
Biochimica et Biophysica Acta 1844 (2014) 950–959

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

j ourna l homepage: www.e lsev ie r .com/ locate /bbapap

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Evaluation of reverse phase protein array (RPPA)-based
pathway-activation profiling in 84 non-small cell lung cancer (NSCLC)
cell lines as platform for cancer proteomics and biomarker discovery☆
Ramesh Ummanni a,1,2, Heiko A. Mannsperger a,2, Johanna Sonntag a, Marcus Oswald b,3,4,
Ashwini K. Sharma b,3,4, Rainer König b,3,4, Ulrike Korf a,⁎
a Division of Molecular Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
b Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747 Jena, Germany
☆ This article is part of a Special Issue entitled: Biomark
⁎ Corresponding author at: Division of Molecular Ge

Cancer Research Center (DKFZ), Im Neuenheimer Fe
Germany. Tel.: +49 6221 424765; fax: +49 6221 423454

E-mail address: u.korf@dkfz.de (U. Korf).
1 Permanent address: Center for Chemical Biology, CS

Technology, Uppal Road, Tarnaka, Hyderabad 500 007, AP
2 Contributed equally.
3 Permanent address: NetworkModeling, Leibniz Institu

and Infection Biology, Hans Knöll Institute Jena, 07745 Jen
4 Permanent address: Theoretical Bioinformatics, Germ

580, 69121 Heidelberg, Germany.

http://dx.doi.org/10.1016/j.bbapap.2013.11.017
1570-9639 © 2014 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 9 April 2013
Received in revised form 4 October 2013
Accepted 13 November 2013
Available online 19 December 2013

Keywords:
NSCLC
Cancer genetics
Reverse phase protein arrays
RPPA
Targeted proteomics
Biomarker
The reverse phase protein array (RPPA) approachwas employed for a quantitative analysis of 71 cancer-relevant
proteins and phosphoproteins in 84 non-small cell lung cancer (NSCLC) cell lines and by monitoring the activa-
tion state of selected receptor tyrosine kinases, PI3K/AKT andMEK/ERK1/2 signaling, cell cycle control, apoptosis,
and DNA damage. Additional information on NSCLC cell lines such as that of transcriptomic data, genomic aber-
rations, and drug sensitivity was analyzed in the context of proteomic data using supervised and non-supervised
approaches for data analysis. First, the unsupervised analysis of proteomic data indicated that proteins clustering
closely together reflect well-known signaling modules, e.g. PI3K/AKT- and RAS/RAF/ERK-signaling, cell cycle
regulation, and apoptosis. However, mutations of EGFR, ERBB2, RAF, RAS, TP53, and PI3K were found dispersed
across different signaling pathway clusters. Merely cell lines with an amplification of EGFR and/or ERBB2 clus-
tered closely together on the proteomic, but not on the transcriptomic level. Secondly, supervised data analysis
revealed that sensitivity towards anti-EGFR drugs generally correlated better with high level EGFR phosphoryla-
tion than with EGFR abundance itself. High level phosphorylation of RB and high abundance of AURKA were
identified as candidates that can potentially predict sensitivity towards the aurora kinase inhibitor VX680.
Examples shown demonstrate that the RPPA approach presents a useful platform for targeted proteomics
with high potential for biomarker discovery. This article is part of a Special Issue entitled: Biomarkers: A
Proteomic Challenge.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Non-small cell lung cancer (NSCLC) presents themost common type
of lung cancer, 80–90% of lung cancers are of the NSCLC type while the
remaining fraction is small cell lung cancer. The International Agency
for Research on Cancer (IARC) reported 1.6 million new NSCLC cases
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in 2008. Lung cancer still presents a highly fatal cancer with 1.4 million
deaths per year [1], and is prevailing as a leading cause of death in eco-
nomically developed aswell as in developing countries. Lung cancer risk
factors include smoking and exposure to occupational and environmen-
tal carcinogens such as asbestos as well as indoor air pollution from
coal-fueled stoves [2,3].

Genetic aberrations such as mutations, gene amplification or
deletion of KRAS, EGFR, ERBB2/HER2/neu, c-MET, LKB1, PIK3CA, BRAF
and p53 were identified in NSCLC [4,5]. The receptor tyrosine kinase
EGFR quicklymoved into the focus of drug discovery research and re-
sulted into introducing EGFR targeting drugs such as erlotinib, gefi-
tinib and other compounds into therapeutic regimens. Data on the
clinical use of erlotinib and gefitinib demonstrated that both drugs
can indeed improve survival [6–8]. Among all reported EGFR muta-
tions especially those of the ATP-binding pocket in the tyrosine ki-
nase domain, initially identified in lung tumors of female patients
of East Asian ethnicity without history of tobacco use [9], emerged
as a useful predictor of patient response [10–12]. Aiming at the
nse.
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identification of genomic markers, a variety of different anti-EGFR
compounds has been screened in a large panel of NSCLC cell lines.
Vandetanib, lapatinib, the irreversible EGFR inhibitor PD168393,
and the src-inhibitor dasatinib revealed similar sensitivity profiles
as erlotinib as indicated by a strong correlation with the presence
of EGFR mutations in lung cancer cell lines [13,14]. Despite an intro-
duction of highly specific targeted compounds, lung cancer patients
are still treated with common cytotoxic drugs and suffer side effects
due to nonspecific and unforeseen mechanisms. The identification of
reliable biomarker signatures would meaningfully contribute to an
improved stratification of lung cancer patients for individualized
therapy.

