Panconnectivity and edge-pancycliclicity of faulty recursive circulant $G(2^m, 4)$

Jung-Heum Park*

School of Computer Science and Information Engineering, The Catholic University of Korea, Republic of Korea

Received 9 April 2007; received in revised form 1 October 2007; accepted 6 October 2007

Communicated by D.-Z. Du

Abstract

In this paper, we investigate a problem on embedding paths into recursive circulant $G(2^m, 4)$ with faulty elements (vertices and/or edges) and show that each pair of vertices in recursive circulant $G(2^m, 4)$, $m \geq 3$, are joined by a fault-free path of every length from $m + 1$ to $|V(G(2^m, 4) \setminus F)| - 1$ inclusive for any fault set F with $|F| \leq m - 3$. The bound $m - 3$ on the number of acceptable faulty elements is the maximum possible. Moreover, recursive circulant $G(2^m, 4)$ has a fault-free cycle of every length from 4 to $|V(G(2^m, 4) \setminus F)|$ inclusive excluding 5 passing through an arbitrary fault-free edge for any fault set F with $|F| \leq m - 3$.

Keywords: Panconnected; Edge-pancyclic; Embedding; Linear arrays; Rings; Recursive circulants; Fault tolerance; Interconnection networks

1. Introduction

Linear arrays and rings are two of the most important computational structures in interconnection networks. So, embedding of linear arrays and rings into a faulty interconnection network is an important issue in parallel processing [5,11,19,21–24]. An interconnection network is often modelled as a graph, in which vertices and edges correspond to nodes and communication links, respectively. Thus, the embedding problem can be modelled as finding fault-free paths and cycles in the graph with some faulty vertices and/or edges.

In the embedding problem, if the longest path or cycle is required the problem is closely related to well-known hamiltonian problems in graph theory. A graph G is called f-fault hamiltonian (resp. f-fault hamiltonian-connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in $G \setminus F$ for any set F of faulty elements with $|F| \leq f$. On the other hand, if the paths joining each pair of vertices of every length shorter than or equal to a hamiltonian path are required the problem is concerned with panconnectivity of the graph. If the cycles of arbitrary size (up to a hamiltonian cycle) are required the problem is concerned with pancyclicity of the graph.

* This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund; KRF-2006-521-D00377) and supported by the Department Specialization Fund, 2007 of The Catholic University of Korea.

* Tel.: +82 2 2164 4366.

E-mail address: j.h.park@catholic.ac.kr.
Definition 1. A graph G is called f-fault l-panconnected if each pair of fault-free vertices are joined by a path in $G \setminus F$ of every length from l to $|V(G \setminus F)| - 1$ inclusive for any set F of faulty elements with $|F| \leq f$.

Definition 2. A graph G is called f-fault almost edge-pancyclic (resp. f-fault nearly edge-pancyclic) if for any set F of faulty elements with $|F| \leq f$, there exists a cycle of every length from 4 to $|V(G \setminus F)|$ inclusive (resp. from 4 to $|V(G \setminus F)|$ inclusive excluding 5) that passes through an arbitrary fault-free edge.

Panconnectivity of some interconnection networks without faulty elements was reported in the literature. A graph G is said to be panconnected (resp. almost panconnected) if each pair of vertices s and t in G are joined by an s–t path of every length from $d(s, t)$ to $V(G) - 1$ (resp. from $d(s, t) + 2$ to $V(G) - 1$) inclusive. Here, $d(s, t)$ denotes the distance between s and t. Recursive circulant $G(2^m, 2)$ [16], alternating group graphs [5], and augmented cubes [13] are panconnected, and recursive circulant $G(2^m, 4)$ [16], locally twisted cubes [14], and twisted cubes [7] are almost panconnected. Recently, fault-panconnectivity of a family of hypercube-like interconnection networks called restricted HL-graphs was investigated in [20]. It was shown that every m-dimensional restricted HL-graph, $m \geq 3$, is $m - 3$-fault $2m - 3$-panconnected. The family includes many interconnection networks proposed in the literature such as twisted cubes, crossed cubes, multiply twisted cubes, Möbius cubes, Mcubes, and generalized twisted cubes.

Edge-pancyclicity of some fault-free interconnection networks such as recursive circulants, crossed cubes, twisted cubes was studied in [1], [9], and [8]. A graph G is called f-fault l-edge-pancyclic if for any fault set F with $|F| \leq f$, there exists a cycle of every length from l to $|V(G \setminus F)|$ inclusive that passes through an arbitrary fault-free edge. An f-fault l-panconnected graph is obviously f-fault l-1-edge-pancyclic. In the presence of faulty elements, the fault-pancyclicity result in [20] implies that every m-dimensional restricted HL-graph, $m \geq 3$, is $m - 3$-fault $2m - 2$-edge-pancyclic.

Pancyclicity and fault-pancyclicity of various interconnection networks were investigated. A graph G is called f-fault pancyclic (resp. f-fault almost pancyclic) if $G \setminus F$ contains a cycle of every length from 3 to $|V(G \setminus F)|$ inclusive (resp. 4 to $|V(G \setminus F)|$ inclusive) for any fault set F with $|F| \leq f$. The works on fault-pancyclicity can be summarized as saying that many interconnection networks of degree δ are $\delta - 2$-fault pancyclic or $\delta - 2$-fault almost pancyclic depending on the existence of length 3 cycles in the network; for example, augmented cubes [13], recursive circulants [2,17], Möbius cubes [11], crossed cubes [23], twisted cubes [24], and restricted HL-graphs [20].

A recursive circulant is an interconnection network proposed in [18]. Recursive circulant $G(N, d)$, $d \geq 2$, is defined as follows: the vertex set $V = \{v_0, v_1, v_2, \ldots, v_{N-1}\}$, and the edge set $E = \{(v_i, v_j) \mid$ there exists $k, 0 \leq k \leq \lfloor \log_d N \rfloor - 1, \text{ such that } i + d^k \equiv j \pmod{N}\}$. $G(N, d)$ is a circulant graph with N vertices and jumps of powers of $d, d^0, d^1, \ldots, d^{\lfloor \log_d N \rfloor - 1}$. Examples of $G(N, d)$ are shown in Fig. 1.

