(I.It" n 

Hence 

;." -: ( e ' 4 ) w ; . " .  

it" ,;.q' ~ 2 ~ 2', then 

which demonstrates  that ;. is also an eigenvalue. This proves the theorem. UI 
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Theorem 3.2. I f  an eigenvector ?, has a unique eigenvahte, then (e T~)' = 0. 

Proof. From Theorem 3. I, this clearly requires 2* = 2 °, or e TA ~ = (e v~) w 2 °. 
But (e r e ) w 2  o I> 2 0 v (e x¢)' (by Lemma 2.3). It follows that (e x¢)' <~ eXAm. 
However, eVA <~e x, so the uniqueness of  the eigenvalue demands that 
(eV~) ' <~ eX~, which is only possible (eX~)' = 0. This proves the theorem. [] 

We next suppose that 2 is a given eigenvalue of  a matrix A and proceed to 
determine its eigenvectors. 

Theorem 3.3. Let A E M,,(L) and 2 he a given eigenvahw o f  A. Then the 
eigenvectors ~ ' 2  form a suhspace o f  V,(L) with the greatest element (,*, namel), 
the union o['ali eigenvectors o f  2, and the smallest eh, ment o. 

Proof. If A~ = 2~ and Aq = 2q, then 

A(~ V q) = A~ V Aq = ):i ',/2q = ).(~ V q). 

A(a¢) = a(A~)= a ( 2 ~ ) =  2(a~) for all a E L. The eigenvectors of ). therefore 
form a subspace of  V,,(L) with the greatest element ~* and the smallest ele- 
ment o. This proves the theorem. I--I 

Theorem 3.4. For A, 2, ?.' in Theorem 3.3. we have 
(!) ¢' :~ L4"e V 2'(AVe) ', 
(2)/./ '2 sati.~fies 2 V ; . '=  I, then 

~. - ;.A"e V 2'(Are) '. 

Proof. (I) By Lemmas 2.9 and 2.12, we have 

A(;d"e V 2'(A're) ') = ;.A"* te V ).'A(Are) ' = ;.A"e = 2(;.A"e V 2'(A%)'). 

Thus, 

>>, 2A"e V 2'(A re) '. 

This proves (I). 
z A~ 0. Then by Lemmas 2.5 and 2. il  (2) l fA¢ 2& then " " ' ~  - -  . . " - -  Z Z ~  - = -  

a,i w2 
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from which we obtain 

<~ 
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~VI ai! 

= (A Te)' 

w}.) A2' 

W 2) A ).' 

(by Lemma 2.6) 

Definition 3.2 [3]. By a gerhk,  r we shall mean a semigroup which is also a v- 
semilattice ia which the multiplication is distributive (on both sides) with 
respect to v. 

We now suppose that 2 is a given element in L and ~ is a given vector in 
V,,(L) and proceed to determine the matrix A such that ~ is an eigenvector of 
it and 2 is the associated eigenvalue. 

~, = (2 v ;,.')~ = 25, v 2'5, <~ ;Jl"e v 2 ' (ATe) '. 

and so 

,~" <~ ,;.A"e V ).'(Are) '. 

By ( i ), we have 

~" = ,;.A"e V ,;.'(ATe) '. 

This proves (2). ~ 

Thus 

and so 

,;.'~ ~< ,;.'(ATe)'. 

On the other hand, 

= = = ; . ¢ ,  

so by Lemma 2.10, ,:.~ <~ A"e and indeed 

2~ " ;.A"e. .~ .  
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It is readily established that M,,(L) is a gerbier in which the multiplication is 
the matrix multiplication defined above. 

Theorem 3.5. For an)' given 2 ~ L and ~ = (x l, . . . . .  ~',,)T C V,,(L), dell'he 

T(2, ~) = {A E M,,(L),A~ = 2~}. 

Then T(2, ~) is a subgerbier o f  M,,(L). the maximun~ dement  o fT(2,  .~) being the 
matrix M whose (i , j) th element is mii = xjW(,;.x~). 

Proof. Let A = (aij),B = (bii) E T(2, ~). Then it follows that 

(AB)~  = A ( B ~ )  = A ( ; 4 )  = ;.(.4~) = ;.(;.~) = ;.~. 

Hence, A B E  T(2, ~) and so T(2, ~) is a subsemigroup of M.(L). Moreover, for 
each i, 

((A v 8)~), = V((a,:; v b;.,) Ax, )  : (a,; A.,-,) v (t,,j Ax,)  
j =  I 

= ( a ~ ) ,  v (B~) ,  = (; .~),  v (; .~),  = ( ; g ) ,  

i~d  so (A V B)~ = 2~, from which it follows that T(2. ~) is a v-subsemilattice of 
.~';,(L). We thus have that T(2, ~) is a subgerbier of M,,(L) since the multiplica- 
tion in M;,(L) is doubly distributive with respect to v and it must necessarily be 
so in every v-subsemilattice of M,,(L). 