Targeted anti-cancer therapy directly interferes with protein
function and for this reason a systematic assessment of protein acti-
vation patterns has high potential to result in the identification of
new biomarker candidates for further validation. Pathway activation
profiling was therefore carried out for N70 cancer-relevant proteins
in a panel of 84 NSCLC cell lines to evaluate the potential of reverse
phase protein arrays (RPPAs) for cancer biomarker discovery. RPPA
is a technically robust experimental platform and produces highly
reproducible data guaranteeing comparability between independent
printing run and antibody incubations [15,16]. Further properties
of RPPA such as high sample capacity, low sample consumption,
and high sensitivity qualify this technology for large-scale screening
employing clinical specimens as well as cell line panels [17–20].
Technical improvements of the RPPA approach included the
introduction of near infrared detection [21] as well as of data analysis
tools to yield quantitative information on protein abundance and
protein activation [22–24]. However, a successful application of this
approach requires access to mono-specific and well-characterized anti-
bodies [25,26].

RPPA-based proteome profiling was centered on detecting the
activation state of key signaling players such as of PI3K/AKT/mTOR,
RAS/RAF/MEK/ERK, and STAT, as well as additional cancer-relevant
pathways such as p53 signaling, apoptosis, and cell cycle control. The
NSCLC cell line panel has previously been characterized on the genomic
level [27], and genetic aberrations found in this cell line panel have been
reported to represent characteristics of primary NSCLC tumors [13].
Transcript profiling was reported not to capture all changes occurring
at the cellular level [28] suggesting that a systematic analysis of tumor
proteomes can potentially yield valuable insights also for biomarker
discovery.

Proteomic data obtained as part of this study were therefore
compared with transcriptomic data publicly available for 61 NSCLC
cell lines. Besides that, the question whether genetic aberrations
directly influence on the regulation of well-known cancer relevant
signal transduction circuits was studied in the NSCLC cell line panel.
A supervised analysis integrated IC50 data and proteomic data was
carried out to yield new insights into drug sensitivity.

2. Materials and methods

2.1. NSCLC cell lines and protein lysate preparation

Cell lines were obtained from ATCC (American Type Culture
Collection), DSMZ (German Collection of Microorganisms and Cell
Cultures, Germany), and other cell culture collections as previously
described [14]. Information on the cell lines and selected genomic
aberrations is provided as part of the Supplementary Table S1. Fur-
ther information on the assessment of drug sensitivity has previous-
ly been described [13]. Cells were regularly tested for mycoplasma
contamination using the MycoAlert™ Mycoplasma Detection Kit
(Cambrex Bio Science Rockland, Inc., Rockland, ME, USA). Cells
were cultivated in RPMI 1640, 10% (v/v) fetal calf serum, 1% (v/v),
and Penicillin Streptomycin (100× concentrate) and split twice
weekly. For protein lysate preparation, cells were trypsinized,
collected and washed two times with PBS. Cell pellets were directly
lyzed in MPER buffer (Pierce) with EDTA free complete inhibitors
(Roche) and PhosStop (Roche). Lysates were immediately frozen at
−80 °C. Further, samples were allowed to thaw on ice and incubated
on a rotating shaker at 4 °C for 20 min. To clear protein samples, ly-
sates were centrifuged at maximum speed for 30 min at 4 °C. The
protein supernatant was collected and distributed into 3 aliquots
for storage at−80 °C until use. Protein concentration was estimated
using a micro-BCA method [29].

2.2. Targeted proteomics using reverse phase protein array (RPPA)-based
profiling

NSCLC cell line samples were printed as four replicate spots per
sample using the 2470 Arrayer (Aushon Biosystems, Billerica, U.S.A.)
at a total protein concentration pre-adjusted so that 95% of all
samples corresponded to a total protein concentration of 2.2 μg/μl,
the remaining 5% were at a lower protein concentration. Each
array contained in addition serial dilutions of control cell lines
serving as quality controls. Slides not used immediately were kept
at −20 °C and rehydrated in 0.05% PBS-Tween (w/v) as previously
described [21]. Blocking was carried out using Odyssey Blocking
buffer (LI-COR, Lincoln, U.S.A.) diluted to 1:1 with 0.05% PBS-Tween
(w/v) containing NaF and NaVO3 for 1 h at RT. Next, slides were in-
cubated with pre-validated antibodies (Supplementary Table S2) at
1:300 dilutions in blocking buffer overnight at 4 °C. Antibody valida-
tion was carried out by Western blot and only those antibodies giving
an explainable band of the expected molecular band were used for
RPPA. Control slideswere incubatedwith FAST Green FCF to determine
a spot-specific correction factor [21]. Primary antibody detection was
carried out with Alexa 680-labeled secondary antibodies (Molecular
Probes, Darmstadt, Germany) diluted 1:8000 and visualized using
an Odyssey scanner (LI-COR, Lincoln, USA). Signal intensities were ob-
tained as gpr-files using GenePix Pro 5.0 (Molecular Devices, Ismaning,
Germany) [21].