In this work, our attention is restricted to $G(N, d)$ with $N = 2^m$ and $d = 4$. $G(2^m, 4)$, whose degree is m, compares favorably to the hypercube Q_m. While retaining attractive properties of hypercube Q_m such as node symmetry, recursive structure, the maximum connectivity, etc., it achieves noticeable improvements in diameter [18] and possesses a complete binary tree with $2^m - 1$ vertices as a subgraph [12]. A recursive circulant has a cycle-based construction, and thus it is expected to have nice properties concerned with cycles. $G(N, d)$ with degree 3 or higher is hamiltonian-connected [6]. $G(N, d)$ with $N = cd^m$ and $1 \leq c < d$ is hamiltonian decomposable [3,10,15], that is, the set of edges can be partitioned into edge-disjoint hamiltonian cycles (and a 1-factor when the degree is odd). In [10], the edge forwarding index and bisection width for recursive circulants were also analyzed.
In this paper, we investigate panconnectivity and edge-pancyclicity of recursive circulant $G(2^m, 4)$ with faulty elements. It will be shown that $G(2^m, 4)$, $m \geq 3$, is $m - 3$-fault $m + 1$-panconnected and $m - 3$-fault nearly edge-pancyclic. The bound $m - 3$ on the number of acceptable faulty elements for $G(2^m, 4)$ to be l-panconnected for any fixed l (less than the number of fault-free vertices) is the maximum possible in a sense that no graph of degree m is $m - 2$-fault l-panconnected as well as Hamilton-connected.

In the rest of this paper, we will use standard terminology for graphs (see Ref. [4]). This paper is organized as follows. In the next section, we will present some basic properties of recursive circulant $G(2^m, 4)$. Panconnectivity and edge-pancyclicity of faulty recursive circulant $G(2^m, 4)$ will be proved in Sections 3 and 4, respectively. Finally in Section 5, the concluding remarks of this paper will be given.

2. Recursive circulant $G(2^m, 4)$

Recursive circulant $G(N, d)$ can also be defined as the Cayley graph of the cyclic group \mathbb{Z}_N with the generating set $\{d^0, d^1, \ldots, d^{\lfloor \log_d N \rfloor - 1}\}$. Every Cayley graph over a general group is vertex symmetric, and thus regular. Recursive circulant $G(N, d)$ has a recursive structure when $N = cd^m, 1 \leq c < d$ [18]. In other words, $G(cd^m, d)$ can be defined recursively by utilizing the following property.

Property 1 ([18]). Let V_i be a subset of vertices in $G(cd^m, d)$ such that $V_i = \{v_j | j \equiv i \pmod{d}\}$, $m \geq 1$. For $0 \leq i \leq d - 1$, the subgraph of $G(cd^m, d)$ induced by V_i is isomorphic to $G(cd^{m-1}, d)$.

$G(cd^m, d)$, $m \geq 1$, can be constructed recursively on d copies of $G(cd^{m-1}, d)$ as follows. Let $G_i(V_i, E_i), 0 \leq i \leq d - 1$, be a copy of $G(cd^{m-1}, d)$. We assume that $V_i = \{v_0^i, v_1^i, \ldots, v_{cd^{m-1}-1}^i\}$, and G_i is isomorphic to $G(cd^{m-1}, d)$ with the isomorphism mapping v_j^i to v_{jd+i}. The vertex set V of $G(cd^m, d)$ is $\bigcup_{0 \leq i \leq d - 1} V_i$, and the edge set E is $\bigcup_{0 \leq j \leq d - 1} E_i \cup X$, where $X = \{(v_j^i, v_{j'}^i) | j + 1 \equiv j' \pmod{cd^m}\}$. The construction of $G(32, 4)$ on four copies of $G(8, 4)$ is illustrated in Fig. 2. Note that recursive circulant $G(2^m, 4)$ has a recursive structure when $m \geq 2$. In the recursive structure, $G(2^m, 4)$ consists of four components G_0, G_1, G_2, and G_3; each of them is isomorphic to $G(2^{m-2}, 4)$. A vertex in G_i is represented by $v_j^i, 0 \leq j < 2^{m-2}, 0 \leq i \leq 3$, as well as $v_j^0, 0 \leq j < 2^m$, without saying in which G_i the vertex is contained.

Hereafter in this paper, we denote by $G_i \oplus G_j$ and $G_i \oplus G_j \oplus G_k$ for some $0 \leq i, j, k \leq 3$ the subgraphs of $G(2^m, 4)$ induced by $V_i \cup V_j$ and $V_i \cup V_j \cup V_k$, respectively. Let F be the set of faulty elements in $G(2^m, 4)$. F_i denotes the set of faulty elements in $G_i, i = 0, 1, 2, 3$, and $F_{i,i+1 \mod 4}$ denotes the set of faulty edges joining vertices in G_i and vertices.
in $G_{i+1 \mod 4}$, so that $F = \bigcup_{0 \leq i \leq 3} (F_i \cup F_{i,i+1 \mod 4})$. Let $f_i = |F_i|$ and $f_{i,i+1 \mod 4} = |F_{i,i+1 \mod 4}|$. We denote by f_i' the number of faulty vertices in G_i, and by f the total number of faulty vertices, so that $f = \sum_{0 \leq i \leq 3} f_i'$.

From now on, all arithmetic on the indices of vertices will be assumed to be done modulo 2^m. Some properties of recursive circulant $(2^m, 4)$ explored to establish our main results are listed below, where the diameter D_m of $G(2^m, 4)$ is defined as the maximum distance between any two vertices in the graph.

Lemma 1 (Shortest Path [18]). Let G_0, G_1, G_2, and G_3 be the components of $(2^m, 4)$. (a) Every shortest path joining a pair of vertices v_0^i and v_j^i passes through only vertices in G_i. (b) There exists a shortest path between v_0^i and v_j^i passing through v_0^i when $i = 1$, and passing through v_0^i when $i = 3$. In the case $i = 2$, there exists a shortest path between v_0^i and v_j^i passing through v_0^i when $d(v_0^i, v_j^i) \leq d(v_0^i, v_j^i+1)$, and passing through v_j^i when $d(v_0^i, v_j^i) \leq d(v_0^i, v_j^i)$.

Lemma 2 (Diameter [18]). (a) $D_{m-2} + 1 \leq D_m \leq D_{m-2} + 2$ for $m \geq 2$. (b) $D_m = 3m/4$.

Lemma 3 (Fault-Hamiltonicity [22,19]). (a) $G(2^m, 4)$, $m \geq 3$, is $m-3$-fault hamiltonian-connected and $m-2$-fault hamiltonian. (b) The product $G(2^m, 4) \times K_2$ of $G(2^m, 4)$ and K_2, $m \geq 3$, is $m-2$-fault hamiltonian-connected and $m-1$-fault hamiltonian.