Consider now the matrix M defined by 

m,i = x; w (; .v,) .  

we Jlave 

m~ix i = (.,(/w (k~',))x i : ;'.x',x/ (by Lemma 2.7) 

so that, for each i, 

V ( m . x i )  = ( ~ )  A xj = Zr,. 
j : l  

In other words, M~ = 2c: and so M ~ r(~., C:). 
To show that M is the greatest element of r(2, ~), we observe that 

A ~ T(2,?,) =~ V(a~/x , )= ).r, for all i 
i=1 

a~lx i <~ ).x, for all i. j 

=~ a~/ <~ x/w(k,c,) for all i . j  

~ A < ~ M .  

This proves the theorem. D 
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4. The solutions of the characteristic equation 

In the classical theory of matrices in a field the eigenvalue problem is closely 
associated with the characteristic equation of the matrix concerned. In the case 
of matrices over a lattice the relationship is somewhat obscure but the follow- 
ing remarks can be made. If the positive and negative terms are placed on op- 
posite sides of the equality sign, the classical characteristic equation of a matrix 
A takes the form 

)." + p.,(A)). "-2 + q3(A)). ',-3 + p4(A)). "-4 + - - - +  b 

= p ) ( A ) A  "-~ + q2(A)). "-2 + p3(A)2 "-~ + . . .  + c. 

In 1994, Zhang Kunlun [7] showed that the corresponding lattice equation 

A" V p2_(A),~. "--2 V q3(A);."- 3 V p4(A);.  "-4 V . . "  V h 

= p ) ( A ) 2  "-~ v q , ( A ) 2 " - ' -  V p3(A)2 "-3 V.--  V c (4.1) 

is satisfied by the matrix A E M,,(L), thus providing a counterpart to the Cay- 
ley-Hamilton theorem. Since, in the lattice case, a c h a r a c t e r i s t i c  e q u a t i o n  can- 
not be defined determinantally it is natural to choose Eq. (4.1) as the defining 
equation. It should be explained that 

p~ ( a ) = V a,., ,(r, in,.. ~(,.. ) " " a,., ,(, , ), 
rC~,:,~(/" I . . . . .  r I ) . r  I "~: tl .rr i~, t'l'~'tt 

q~(A)  = V a,.,,~,.,la,.:,(,.:l " " .a,.,,~,.,), 
n,: S ( r t  . . . . .  rA I . r ,  * n , n  t~ . r i d  

where S(rl . . . . .  r~) is the symmetric group over the set {rl . . . .  ,rk },k = !,2 . . . .  , 
n. h = p, , (A)  a n d  c =  q, , (A)  when n is even, h = q,,(A) and c = p, , (A)  when n is 
odd. 

We now assume that the parameter 2 in Eq. (4.1) is an element in L and pro- 
ceed to solve this equation. From the idempotency of  2 and the absorption law 
it follows that Eq. (4.1) takes the form 

,;. v b = 2d v c. (4.2) 

where d = p l ( A )  ' / q , . ( A )  V p3(A)  v q4(A) V . . .  and either b = p,,(A),c = q , ( A )  

with n even or b = q , ( A ) ,  c =  p, , (A)  with n odd. 

Lemma 4. I. h <~ d. 

Proof. We recall the facts that any permutation can be expressed as a product 
of independent cycles and that an even cycle involves an odd number of letters, 
while an odd cycle involves an even number of letters. 

(i) Suppose n is odd. Then b = q , ( A )  and any term u of b takes the form 
a l ~ l } a , . ~ , . t ' " a , , ~ , , i ,  where n is odd. Therefore, n must have at least one odd cy- 
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cle n' as a factor and the cycle n' involves an even number  k of  letters. It is clear 
that  k < n .  Let n ' = ( r ~ , . . . , r k ) ,  where r ~ , r . , , . . . , r k E { l , 2 , . . . , n } ,  and 
v = ar~c~,lar:~t~,.l ""a~,~lr~!. Then v is a term of q~(A) and u<~ v<~qk(A). What-  
ever term u is chosen from b, the value taken by k must be one of  
n -  I, n -  3, n -  5 , . . .  Hence for each u we have 

u <~ q , _ l ( A )  V q , - 3 ( A )  V . . .  v q , ( A )  <.d. 

Thus b <~ d. 
(ii) If n is even, then b = p , ( A )  and any term u of  b takes the form 

a~,,(~la.,,~(2~ ...a,,,,~,,i, where rt is even. There are now two cases to consider. If 
n has an odd cycle rt' as a factor, then, by an argument  similar to that employed 
in cases (i) the cycle n' gives rise to a term v from one of  q,,_,(A), 
q,_4(A) , . . . ,  q_,(A), rr' cannot  give rise to a term ofq,,(A) since this would require 
rr to be odd. Therefore 

U <~ q,,-2(.4) V q,,--4(,4) V " "  V q2(A) <~d. 

If, however, rr has only even cycles as factors, there must be more than one of  
them since otherwise ,-t would be odd since n is even. If  one of these even cycles 
involves k letters it would give rise to a term v of pk (A) with k odd. In this case 
we would have 

u <~p,,_t(A) V p,,_3(A) V . . .pl(A) <~ d. 