2.3. Data analysis

RPPA data analysis was carried out using the software tool
RPPanalyzer [23]. Quality criteria were as follows: If serial dilutions
of control cell lines did not show a linear correlation between signal
intensity and protein concentration, data from the corresponding
slide were excluded from further analysis. Antibodies resulting in
valid data are listed in Supplementary Table S2. Cut-off for antibody
was set to 3-times above blank readings obtained after omitting pri-
mary antibodies in the visualization step, readings below this cut-
off were considered as equal to 0. In the heatmap (Fig. 1), pairwise
Euclidean distances were used together with complete linkage ag-
glomeration to derive a hierarchical clustering of cell lines and pro-
teins of row-normalized data. Correlation coefficients between drug
sensitivity and protein expression (Tables 4A/4B) were computed
using the Pearson correlation coefficient of the corresponding
drug–protein pair yielding values between −1 and +1. We consid-
ered a coefficient N0.5 as high correlation, a coefficient between 0.3
and 0.5 as medium and of 0.1–0.3 as a low correlation, correlations
were either positive or negative. Protein expression differences
between sample groups were calculated using the Wilcoxon rank-
sum test and significant differences were calculated at a significance
level α = 0.05, corrections for multiple testing using the
Benjamini–Hochberg algorithm were applied. Overall significance
was calculated using the Wilcoxon test and significance was defined
as p b 0.05.

Gene expression data for 61 NSCLC cell lines was taken from the
Cancer Cell Line Encyclopedia (CCLE; http://www.broadinstitute.
org/ccle/) [30]. Target proteins used in RPPA were mapped to corre-
sponding genes using BioMart (http://www.ensembl.org/biomart/).
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Fig. 1. RPPA analysis of 84 non-small cell lung cancer (NSCLC) cell lines. Signal intensities were normalized and log2 converted signals were used for an unsupervised hierarchical cluster
analysis. A yellow color indicates that a certain protein matches the medium expression level calculated for a particular target across all cell lines, higher level expression than median is
shown as a red color, and a blue color refers to a lower than average abundance (see legend upper left corner). Cell line names and protein names are listed below and on the right-hand
side, respectively. Genetic lesions reported for a particular cell line are shown above the heatmap (red indicateswild type state of a certain gene, cyan indicates presence of a genomic de-
fect, white indicated that no informationwas available). Protein clusters (P1 to P7, counted upwards) and cell line clusters (C1 to C5; counted right to left)were visualized as dendrograms.
Individual proteins and cell lines of the different clusters are listed in Tables 2A and 2B. All antibodies used for RPPAwere validated byWestern blot using a subset of randomly chosen cell
lines from the NSCLC panel and using established criteria for RPPA. All antibodies are listed in Supplementary Table S2.
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The expression data was transformed by dividing the difference from
the median values for each gene with its standard deviation. Unsu-
pervised hierarchical clustering using Pearson's correlation and
complete linkage method was performed for the cell-lines and the
mapped genes. All statistical analyses were done using R (www.r-
project.org).

http://www.r-project.org)
http://www.r-project.org)


Table 1
Genetic aberrations known for the NSCLC panel.

No. Name

1 EGFR amplification
2 ERBB2 amplification
3 MET amplification
4 EGFRmutation
5 ERBB2mutation
6 PI3Kmutation (KD, HD)
7 EML4-ALK fusion
8 STK11 mutation
9 KRASmutation (G12, G13, Q61)
10 NRASmutation (Q61)
11 BRAFmutation
12 TP53 mutation

Table 2B
Heatmap cell line clusters.

Cluster no. Cell line

C1 HCC827, H1568, H3255, H1819, Calu3, H2444
C2 H157,H1299,H520, A427, H1770, HCC461, HCC15, H522, H2077,

HCC2429, Colo699, H1915, DV90, H460, H358, H2882, H2052, HCC44
C3 LouNH91, HOP92, HCC364, HCC2279, Sklu1, HCC171, H2122, H1666,

H28, H1755, HCC95, HCC78, PC9, H2887, HCC193, HCC4006, H2087,
HCC1195, H1838, LCLC10314, HCC1359, HCC2450, HCC515, HCC2935,
H596, H2228, HCC366

C4 H661, H1437, H2172, H1993, EKVX, Calu1, H2030, H1355, H1563,
HOP62, H647, H1792, HCC1833, H2110, H2126, H2009, H1975, H23,
H322M, H322, H3122, H2347, H441, LCLC97TM1, H1648, H820,
H1781, H1650

C5 H1944, A549, H1395, Calu6, H1734
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3. Results