Lemma 3(a) implies that $G(2^m, 4)$, $m \geq 3$, with at most $m-1$ faulty elements has a hamiltonian path joining some pair of fault-free vertices.

3. Panconnectivity of faulty $G(2^m, 4)$

In this section, we will show that $G(2^m, 4)$, $m \geq 3$, is $m-3$-fault $m+1$-panconnected. Throughout this paper, a path in a graph is represented as a sequence of vertices. A path joining a pair of vertices s and t is called an s-t path.

Panconnectivity of fault-free recursive circulants $G(2^m, 2^k)$ was investigated in [16]. It was shown that between any pair of vertices s and t, there exists a path of every length $d(s, t) + \Delta$ or longer for some Δ. One of the results is given in the following, which will be utilized for our purpose.

Lemma 4 ([16]). $G(2^m, 4)$ is almost panconnected. That is, between any pair of vertices s and t in $G(2^m, 4)$, there exists a path of every length l, $d(s, t) + 2 \leq l \leq 2m - 1$.

A concatenation of two paths (x_1, x_2, \ldots, x_p) and (y_1, y_2, \ldots, y_q) is defined to be the path $(x_1, x_2, \ldots, x_p, y_1, y_2, \ldots, y_q)$.

Lemma 5. (a) $G(2^m, 4)$, $m \geq 3$, is 0-fault $D_m + 1$-panconnected.

(b) $G(2^m, 4)$, $m \geq 5$, is 0-fault D_m-panconnected.

Proof. We prove (a) by induction on m. Due to Lemma 4, it suffices to show that for any pair of vertices s and t with $d(s, t) = D_m$, there exists a path of length $D_m + 1$ between them. For $m = 3, 4$, the construction is immediate by inspection. Let $m \geq 5$. We assume $s = v_0^0$ without loss of generality. There are two cases up to symmetry. If $t = v_j^i$ for some $j \neq 1$, we first find a v_1^0-t path P' in G_1 of length D_m. The path P' exists since $D_{m-2} + 1 \leq D_m$. Then, (s, P') is a desired path of length $D_m + 1$. Now, let $t = v_2^j$ for some $j \neq 1$. By Lemma 1, D_m is equal to $d(v_1^0, t) + 2$ or $d(v_0^0, t) + 2$. We assume w.l.o.g. that $D_m = d(v_1^0, t) + 2$. Letting P'' be a shortest v_1^0-t path in G_2, we have a path (s, v_0^3, v_1^3, P'') of length $d(v_1^0, t) + 3 = D_m + 1$.

To prove (b), we assume that each G_i is $D_{m-2} + 1$-panconnected and furthermore, whenever $m - 2 \geq 5$, it is D_{m-2}-panconnected. It suffices to construct a path of length D_m joining every pair of vertices s and t with $d(s, t) = D_m - 1$. Let $s = v_0^0$. If $t = v_j^0$ for some $j \neq 1$, there exists an s-t path in G_0 of every length $D_{m-2} + 1$ or longer, and thus we are done. When $t = v_1^0$ for some $j \neq 1$, there exists a v_1^0-t path P' of length $D_{m-2} + 1$, and (s, P') is an s-t path of length $D_{m-2} + 2$. If $D_m = D_{m-2} + 2$, we are done. Suppose otherwise ($D_m = D_{m-2} + 1$); observe $m \geq 7$. Note that D_3, D_4, D_5, and D_6 are 2, 3, 4, 5, respectively. Employing the assumption that G_1 is D_{m-2}-panconnected, we have an s-t path (s, P'') of length D_m, where P'' is a v_1^0-t path in G_1 of length D_{m-2}. Finally when $t = v_2^0$ for some $j \neq 1$, assuming w.l.o.g. that $d(s, t) = d(v_1^0, t) + 2$, a concatenation of (s, v_0^3, v_3^3) and a shortest v_1^0-t path in G_2 results in an s-t path of length $d(s, t) + 1 = D_m$. Thus, the proof is completed. □
Now, we are to investigate panconnectivity of faulty recursive circulants. We will show that $G(2^m, 4)$, $m \geq 3$, is $m - 3$-fault $m + 1$-panconnected. For $m = 3, 4$, we have the following lemma.

Lemma 6. (a) $G(8, 4)$ is 0-fault 3-panconnected.
(b) $G(16, 4)$ is 0-fault 4-panconnected and 1-fault 5-panconnected.

Proof. Lemma 5(a) says that $G(8, 4)$ is 0-fault 3-panconnected and $G(16, 4)$ is 0-fault 4-panconnected. To show that $G(16, 4)$ is 1-fault 5-panconnected, we need to construct an s-t path of every length 5 or longer for any pair of fault-free vertices s and t in $G(16, 4)$ with one faulty element. When the faulty element is a vertex v_j, the construction of an s-t path in $G(16, 4) \backslash v_j$ is by a case analysis and omitted here. Suppose there exists a faulty edge (x, y). If $\{x, y\} = \{s, t\}$, letting (x, y) be a virtual fault-free edge, Lemma 5(a) is applied. Otherwise, letting $x \notin \{s, t\}$ be a virtual faulty vertex, an s-t path of every length up to 14 is constructed. An s-t hamiltonian path of length 15 also exists due to Lemma 3(a). \(\square\)

To prove the main result for $m \geq 5$, we exploit the recursive structure of $G(2^m, 4)$ and a technique: so called “strong induction”. In other words, assuming that each component G_i which is isomorphic to $G(2^{m-2}, 4)$ is not only $m - 5$-fault $m - 1$-panconnected but also $\frac{m - 2}{2}$-fault $m - 2$-panconnected and $\frac{m - 5}{2}$-fault $m - 3$-panconnected and so on, we show that $G(2^m, 4)$ is $m - 3$-fault $m + 1$-panconnected and $\frac{m - 3}{2}$-fault m-panconnected and so on.

Theorem 1. $G(2^m, 4)$, $m \geq 3$, is $\lfloor \frac{m - 3}{2k} \rfloor$-fault $m - k + 1$-panconnected for any integer k, $0 \leq k \leq L(m - 3) + 1$, where $L(m) = \lfloor \log_2 n \rfloor$ for $n \geq 1$ and $L(0) = 0$.