Since u ~< d in each case, we conclude that h ~< d. El 

We now proceed to solve the characteristic Eq. (4.2). 

Theorem 4.1. The roots o f  the characteristic Eq. (4.2)t, re those vahws o f  2 which 

sti l i~/~l ' 

(ccnb) V (bmc) <~ 2 <~ d V c. 

Proof. if 2 satisfies the Eq. (4.2), then 

, ;L~2Vb = 2 d V c < ~ d v c  

and similarly 

b<~ 2 V b  = 2 d v c < ~ 2 V c .  

It follows that 

2 >I crab. 

We see aI,~o from Eq. (4.2) that 2 v b >i c. It follows that 

2 >~ bone. 

From Eqs. (4.4) and (4.5) 

(4.3) 

(4.4) 

(4.5) 
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;. ~ (cmh)  v (I,r~c). 

Combining this with Eq, (4.3) we get 

(crab) V (bmc)  <~ ;,. <<. d V c 

and we now verify that these bounds are attained. 
First, put ,;. = d v c, then 

;. v b = b v d v c -- d v c (by Lemma 4. I ), 

; . d v  c = ( d V c ) d V c  = d V  c. 

Next, put 2 = (crab) v (bmc), then 

,,. v b = b v ((crab) v (brae)) 

= (b v ( (crab))  v (brae) 

= b v (bmc)  (by L e m m a  2.8(1)) 

= b V c (by Lemma 2.8(2)).  

).d V c = [(crab) V (bmc) )d  V c 

= (c.mh)d V (bmc)d  V c 

= (crab) v ( (hmc)d  v c) (because c, m b ~ b ~ d )  

= (crab) V c (because c >1 bmc)  

-- b v c (by Lemma 2.8(2)).  

This establishes tha! the bounds are solutions. 
Suppose ,;. is any element in the interval [(crab) v ( b m c ) , d  v c]. Then 2 must  

be of  the tbrm 

;. = (crab) V (bmc) v (d v c).f, . I 'E L. 

Theretbre 

2d v c = ((crab) V (hmc) V (d V c ) f ) d  V c 

= ( ( ( c m l , )  v (hrhc))d v c) v ((dv c)dv c).f  

= ((cr~h) v (bmc) v b) V (d v c v b).f  

= ((¢,mb) v (bmc) V (d v c)J') v b (because b <~ d) 

= ,;. V h. 

Tha t  is to say. ,;. = (crab) v (bmc) v (d v c).f is also a solution.  This proves the 
theorem. [2] 

Theorem 4.2. The klrgest root o f  the clumu'teris'tic Eq. (4.1) is eTA"e. 

Preaf. First, by Theorem 4.1, the largest root of  the characteristic Eq. (4 .1 )or  
Eq. (4.2) is ,;. = d v c. 

Secondly, w: shall prove that d v c = eXA"e. 
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Consider the expression eTA"e which, using the notation introduced earlier, 
may be written 

V aili2ai2i3 • . . (li:i,~, ! • 
i ~i l  ..... i,,,I <.n 

Any term of pl(A) V qz(A) V p3(A) V. . .  V c(= d V c) can be shown to be in- 
cluded in a term of eVA"e. The indices in terms of p~(A) and q~(A) are derived 
from permutations and their form is represented earlier in this paragraph. 
On the other hand, for any positive integer i, the indices of entries in a term 
of eV, Pe must be successive. "i'ake any term t of say p~(A). Since every permu- 
tation consists of (several) cycles, we can choose one such cycle in t, drop all the 
entries outside it and repeat it several times, until a new expression t' with 
m >t n entries is obtained. Due to properties of the operation A, t ~< t', but t' 
is a term of e xA me.Hence 

d V c <~ V eTA"e = eXA"e" (4.6) 
nl ~ I1 

As has been mentioned earlier. A satisfies its own characteristic equation. 
That is to say 

A" V p2(A)A "-2 V q3(A)A"-3 V .. . V bE = pl(A)A "-I V q~(A)A ''-2 V . . .  V cE. 

Post-multiplying throughout by A"e and using the fact that by Lemma 2.9 

A"e = A ''~ l e  - -  A " " 2 e  - -  • " " 

we obtain 

A"e V (pz(A) V q3(A) V . . .  V b)A"e = (pl(A) V q,(A) \ / . . .  V c)A"e. 

Premultiplying throughout by e r we have 

eTA"e V (pz(A) V q3(A) V . . .  V b)eTA"e = (p, (A) V q2(A) V. . .  V c)elA"e 

o r  

eTA"e = (pl (A) V q2(A) V . . .  V c)eTA"e, 

which shows that 

d v  c = pi(A) V q2(A) V . . .  V c >1 eXA"e. 

Combining Eqs. (4.6) and (4.7) we have finally 

d V c  = p l ( A )  Vqz(A) V . . .  Vc = e~A"e. 

Thus the largest root of the characteristic equation is e TA''e. 
This completes the proof of Theorem 4.2. [] 

(4.7) 
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