3.1. Genetic heterogeneity of NSCLC cell lines is reflected in protein
composition of cellular proteomes

Proteomic data were visualized as heatmap after row normalization
employing the complete linkage algorithm since this approach agglom-
erates data as compact clusters that select for a maximal number of
common features shared by a large number of cell lines [23]. Signals
generated by RPPA are highly reproducible even when slides result
from independent print runs and the antibody-based readout was
produced on different days (Supplementary Fig. S1). Information on se-
lected genetic lesions reported for the 84NSCLC cell lines represent both
major tumor subtypes of NSCLC, large cell lung cancer and lung adeno-
carcinoma (Supplementary Table S1). The hierarchy of the NSCLC
heatmap obtained this way (Fig. 1) suggested the existence of seven
protein clusters (P1 to P7) as well as of five cell line clusters (C1–C5).
First of all, proteome clusters containedmostly proteins known as func-
tionally related representing different members of a certain signaling
pathway (Table 2A) such as proteins of the PI3K/AKT/mTOR signaling
module (P2), proteins involved in the regulation of cell cycle and
apoptosis (P4), receptor tyrosine kinases (P5), p53 signaling (P6), and
GSK3 signaling (P7). Proteome cluster P3 included a more heteroge-
neous set of target proteins and contained proteins typically associated
with the initial steps of the PI3K/AKT signaling pathway such as PDK1,
PTEN, and pAKT (T308) as well as proteins of the MEK/ERK pathway
and of the NFκB/STAT signaling circuit. Cluster P1 contained β-Catenin
and Smad2/3 as well as PKCα and phosphorylated PKCα. The Pearson
correlation coefficient between single proteomic clusters was generally
b0.3 indicating an independent regulation of pathway-specific clusters.

We next assessed proteomic data with respect to the question, how
individual genetic lesions (Table 1) e.g. mutatedKRAS and TP53 andmu-
tations or amplifications of ERBB2 or EGFR influence the activation state
of downstream signaling pathways. Three of seven EGFR amplified cell
Table 2A
Heatmap protein clusters.

Cluster no. Target proteins

P1 Smad2/3, β-Catenin, PKCα, pPKCα
P2 mTOR, pmTOR (S2448), p70S6K, pp70S6K(T389), pAKT(S473),

PI3Kp85, p27, MEK, PP2A, PP2B, PTEN
P3 STAT5, pSTAT3 (T705), NFκB, BCL-X, pERK1/2(T202/Y204), AKT,

pAKT(T308), PDK1, PCNA, SRC, pFAK
P4 FAK, Caspase9, Caspase 3, pSTAT(S727), MDM2, GRB2, PAK1, PAK2,

cyclin D, cyclin E, CDK2, CDK4, JAK2, MET, BAX
P5 EGFR, pEGFR (Y 992, 1068, 1086, 1139), cyclinD1, IKBα, GSK3β,

STAT3, pJAK2, ERBB2, pERBB2 (Y1222, Y1248)
P6 p53, p53(S15), p53(S48), p53 (S37)
P7 RB1, pRB1, pGSK3β, PLCγ(S1248), pPAK1, pPAK2
lines (H3255, H1568, HCC827) as well as both ERBB2 amplified NSCLC
cell lines, Calu3 and H1819, formed a single cell cluster along with
H2444 cells that did not carry an amplification of EGFR or ERBB2 (C1).
Five C1 cell lines were characterized by either high levels of ERBB2
and/or EGFR and by high level phosphorylation of ERBB2 (Y1222,
Y1248) and/or of EGFR (Y992, Y1068, Y1086, and Y1139). Moreover,
all six C1 cell lines expressed low levels of β-Catenin and SMAD2/3
(P1) and showed also low level activity of the PI3K/AKT/mTOR signaling
axis (P2). Co-occurrence of β-Catenin and SMAD2/3 was highly corre-
lated in the NSCLC cell line panel according to a Pearson correlation fac-
tor of 0.721 (p b 0.0001). Four further NSCLC cell lines with amplified
EGFR (H1838, HCC2279, HCC4006, PC9) were part of cell line cluster
C3 that, contrasting cluster C1, did not display high level phosphoryla-
tion of EGFR or ERBB2. Other features of C1, such as low level activity
of the AKT signaling module and low level expression of β-Catenin/
SMAD2/3 were also seen in C3. Cell line cluster C2 reflected high level
activation of PI3K/mTOR signaling (P2), low level abundance of EGFR
and ERBB2 (P5) and a heterogeneous activation pattern for other signal-
ing proteins. Interestingly, cell lines assigned to the squamous cell carci-
noma subtype or to mesothelioma were found in C2 and C3 but in
none of the other cell line cluster. Cell lines with low level activation
of AKT/ERK signaling (P3) and divergent abundance for proteins of the
p53 cluster (P2) were assigned to cluster C4 which includes also both
MET amplified cell lines of the NSCLC panel, H1648 and H1993. Cluster
C5 comprised only few cell lines characterized by low level abundance
of proteins representing the apoptosis/cell cycle control cluster (P4)
and the pGSK3β/pRB cluster (P7) along with high level activation of
AKT pathway proteins. Next, proteomic clusters were compared with
results obtained from an unsupervised analysis of expression profiling
data of 62 NSCLC cell lines that were available from the Cancer Cell
Line Encyclopedia (CCLE) [30] using row normalization and complete
linkage. Comparable to the proteomic heatmap, many proteins of
known and well-described signaling pathways clustered together
as, for example, transcripts coding for proteins involved in mediating
inflammatory response such as members of NFκB/STAT signaling
(Supplementary Fig. S2). However, unlike the very homogenous path-
way activation cluster found for cell lines with an amplification of the
EGFR or HER2 gene (HCC827, H2444, Calu3, H3255, H1568) no tight
Table 3
Targeted drugs tested in the NSCLC panel.