Proof. By Lemma 6, the theorem holds for $m = 3, 4$. Hereafter, we assume $m \geq 5$. Observe that $\lfloor \frac{m - 3}{2k} \rfloor = 0$ if $k = L(m - 3) + 1$, and that $\lfloor \frac{m - 2}{2} \rfloor = 1$ if $k = L(m - 3)$. When $k = L(m - 3) + 1$, due to Lemma 5(b), the theorem holds. We claim that $D_m = \lfloor \frac{3m - 1}{4} \rfloor \leq m - L(m - 3)$ for any $m \geq 5$. The inequality can be checked for small m in the following table. For $m \geq 19$, it suffices to show that $\frac{3m - 1}{4} + 1 \leq m - \lfloor \log_2 (m - 3) \rfloor$ or equivalently $4 \lfloor \log_2 (m - 3) \rfloor + 3 \leq m$. Let $k \geq 4$ be an integer such that $2^k \leq m - 3 < 2^k + 1$. Then, we have $4 \lfloor \log_2 (m - 3) \rfloor + 3 = 4k + 3 + 2^k \leq m$. Obviously $4k + 3 \leq 2^k + 3$ for any $k \geq 4$, and thus the claim is proved.

| m | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|
| $m - L(m - 3)$ | 4 | 5 | 5 | 6 | 7 | 8 | 8 | 9 | 10 | 11 | 11 | 12 | 11 | 14 |

Thus, assuming $f_0 \geq f_j$ for any $j = 1, 2, 3$, there are two cases.

Case 1. $f_i \leq \lfloor \frac{(m-2)-j}{2} \rfloor$ for every $i = 0, 1, 2, 3$. It is straightforward to see that $k \leq L((m - 2) - 3) + 1$. Thus, each $G_i \backslash F_i$ is $m - k - 1$-panconnected. Furthermore when $m = 5$, G_i is fault-free and, by Lemma 6(a), it is 3-panconnected. We first consider panconnectivity of $G_0 \oplus G_1$.

Claim 1. Each pair of vertices x and y in $G_0 \oplus G_1$ are joined by an x-y path of every length 1, $m - k + 1 \leq l \leq 2^{m-1} - f_0 - f_1 - 1$.

To prove the claim, let x and y be vertices in G_0 first. There exists an x-y path P_0 in G_0 of every length l_0, $m - k - 1 \leq l_0 \leq 2^{m-2} - f_0 - 1$. To construct a longer path P_1 that passes through vertices in G_1 as well as vertices in G_0, let P' be an x-y path in G_0 of every length l', $2m - 5 \leq l' \leq 2^{m-2} - f_0 - 1$. Then, there is an edge (v_0', v_0') on P' such that all of (v_0', v_0'), (v_0', v_1'), and (v_0, v_1') are fault-free since each faulty element can “block” at most two such candidate edges and the number of faulty elements is at most $m - 3$. The path P_1 can be obtained from merging P' and a $v_1' - v_1$ path P'' in G_1 with the edges (v_0', v_1') and (v_0', v_1'). When $m \geq 6$, the length l'' of P'' is any integer in the range $m - k - 1 \leq l'' \leq 2^{m-2} - f_1 - 1$ and thus the length l_1 of P_1 is in the range $(2m - 5) + (m - k - 1) + 1 \leq l_1 \leq 2^{m-1} - f_0 - f_1 - 1$. It is straightforward to see that $(2m - 5) + (m - k - 1) + 1 \leq (2^{m-2} - f_0 - 1) + 1$ since $3m - 5 \leq 2^{m-2} - (m - 5)$ for every $m \geq 6$. When
Since we have $m = 5$, observing $f_i = 0$ for each i, we have $5 \leq l' \leq 7$. Furthermore, by Lemma 6(a), we have $3 \leq l'' \leq 7$. Thus, $9 \leq l_1 \leq 15$. It remains to construct an x-y path of length 8. Let v^0_p (resp. v^0_q) be a vertex in G_0 which is either x (resp. y) or at least adjacent to it such that (i) $v^0_p \neq y$ and $v^0_q \neq x$, (ii) (v^0_p, v^0_p) and (v^0_q, v^0_q) are fault-free, and (iii) $v^0_p \neq v^0_q$. Since there exists a v^0_q-v^0_p path P'' of every length l'', $3 \leq l'' \leq 7$, we have an x-y path $P_1 = (s, v^0_q, v^0_q, P'', v^0_q, G_0, d, v^0_q, y)$ of length 8. Therefore, we have an x-y path of every length $l, m - k - 1 \leq l \leq 2m - 1 - f_0 - f_1 - 1$.

Now, let x be a vertex in G_0 and y be a vertex in G_1. Let v^1_p be a vertex in G_1 which is either y or at least adjacent to it such that (i) $v^1_y \neq x$ and (ii) (v^1_p, v^1_p), and (v^1_q, v^1_q) are fault-free. The existence of such a vertex v^1_p is due to there being $m - 1$ candidates and at most $m - 2$ blocking elements (the source x and at most $m - 3$ faulty elements). Letting P' be an x-v^1_q path in G_0 of every length $l', m - k - 1 \leq l' \leq 2m - 2 - f_0 - 1$, we have an x-y path $P_0 = (P', v^1_p, y)$ of every length $l_0, m - k + 1 \leq l_0 \leq 2m_0 - 2 - f_0 - 1$. To construct a longer path, we let (v^0_q, v''_q) be an edge such that (i) $v^0_q \neq x$ and $v^0_q \neq y$, and (ii) v^0_q, v^1_q, and (v^0_q, v^1_q) are fault-free. Letting P' be an x-v^0_q path in G_0 of every length $l', m - k - 1 \leq l' \leq 2m - 2 - f_0 - 1$, and letting P'' be a v''_q-y path in G_1 of every length l'', $m - k - 1 \leq l'' \leq 2m - 2 - f_0 - 1$, we have an x-y path $P_1 = (P', P'')$ of every length $l_1, 2m - 2k - 1 \leq l_1 \leq 2m - 2 - f_0 - f_1 - 1$. We have $2m - 2k - 1 \leq 2m - 2 - f_0 - 1$ since $2m_1 \leq 2m - 2 - (m - 5) + 1$ for every $m \geq 5$. Therefore, we have an x-y path of every length $m - k + 1$ or more. This completes the proof of Claim 1.

Note that for each of $G_1 \oplus G_2, G_2 \oplus G_3$, and $G_3 \oplus G_0$, we can establish the same statement as Claim 1 since we do not use the assumption of $f_0 \geq 2, 3, f_3$ in the proof. From now on, we will construct an s-t path of every length $l, m - k + 1 \leq l \leq 2m - f_0 - 1$. We assume w.l.o.g. that s is contained in G_0.

Subcase 1.1. t is a vertex in G_0, G_1, or G_3.

We assume w.l.o.g. that t is contained in $G_0 \oplus G_1$. By Claim 1, there exists an s-t path P_0 in $G_0 \oplus G_1$ of every length $l_0, m - k + 1 \leq l_0 \leq 2m - 1 - f_0 - f_1 - 1$. Let P' be an s-t path in $G_0 \oplus G_1$ of every length l', $2m - 5 \leq l' \leq 2m - 1 - f_0 - f_1 - 1$. There is an edge (x, y) on P' such that \bar{x}, \bar{y} are fault-free, where \bar{x} and \bar{y} are the vertices in $G_2 \oplus G_3$ adjacent to x and y, respectively. Letting P'' be an \bar{x}-\bar{y} path in $G_2 \oplus G_3$ of every length l'', $m - k + 1 \leq l'' \leq 2m - 1 - f_0 - f_1 - 1$, an s-t path P_1 can be obtained from merging P' and P'' with edges (x, \bar{x}) and (y, \bar{y}). The length l_1 of P_1 is any integer in the range $3m - k - 3 \leq l_1 \leq 2m - f_0 - 1$. It holds true that $3m - k - 3 \leq 2m - 1 - f_0 - f_1 - 1 + 1$ since $3m - 3 \leq 2m - 1 - (m - 3)$ for any $m \geq 5$. Thus, we have an s-t path of every length $m - k + 1$ or more.

Subcase 1.2. t is a vertex in G_2.

We let $s = v^1_j$ and $t = v^1_j$ for some j. First, we will construct an s-t path P_0 of every length $l_0, m - k + 1 \leq l_0 \leq 2m - 2 - \frac{m - 5}{2}$. Let us consider the subcase when $|F| - 1 \leq f_0 + f_2 \leq |F|$. In this subcase, we assume w.l.o.g. that $j \neq 1$. (Suppose otherwise; we can construct an s-t path P_0 with the roles of G_1 and G_3 being interchanged in a symmetric way.) If all of $v^1_j, (s, v^1_j), (1, v^1_j)$ are fault-free, letting P' be a v^1_j-v^1_j path in G_1 of every length l', $m - k - 1 \leq l' \leq 2m - 2 - f_0 - f_1 - 1$, we have an s-t path $P_0 = (s, P', t)$ of every length $l_0, m - k + 1 \leq l_0 \leq 2m - 2 - f_0 - f_1 - 1$. Obviously, $2m - 2 - \frac{m - 5}{2} \leq 2m - 1 - f_0 - f_1 - 1$. Suppose otherwise; exactly one among the four elements $v^1_j, (s, v^1_j), v^0_j$, and (t, v^1_j) is faulty. If $j \neq 0$, an s-t path P_0 passing through vertices in G_3 can be constructed symmetrically. Let $j = 0$ and let v^1_j be a vertex in G_2 adjacent to t such that v^0_j and (t, v^1_j) are fault-free. There is a v^0_j-v^1_j path P' in G_3 of every length $l', 3 \leq l' \leq 2m - 2 - 1$, by Lemma 4. Note that G_3 is fault-free and v^0_j is adjacent to v^1_j. Thus, the length l_0 of $P_0 = (s, P', v^1_j, t)$ is any integer in the range $6 \leq l_0 \leq 2m - 2 + 2$. Observe that $6 \leq m - k + 1$ for any m and k with $m \geq 5$ and $0 \leq k \leq \lfloor (m - 3) \rfloor$ except only when $m = 5$ and $k = 1 (|F| = 1)$. For the exceptional case, regarding the faulty element as a virtual fault-free one, we will construct two vertex-disjoint s-t paths of length 5. Letting P' be an s-v^0_j path of length 3 in G_0 and P'' be a v^1_j-t path of length 3 in G_2, we have two paths (P', v^0_j, t) and (s, v^1_j, P'') at least one of the two is a fault-free path since $|F| = 1$.

Now we will construct an s-t path P_0 of every length $l_0, m - k + 1 \leq l_0 \leq 2m - 2 - \frac{m - 5}{2}$, when $f_0 + f_2 \leq |F| - 2 (|F| \geq 2)$. Remember that $f_2 \leq f_0$. Then, in the following claim, we can obtain a result stronger than that $G_2 \backslash F_2$ is $m - k - 1$-panconnected.

Claim 2. $G_2 \backslash F_2$ is $m - k - 2$-panconnected.

To prove the claim, it suffices to show that $f_2 \geq \lceil \frac{(m-2)-3}{2^k+1} \rceil$ and $k+1 \leq L((m-2)-3) + 1$. Suppose $f_2 \geq \lceil \frac{(m-2)-3}{2^k+1} \rceil$; we have $f_0 + f_2 \geq 2 \lceil \frac{(m-2)-3}{2^k+1} \rceil + 2 \geq \lceil \frac{(m-2)-3}{2^k} \rceil + 1 \geq \lceil \frac{m-3}{2^k} \rceil - 1 \geq \lceil \frac{m-3}{2^k} \rceil - |F| - 1$, which is a contradiction. Suppose $k \geq L((m-2)-3) + 1$; we have $|F| = \lceil \frac{m-3}{2^k} \rceil \leq \frac{m-3}{2^k} \leq 1$ since $m - 3 < 2^2, 2L((m-2)-3)+1$ for any $m \geq 5$. This is a contradiction to $|F| \geq 2$. Thus, we have the claim.

In the subcase of $f_0 + f_2 \leq |F| - 2$, we assume w.l.o.g. that $p \neq j$ for each vertex v_p^0 adjacent to s. (Suppose otherwise; we can construct an s–t path P_0 passing through a vertex in G_2 instead of a vertex in G_1 in a symmetric way. Note that for any pair of vertices v_i and v_{i+1}, there exists no vertex adjacent to both v_i and v_{i+1} since $G(2^m, 4)$ does not have a cycle of length 3.) There exists a vertex v_p^0 adjacent to s such that (s, v_p^0, v_p^1, v_p^2) is a fault-free path (and $v_p^2 \neq t$). Letting P' be a v_p^2–t path in G_2 of every length l', $m - k - 2 \leq l' \leq 2^{m-2} - f^2_v - 1$, we have an s–t path $P_0 = (s, v_p^0, v_p^1, P')$ of every length $l_0, m - k + 1 \leq l_0 \leq 2^{m-2} - f^2_v + 2$. Obviously, $2^{m-2} - \lceil \frac{m-5}{2^k} \rceil \leq 2^{m-2} - f^2_v + 2$.