No Name PubChem no.

1 Erlotinib 176870
2 Vandetanib 3081361
3 Dasatinib 3062316
4 PD168393 26759325
5 Lapatinib 208908
6 VX680 5494449



Table 4A
Correlation between drug sensitivity and EGFR/ERBB2 activation state (p-value (top),
correlation value in italics (below)).

ERBB2 pERBB2
Y1222

pERBB2
Y1139

pERBB2
Y1248

EGFR pEGFR
Y1086

pEGFR
Y1068

1 Erlotinib ns 0.012 0.015 0.009 0.023 0.013 0.009
−0.35 −0.31 −0.38 −0.29 −0.32 −0.32

2 Vandetanib ns ns ns ns 0.038 0.016 0.012
−0.26 −0.30 −0.33

3 Dasatinib ns ns ns ns ns ns ns
4 PD168393 ns 0.017 0.014 0.013 ns 0.023 0.013

−0.30 −0.32 −0.32 −0.28 −0.32
5 lapatinib 0.027 0.004 0.009 0.004 ns 0.014 0.033

−0.27 −0.42 −0.36 −0.42 −0.32 −0.26
6 VX680 0.009 ns ns ns ns ns ns

0.37

ns = no significant p-value, in this case correlation factor not listed. Correlation (Pearson)
b0.3 indicates low level correlation, above 0.5 a high correlation and 0.3–0.5 average
correlation. p-values were Benjamini–Hochberg-corrected, data for GSK3b and CyclinD1
were omitted since no significant correlation with drug resistance was observed.
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clustering was observed on the transcript level for this particular set of
cell lines (Supplementary Fig. S2).

3.2. Pathway activation clusters do not reflect TP53 mutations

Mutations of TP53 were present in 43 NSCLC cell lines (Supplemen-
tary Table S1). Two hot spots of high level p53 phosphorylation were
noted (cluster P6, Fig. 1) that apparently correlated with a low level
phosphorylation of AKTon S473. Thefirst hot spot containedfive cluster
C4 cell lines that showed only a weak negative correlation with AKT
signaling whereas the second hotspot, located within the C3 cluster, re-
vealed a weak negative correlation of −0,206 after omitting p70S6K
data since this protein positively correlated with p53 abundance. To
evaluate observations made by RPPA, selected cell lines were analyzed
by Western blot. Cell lines were chosen from both clusters with high
level p53 phosphorylation (H23, H2887, PC9), H157 cells representing
low level p53 expression were included as negative control. High level
expression of p53 and high level phosphorylation of p53 were con-
firmed byWestern blot for thewt TP53 cell lines PC9 and H2887 of clus-
ter C3 as well as in thewt TP53 cell line of cluster C4 (H23) whereas the
control cell line H157 cells showed low levels of p53 aswell as low level
p53 phosphorylation (Fig. 2). The AKT activation state was apparently
lower in cell lines selected from p53 hot spot clusters compared to
H157 cells that showed also higher levels of total AKT. Besides that,
PTEN expression was higher in the three p53 hot spot cell lines when
analyzed by Western blot. Findings made with respect to the PTEN
Table 4B
Correlation between drug sensitivity and activation state of different signaling modules
(p-value (top), correlation value in italics (below).

PP2A/
A

PP2A/
B

p70S6K PI3K/
p85

p27 Smad
2/3

pAkt* pEGFR
Y992

1 Erlotinib ns ns 0.003 0.03 0.005 ns ns 0.015
0.46 0.38 0.42 −0.31

2 Vandetanib ns ns 0.005 0.04 0.03 ns ns 0.03
0.39 0.36 0.34 −0.26

3 Dasatinib 0.029 0.005 0.01 0.03 0.009 0.03 ns ns
0.26 0.36 0.30 0.33 0.30 0.25

4 PD168393 0.029 0.012 0.03 ns 0.03 ns ns 0.015
0.28 0.33 0.30 0.33 −0.31

5 Lapatinib ns ns ns ns ns ns ns 0.02
−0.31

6 VX.680 ns ns ns ns ns ns ns ns

ns = no significant p-value, in this case correlation factor not listed; * pAKT (S473). Cor-
relation (Pearson) b0.3 indicates low level correlation, above 0.5 a high correlation and
0.3–0.5 average correlation, p-values were Benjamini–Hochberg-corrected.
expression are not fully in accordance with RPPA data. Reasons for this
incoherent PTEN determination might be due to the fact that dynamic
range and signal normalization of RPPA and Western blot are very
different which affects small differences more strongly than large
differences.