We are to construct a longer path P_1 that passes through vertices in G_0, G_1, G_2. There exists a fault-free vertex v_i^1 in G_2 adjacent to t such that all of v_i^1, (v_i^2, t), and (v_i^3, v_i^4) are fault-free. Letting P' be an s–v_i^1 path in $G_0 \oplus G_1$ of every length l', $m - k + 1 \leq l' \leq 2^{m-1} - f^0_v - f^1_v - 1$, we have an s–t path $P_1 = (P', v_i^1, t)$ of every length $l_1, m - k + 3 \leq l_1 \leq 2^{m-1} - f^0_v - f^1_v + 1$. Observe that $m - k + 3 \leq 2^{m-2} - \lceil \frac{m-5}{2^k} \rceil + 1$ since $m \geq 3 \geq 2^{m-2} - \lceil \frac{m-5}{2^k} \rceil + 1$ for any $m \geq 5$. Finally, it remains to verify the path P_2 longer than P_1. P_2 is constructed from P_1 by replacing the edge (v_i^1, t) with a v_i^2–t path in $G_2 \oplus G_1$ of every length l'', $m - k + 1 \leq l'' \leq 2^{m-2} - f^0_v - f^1_v - 1$. Then, the length l_2 of P_2 is any integer in the range $2m - 2k + 3 \leq l_2 \leq 2m - f_1$. Observe that $2m - 2k + 3 \leq 2^{m-1} - f^0_v - f^1_v + 2$ since $2m - 3 \leq 2^{m-1} - (m - 3) + 2 \leq 2^{m-1} - f^0_v - f^1_v + 2$ for any $m \geq 5$.

Case 2. Either $k \geq 1$ and $F_0 = F$ or $k = 0$ and $|F_0| \geq |F| - 1$.

In this case, we have $f_0 \geq 1$. Let us consider pancyclicity of $G_0, G_1 \oplus G_2, G_2 \oplus G_3,$ and $G_1 \oplus G_2 \oplus G_3$ first in the following Claim 3 through 5.

Claim 3. $G_1 \setminus F_i$ is $m - k - 1$-panconnected for every $i = 1, 2, 3$, except only when $m = 5, k = 0, f_0 = 1,$ and $f_j = 1$ for some $j = 1, 2, 3$.

Recall that G_1 is $\lceil \frac{(m-2)-3}{2^k} \rceil$-fault $m - k - 1$-panconnected. The claim holds for $k \geq 1$ or $m \geq 6$ and $k = 0$ since $|F_i| = 0$ for $k \geq 1$ and $\lceil \frac{(m-2)-3}{2^k} \rceil = m - 5 \geq |F_i|$ for $m \geq 6$ and $k = 0$. If $m = 5$ and $k = 0$, we have $|F| = 2$, and thus the claim holds only when $f_1 = f_2 = f_3 = 0$. This completes the proof of the claim.

For the exceptional case of Claim 3, it will be proved later in Lemma 7 that $G(2^5, 4) \setminus F$ with $|F| = 2$ and $f_0 = f_j = 1$ for some $j = 1, 2, 3$ is 6-panconnected. Hereafter in this proof, we will exclude the exceptional case. Then, we have $|F_i| \leq \lceil \frac{(m-2)-3}{2^k} \rceil$ for every $i = 1, 2, 3$. By virtue of Claim 1, we have Claim 4.

Claim 4. $G_1 \oplus G_2 \setminus F$ and $G_2 \oplus G_3 \setminus F$ are $m - k - 1$-panconnected.

Claim 5. $G_1 \oplus G_2 \oplus G_3 \setminus F$ is $m - k + 1$-panconnected with an exception of $m = 5$ and $k = 1$.

To prove the claim, between any pair of vertices x and y, an x–y path of every length $m - k + 1$ or more will be constructed. First, we consider the case where x and y are contained in $G_1 \oplus G_2$. There exists an x–y path P_0 in $G_0 \oplus G_1$ of every length $l_0, m - k + 1 \leq l_0 \leq 2^{m-1} - f^0_v - f^1_v - 1$, by Claim 4. To construct a longer path, we assume w.l.o.g. that $F_3 = F_{2,3} = \emptyset$ if both x and y are contained in G_2. Let P' be an x–y path in $G_1 \oplus G_2$ of every length $l' \geq 2^{m-2} + 4$. Then, there exists an edge (v^2_p, v^2_q) on P' such that v^2_p, v^2_q are fault-free. Let P'' be a v^1_p–v^1_q path in G_2 of every length $l'', l'' \geq m - k - 1$ for $m \geq 6$ and $l'' \geq 3$ for $m = 5$. The length l_1 of an x–y path P_1 obtained from merging P' and P'' is any integer in the range $2m - 2k + 3 \leq l_1 \leq 3 \cdot 2^{m-2} - f^0_v - f^1_v - f^3_v - 1$ for $m \geq 6$ and in the range $2^{m-2} + 4 \leq l_1 \leq 2^{m-2} - f^0_v - f^1_v - f^3_v - 1$ for $m = 5$. It is straightforward to check that $2^{m-2} + 4 \leq m - k \leq 2m - 3 \leq f^1_v - f^0_v$ for $m \geq 6$ and $2m - 2k + 3 \leq f^3_v$ for $m = 5$.

Let x and y be vertices in G_1 and G_3, respectively, and let $x = v^1_i$ and $y = v^3_j$. When $j \neq 1$, we assume w.l.o.g. that path (x, v^2_i, v^3_j) and G_3 are fault-free. Letting P' be a v^1_i–y path in G_3 of every length l', $3 \leq l' \leq 2^{m-2} - 1$, by Lemma 4. Then, we have an x–y path $P_0 = (x, v^1_i, v^2_i, P')$ of every length $l_0, 6 \leq l_0 \leq 2^{m-2} + 2$. Note that $6 \leq m - k + 1$ unless $m = 5$ and $k = 1$. To construct a longer path P_1, let
Claim 5 is considered later in Lemma 8. It will be proved that $G(2^2, 4) \setminus F$ with $|F| = f_0 = 1$ is 5-panconnected. We also exclude the exceptional case in our discussion. Now, we will construct an $s \rightarrow t$ path of every length $m - k + 1$ or more. An $s \rightarrow t$ path of every length between $m - k + 1$ and $3 \cdot 2^{m-2} - 2$ is constructed in Subcases 2.1 through 2.4, and a path of every length $3 \cdot 2^{m-2} - 1$ or more is constructed in Subcases 2.5 through 2.7.