3.3. Impact of KRAS mutations on NSCLC signaling networks

The NSCLC cell line panel included 26 KRAS-mutated NSCLC cell
lines and five cell lines with mutated NRAS or BRAF. Of the 26 KRAS-
mutations, 18 affected codon G12, six mutations were identified in
codon G13, and only two in codon Q61. Mutations of KRAS, NRAS, and
BRAF revealed little impact on the protein heatmap hierarchy (Fig. 1).
This suggests that mutations of KRAS, NRAS, and BRAF either affect
downstream signaling circuits in either a rather subtle way or differ in
their outcome. Protein activation states were therefore analyzed by su-
pervised learning and limited to the analysis of KRASmutations on sig-
naling. The resulting data revealed that cell lines with mutated KRAS
expressed significantly elevated levels of certain proteins, such as
PP2A, and contained also higher levels of pAKT (S473) and pp70S6K
but lower levels of pPLCγ (S1248) when compared to wt KRAS cell
lines (Fig. 3). Phosphorylation of p53 was also lower in KRAS mutated
cell lines but not quite meeting our significance criteria (p = 0.053).

3.4. Protein profiling data identify drug resistance mechanisms

Proteomic profiles obtained for the NSCLC cell line panel were ana-
lyzed and visualized in two different ways employing IC50 values avail-
able for drugs targeting cancer-relevant kinases, e.g. EGFR, ERBB2 and
aurora kinase A (Table 3, Supplementary Table S3) [13,14]. Firstly, the
Pearson correlation coefficient was computed for all possible drug–
protein pairs to identify potential correlations between drug sensitivity
and protein abundance. Expression levels of proteins correlating signif-
icantly with drug response (Tables 4A and 4B) and IC50 values of se-
lected drugs were visualized as scatter plots (Supplementary Fig. S3).
For all EGFR inhibitors, receptor phosphorylation was a better indicator
of drug sensitivity than the expression level of the receptor itself
(Table 4A). Sensitivity towards lapatinib correlated best with high
level ERBB2 (Y1248) phosphorylation (p = 0.004) and, as seen before
for EGFR inhibition, receptor phosphorylation was superior as readout
when compared to the ERBB2 total protein level (p = 0.027). According
to our data, sensitivity towards the BCR-ABL and SRC inhibitor dasatinib
showed specificity towards expression of proteins downstreamof EGFR/
ERBB2 (Table 4B) but not so towards expression level or activation of
EGFR or ERBB2 (Table 4B). Sensitivity towards dasatinib seemed to be
higher in cell lineswith low level expression of SMAD2/3. Cell lines sen-
sitive towards the EGFR-targeting drug erlotinib were characterized by
a significantly higher phosphorylation of EGFR on Y1086 (p = 0.013),
Y1068 (p = 0.009), and pERBB2 (Y1248) (p = 0.015) (Fig. 4). In addi-
tion, erlotinib-sensitive cells showed reduced expression of proteins
involved in PI3K/AKT/p70S6K signaling (Table 4B), a feature noticed
also for vandetanib, dasatinib, and PD168393 but not so for lapatinib.
Sensitivity towards targeted EGFR inhibitors correlated with low abun-
dance of PP2A subunits. Low level expression of PP2A was noticed
for cells responding to PD168393, an irreversible inhibitor of EGFR
and ERBB2.

Few NSCLC cell lines, e.g. H157, HCC2429, and A427 revealed high
sensitivity towards the aurora kinase inhibitor VX680 which abrogates
aurora kinase function and disturbs the segregation of chromosomes
duringmitosis [31]. However, high level AKT signaling was a character-
istic for VX680 responsive cells. Expression levels of other cell cycle pro-
teins not probed by RPPAwere re-assessed byWestern blot in a VX680-
sensitive cell line, in a VX680-resistant cell line and in two cell lines of
intermediate sensitivity towards VX680. Western blot data indicated
that VX680-sensitive cells indeed express aurora kinase A (AURKA)
at a high level, an M-phase associated protein, and showed a strong
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lines as well as phosphorylation of p53, AKT expression was higher in H157 cells.
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phosphorylation of RB indicative of a transitional cell cycle state. Typical
G1-phase proteins such as CDK4 and cyclin D and the G2/M-phase pro-
tein cdc2 (CDK1)were lowly expressed in VX680 sensitive cells, cyclin B
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Integration of proteomic data and IC50 data suggests that RPPA-
based pathway activation profiling presents a useful platform to identi-
fy new biomarker candidates. For example, the EGFR phosphorylation
on Y1068 presents a useful indicator of sensitivity towards EGFR-
targeting drugs. Dasatinib seems to be more specific to inhibit EGFR
than erlotinib, vandetanib and PD168393 since no significant correla-
tion with ERBB2 phosphorylation was seen. A prominent indicator of
sensitivity towards EGFR-targeting drug PD168393 is apparently the
expression of the protein phosphatase PP2A. In turn, promising candi-
dates of sensitivity towards VX680 are aurora kinase expression in
conjunction with assessing the RB phosphorylation state. To sum up,
diverse patterns of cellular regulation observed in the NSCLC cell line
panel illustrate its molecular heterogeneity and the need for patient-
tailored therapies.

4. Discussion

Multiple signaling pathways are known to be involved in the initia-
tion and progression of lung cancer [32–34]. In the clinics, treatment of
NSCLC patients with targeted drugs aiming at the inhibition of EGFR
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Fig. 5. Analysis of VX680 sensitivity and protein expression. Cell lines are indicated as
VX680 resistant (R), sensitive (S), and intermediately sensitive (M) and were chosen
from the NSCLC panel to probe for the abundance and phosphorylation of key cell cycle
proteins. As for erlotinib, IC-50 values were categorized into a quartile with high IC-50
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with intermediate sensitivity (M). Nuclear extracts of VX680 sensitive cells showed in-
creased phosphorylation of RB, nuclear extracts of VX680 resistant cells lacked expression
of AURKA andwere positive for CDK4. Nuclear extracts obtained from cell lineswith inter-
mediate sensitivity to VX680were positive for various cell cycle proteins including AURKA
and CDC2 (CDK1) but did not show strongRB phosphorylation.No direct comparisonwith
RPPA data was carried out since RPPA was based on the analysis of total cell lysates.
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presents a promising alternative over standard chemotherapy especial-
ly for well-defined subgroups of patients [9,3,7]. However, for the ma-
jority of targeted drugs useful guidelines and biomarker panels still
need to be defined to make the next step towards clinical validation
[35,11]. Solid cancers have accumulated many different genetic aberra-
tions in multiple oncogenes and/or tumor suppressor genes [36]. Thus,
in order to further improve a stratification of lung cancer patients for
treatmentswith targeted drugs, our understanding of howgenetic aber-
rations affect cellular signaling and how this correlates with drug sensi-
tivity needs to be improved. For this reason, reverse phase protein
microarrays were employed to analyze the proteomic architecture of
signaling pathways in a panel of cell lines representing all types of
NSCLC, and the NSCLC cell line panel chosen shows genomic aberrations
characteristic for primary lung cancer [37]. Data analysis was based on
correlating proteomic data with sensitivity towards commonly used
anti-EGFR drugs as well as towards the aurora kinase inhibitor VX800.

4.1. Impact of genetic aberrations on signal transduction circuits

Oncogenic aberrations such as EGFR, ERBB2,MET, PI3KCA, EML4-ALK,
STK11, KRAS, NRAS, TP53, and BRAF have previously been reported for
the NSCLC cell line panel [13]. The hierarchal clustering of proteomic
data, shown here, revealed the existence of pathway-specific clusters.
For example, cell lines with high level activation of EGFR and ERBB2
formed a homogenous protein cluster which included 50% of NSCLC
cell lines with EGFR gene amplifications and both ERBB2 amplified
NSCLC cell lines. Cluster formation in a targeted proteomic approach is
certainly influenced by proteins and phosphoproteins chosen to repre-
sent a certain signaling node as in this instance, choosing numerous an-
tibodies that recognize phosphoepitopes of EGFR or ERBB2. However,
others have observed that ERBB2 stabilizes other ERBB family members
[38] and thereby indicating that pathway activation profiling can hint
towards synergistic effects on the protein level. Unsupervised learning
of transcript data did correctly identify EGFR or ERBB amplification but
did not detect synergistic effects between both receptors. This suggests
that interactions existing on the proteomic level modulate the signaling
response and might this way contribute to drive cancer. A property of
the ERBB2/EGFR cell line cluster was low level activation of pro-
survival proteins known from the PI3K/AKT signaling axis suggesting
that tumors with constitutive signaling through EGFR and HER2 might
progress without a need for high level activation of AKT signaling as
pro-survival pathway. In conclusion, targeting the PI3K/AKT module
might not present a therapeutically meaningful measure in tumors
with an amplification of EGFR or ERBB2. In cancer, ERBB2overexpression
is highly correlatedwith drug resistance and ERBB2-amplified lung can-
cers revealed a highmetastatic potential under standard chemotherapy.
However, ERBB2 amplified NSCLC cell lines were highly sensitive
towards treatment with the EGFR inhibitor PD168393 (Calu3) or with
the dual EGFR/ERBB2 inhibitor lapatinib (Calu3, H1819). Both cell
lines were characterized by high level ERBB2/EGFR phosphorylation
suggesting a strong interaction between both receptors on a functional
level as previously reported for the EGFR/ERBB2 receptor module [39].
Prediction of drug susceptibility based on information of genetic lesions,
confirmed mutation of EGFR as the predominant factor of sensitivity
towards treatment with erlotinib and other EGFR-targeting drugs [37].

A small number of lung cancers has been associated with mutations
in phosphoinositide-3-kinase-catalytic α polypeptide (PIK3CA) [40]. In
principle, mutations in the p110 catalytic subunit of PI3K leads to an
autoactivation of the PI3K/AKT pathway by phosphorylating the pro-
survival kinase AKT which this way activates cell growth, proliferation,
survival, and malignant transformation [41,42]. The panel of proteins
analyzed by RPPA did not indicate an association with the mutational
status of PIK3CA and any pathway analyzed by RPPA, confirming
findingsmade for theNCI 60 cancer cell line set [43] and in breast cancer
tissues [44].