Subcase 2.1. Both s and t are contained in G_0.
Assume w.l.o.g. that $F_{0,1} \cup F_1 = \emptyset$. Let $s = v^0_0$ and $t = v^0_j$. Letting P' be a $v^1_0 - v^1_j$ path in G_1 of every length l', $m - k - 1 \leq l' \leq 2^{m-2} - 1$, we have an $s \rightarrow t$ path $P_0 = (s, P', t)$ of every length l_0, $m - k + 1 \leq l_0 \leq 2^{m-2} + 1$. Letting P'' be a $v^1_0 - v^1_j$ path in $G_1 \oplus G_2 \oplus G_3$ of every length $l'' \geq m - k + 1$, we have a longer path $P_1 = (s, P''', t)$ of every length l_1, $m - k + 3 \leq l_1 \leq 3 \cdot 2^{m-2} - f_1^1 - f^2_v - f^3_v + 1$.

Subcase 2.2. s and t are contained in G_0 and G_1, respectively.
Let $s = v^0_0$ and $t = v^0_j$. Let v^0_0 be a vertex in G_0 which is either s or at least adjacent to it such that $i \neq j$ and path (s, v^0_i, v^1_j) is fault-free. Letting P' be a $v^1_0 - v^1_j$ path in G_1 of every length l', $m - k - 1 \leq l' \leq 2^{m-2} - 1$, we have an $s \rightarrow t$ path $P_0 = (s, P', t)$ of every length l_0, $m - k + 1 \leq l_0 \leq 2^{m-2} - 1$. Letting P'' be a $v^1_0 - v^1_j$ path in $G_1 \oplus G_2 \oplus G_3$ of every length $l'' \geq m - k + 1$, we have an $s \rightarrow t$ path $P_1 = (s, P''', t)$ of every length l_1, $m - k + 3 \leq l_1 \leq 3 \cdot 2^{m-2} - f_1^1 - f^2_v - f^3_v + 1$.

Subcase 2.3. s and t are contained in G_0 and G_2, respectively.
Let $s = v^0_0$ and $t = v^0_j$, and assume w.l.o.g. that $j \neq 1$. When $F_{0,1} \cup F_1 \cup F_{1,2} = \emptyset$, letting P' be a $v^1_0 - v^1_j$ path in G_1 of every length $l' \geq m - k - 1$, we have an $s \rightarrow t$ path $P_0 = (s, v^0_0, P', v^1_j)$ of every length l_0, $m - k + 1 \leq l_0 \leq 2^{m-2} + 1$. To construct a longer path, let v^0_0 be a vertex in G_0 adjacent to s such that (s, v^0_0, v^1_j) is a fault-free path. Letting P'' be a $v^1_0 - v^1_j$ path in $G_1 \oplus G_2 \oplus G_3$ of every length $m - k + 1$ or more, we have an $s \rightarrow t$ path $P_1 = (s, v^0_0, P'', v^1_j)$ of every length l_1, $m - k + 3 \leq l_1 \leq 3 \cdot 2^{m-2} - f_1^1 - f^2_v - f^3_v + 1$.

Subcase 2.4. Both s and t are contained in $G_1 \oplus G_2 \oplus G_3$. By Claim 5, we have an $s \rightarrow t$ path P_0 in $G_1 \oplus G_2 \oplus G_3$ of every length l_0, $m - k + 1 \leq l_0 \leq 3 \cdot 2^{m-2} - f_1^1 - f^2_v - f^3_v - 1$.

Subcase 2.5. Both s and t are contained in $G_0 \oplus G_1$. For a vertex x in $G_0 \oplus G_1$, we denote by \bar{x} the vertex in $G_2 \oplus G_3$ adjacent to x. If $f_0 + f_{0,1} + f_1 \leq m - 4$, then there exists an $s \rightarrow t$ hamiltonian path P' in $G_0 \oplus G_1$ by Lemma 3(b). Let (x, y) be an edge on P' such that $\bar{x}, (x, \bar{x}, \bar{y})$, and (y, \bar{y}) are fault-free, so that $P' = (s, Q_1, x, y, Q_2, t)$. Letting P'' be an $\bar{x} \rightarrow \bar{y}$ path in $G_2 \oplus G_3$ of every length $m - k + 1$ or more, we have an $s \rightarrow t$ path $P_0 = (s, Q_1, x, P'', y, Q_2, t)$ of every length l_0, $2^{m-1} - f_0^1 - f_0^1 + m - k + 1 \leq l_0 \leq 2^{m-1} - f_0^1 - f_0^1$. If $f_0 + f_{0,1} + f_1 = m - 3$, there exists a hamiltonian cycle (s, Q_1, x, t, Q_2, y) in $G_0 \oplus G_1$. Then, letting P'' be an $\bar{x} \rightarrow \bar{y}$ path in $G_2 \oplus G_3$ of every length $m - k + 1$ or more, we have an $s \rightarrow t$ path $P_2 = (s, Q_1, x, P'', y, Q_2^R, t)$ of every length $2^{m-1} - f_0^1 - f_0^1 + m - k + 1$ or more. Here, Q_2^R denotes the reverse path of Q_2, that is, $Q_2^R = (z_l, z_{l-1}, \ldots, z_1)$ for $Q_2 = (z_1, z_2, \ldots, z_j)$. Obviously, $2^{m-1} - f_0^1 - f_0^1 + m - k + 1 \leq 3 \cdot 2^{m-2} - 1$ for any $m \geq 5$.