In cancer research, RAS presents a well-studied oncogene and its
mutation has been shown to result in abnormal cell proliferation.
KRAS, for example, is activated by point mutations most frequently af-
fecting codons 12, 13, and 61. Mutations of KRAS, NRAS, and BRAF
were found equally distributed across signaling pathway clusters that
constituted the proteomic heatmap of NSCLC cell lines. Supervised
learning was therefore used to identify proteins whichmight be associ-
ated with KRAS mutations. Proliferating cell nuclear antigen (PCNA)
levels were significantly elevated in cell lines with KRAS mutations.
Enhanced expression of PCNA is a general characteristic for fast prolifer-
ating cells and therefore most likely reflects the growth rate. Cells with
mutated KRAS revealed reduced pEGFR phosphorylation and higher
level expression of pro-survival proteins such as pAKT (S473) and
PP2A. The contrary was seen in EGFR amplified cells, revealing higher
level of EGFR phosphorylation and relatively lower levels of AKT phos-
phorylation and a downregulation of PP2A. In conclusion, a close associ-
ation between PP2A expression and AKT activity might therefore link
receptor phosphorylation and downstream signaling, suggesting that
highly abundant PP2A might indicate a shift towards the PI3K/AKT
axis. EGFR phosphorylation on Y1173 located to cluster P2 and was
apparently not coregulated with EGFR phosphosites Y992, Y1086, and
Y1068 of cluster P5. This finding is in line with clinical data obtained
by immunohistochemistry on the EGFR phosphorylation showing that
in contrast to a phosphorylation of pEGFR on Y1173, EGFR phosphoryla-
tion on Y1068 was highly correlated with clinical outcome of lung
cancer patients and response towards small molecule drugs targeting
EGFR [45]. The heatmap hierarchy confirmed that amplification of
EGFR/ERBB2 andmutations of the RAS/BRAFmodule are indeedmutually
exclusive. It has been anticipated that both mutations result in a similar
outcome on a functional level. TP53 mutations were amply abundant
in the NSCLC cell line panel, higher enriched in clusters C1 and C4
(60–66%) and less abundant in cluster C5 where only one out of five
cell lines was TP53 mutated.

Amplification of EGFR and ERBB2 correlated with low SMAD2/3 and
low β-Catenin levels. SMAD2 and SMAD3, members of the SMAD family



958 R. Ummanni et al. / Biochimica et Biophysica Acta 1844 (2014) 950–959
of signal transduction molecules, transmit TGF-β signals from the cell
surface to the nucleus. According to the current understanding of
SMAD signaling, SMAD2 and SMAD3 belong to the class of activating
SMADs downstream of TGF-β receptor [46]. TGF-β signaling has been
associated with tumor-suppressing as well as with tumor-promoting
activities [47,48] and interpretation of a functional relevance of SMAD
expression levels cannot easily be made. Furthermore, low SMAD2/3
and low level β-Catenin expression were seen in all cell lines with a
RTKmutation or amplification. Downregulation ofβ-Catenin expression
has been associatedwith cancer aggressiveness [49,50]. Hence, the basic
understanding is that low level abundance ofβ-Catenin produces fragile
cell–cell adhesions so that cells tend to dissociate more easily and this
way increase themetastatic potential of cells. Taken together, downreg-
ulation of SMAD2/3 and β-Catenin seems to synergistically drive lung
cancer progression.

4.2. Identification of drug sensitivity marker proteins

The introduction of targeted drugs to anticancer-therapies has been
followed by an immense need to identify predictive markers. An associ-
ation between drug sensitivity and genetic lesions has already been re-
ported for the NSCLC cell line panel analyzed in this study [13]. Certain
genetic aberrations such as EGFRmutation and EGFR amplification have
been identified as predictive indicators of a response towards receptor
tyrosine kinase targeting drugs. However, cellular response to a certain
drug depends on the activation state of the targeted signaling node, par-
ticularly feedback regulation circuits which are not directly accessible
by transcriptomics [51]. Proteomic profiles were analyzed to identify
proteins associated with sensitivity towards a specific drug. Sensitivity
towards erlotinib was highly significantly associated with total EGFR
expression, high level EGFR phosphorylation on Y1068 and low level
expression of PP2A.

Furthermore, in addition to high level expression of aurora kinase A,
high-level phosphorylation of RB presents putative markers of VX680
sensitivity. A correlation between high levels of aurora kinase A and
VX680 sensitivity has previously been reported in AML [52]. Targeting
highly regulated cell cycle proteins seems to be a particular challenge
for drug discovery and appears to be promising in conjunction with
drugs that arrest cancer cells in a specific cell cycle phase.

This article has selected examples from NSCLC pathway activation
profiling to illustrate that the RPPA technology presents a powerful plat-
form for targeted proteomics that can advance our understanding of
drug response in cancer. Results revealed that proteins identified as po-
tential drug sensitivity markers might also be indicative of drug resis-
tance when regulated in an inverse manner. In principle, knowledge
obtained by systematic in vitro experimentation can be used further
to achieve the goal of personalized medicine; thus, prediction of sensi-
tivity towards certain drugs in tumors with defined genetic and proteo-
mic signatures.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbapap.2013.11.017.
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