Subcase 2.6. s is contained in $G_0 \oplus G_1$ and t is contained in $G_2 \oplus G_3$. If $f_0 + f_{0,1} + f_1 \leq m - 4$, we let s be a vertex in $G_0 \oplus G_1$ such that $x \neq s, \bar{x} \neq t$, and all of $x, \bar{x}, (x, \bar{x})$ are fault-free. Then, letting P' be an $s \rightarrow x$ hamiltonian path in $G_0 \oplus G_1$ and P'' be an $\bar{x} \rightarrow t$ path in $G_2 \oplus G_3$ of every length $m - k + 1$ or more, we have an $s \rightarrow t$ path $P_2 = (P', P'')$ of every length l_2, $2^{m-1} - f_0^1 - f_0^1 + m - k + 1 \leq l_2 \leq 2^{m-1} - f_0^1 - f_0^1$. If $f_0 + f_{0,1} + f_1 = m - 3$, there exists a hamiltonian cycle (s, x, Q, y) in $G_0 \oplus G_1$. Assume w.l.o.g. that $\bar{y} \neq t$. Letting P'' be a $\bar{y} \rightarrow t$ path of every length $m - k + 1$ or more, we have an $s \rightarrow t$ path $P_2 = (s, x, Q, y, P'')$ of every length $2^{m-1} - f_0^1 - f_0^1 + m - k + 1$ or more.

Subcase 2.7. Both s and t are contained in G_2.
There exists a hamiltonian path in $G_0 \setminus F_0$ by Lemma 3(a) and let the hamiltonian path be (v^0_0, Q, v^0_1). Assume
Let \(G \) and \(G' \) be graphs. Let \(\gamma \) be a function that assigns a label to each edge of \(G \). The function \(\gamma \) is called \(k \)-connected if for any two vertices \(u, v \) in \(G \), there exists a \(k \)-connected path from \(u \) to \(v \). A graph \(G \) is \(k \)-connected if for any two vertices \(u, v \) in \(G \), there exists a \(k \)-connected path from \(u \) to \(v \).

Lemma 7. \(G(2^3, 4) \backslash F \) with \(|F| = 2 \) and \(f_0 = f_j = 1 \) for some \(j = 1, 2, 3 \) is 6-panconnected.

Proof. We can see that \(G(8, 4) \times K_2 \) is 1-fault 5-panconnected since \(G(8, 4) \times K_2 \) is a four-dimensional restricted HL-graph and every four-dimensional restricted HL-graph was shown to be 1-fault 5-panconnected in [20]. Due to vertex symmetry, we assume \(f_1 = 0 \) (either \(f_2 = 1 \) or \(f_3 = 1 \)). When \(s \) and \(t \) are contained in \(G_0 \oplus G_1 \), there exists an \(s-t \) path \(P_0 \) of every length \(l_0 \), \(5 \leq l_0 \leq 2^4 - f_0^0 - 1 \). For some edge \((x, y) \) on \(P_0 \) such that the vertices \(x_0 \) and \(y_0 \) in \(G_0 \oplus G_1 \) adjacent to \(x \) and \(y \), respectively, are fault-free, letting \(P' \) be an \(x \)-\(y \)-\(x_0 \) path in \(G_0 \oplus G_1 \) of every length \(l' \geq 5 \), we can obtain an \(s-t \) path \(P_1 \) from \(P_0 \) and \(P' \). The length \(l_1 \) of \(P_1 \) is any integer in the range \(11 \leq l_1 \leq 2^5 - f_0 - 1 \).

When \(s \) is contained in \(G_0 \oplus G_1 \) and \(t \) is contained in \(G_2 \oplus G_3 \), we first construct an \(s-t \) path of every length \(7 \) or more. There exists an edge \((x, \bar{x}) \) joining a vertex \(x \) in \(G_0 \oplus G_1 \) and a vertex \(\bar{x} \) in \(G_2 \oplus G_3 \) such that (i) \(x \) is adjacent to \(t \), (ii) \(x \neq \bar{x} \), and (iii) \(\bar{x} \) is fault-free. Letting \(P' \) be an \(s \)-\(x \)-\(t \) path in \(G_0 \oplus G_1 \) of every length \(l' \geq 5 \), we have an \(s-t \) path \(P_0 = (P', \bar{x}, t) \) of every length \(l_0 \), \(7 \leq l_0 \leq 2^4 - f_0^0 + 1 \). Replacing the edge \((x, \bar{x}) \) on \(P_0 \) with an \(x \)-\(\bar{x} \)-\(x_0 \) path \(P'' \) in \(G_2 \oplus G_3 \) of every length \(l'' \geq 5 \) results in an \(s-t \) path \(P_1 = (P', P'') \) of every length \(l_1 \), \(11 \leq l_1 \leq 2^5 - f_0 - 1 \). It remains to construct an \(s-t \) path of length \(7 \). If the vertex \(x \) in \(G_0 \oplus G_1 \) adjacent to \(t \) is fault-free and different from \(s \), then the above construction with \(\bar{x} = x \) and \(t = \bar{x} \) will be sufficient. Symmetrically, if \(\bar{x} \neq t \) and \(\bar{x} \) is fault-free, we are done. Thus, we assume that \(s \) is adjacent to \(t \), or both \(s \) and \(\bar{x} \) are the faulty elements.

For the subcase where \(s \) is adjacent to \(t \), let \(s = v_1^0 \) and \(t = v_3^0 \). If \(f_3 = 0 \), we are done since \(G_3 \oplus G_0 \) is 1-fault 5-panconnected. Otherwise \((f_1 = f_2 = 0)\), letting \(P' \) be a \(v_1^0 \)-\(v_3^0 \) path in \(G_1 \) of length \(3 \) by Lemma 6(a), we have an \(s-t \) path \((s, P', v_3^0, t)\) of length \(6 \). Finally, let us consider the subcase where both \(s \) and \(\bar{x} \) are faulty vertices. Since \(\bar{x} \) is faulty and \(f_1 = 0 \), \(t \) is contained in \(G_3 \). Let \(t = v_3^0 \). If \(s \) is contained in \(G_0 \), regarding \(\bar{x} \) as a virtual fault-free vertex, we find an \(s-\bar{x} \) path in \(G_0 \) of length \(5 \). Letting the path found be \((s, Q, v_3^0, \bar{x})\), we have an \(s-t \) path \((s, Q, v_3^0, v_{j-1}^3, t)\) of length \(6 \). If \(s \) is contained in \(G_1 \), let \(v_j^3 \) be a vertex adjacent to \(t \) such that \(v_j^3 \neq s \). Observe that path \((v_j^0, v_j^2, v_j^3, t)\) is fault-free. Letting \(P' \) be an \(s-v_j^3 \) path in \(G_1 \) of length \(3 \), by Lemma 6(a), there exists an \(s-t \) path \((P', v_j^3, v_j^3, t)\) of length \(6 \). □

Lemma 8. \(G(2^3, 4) \backslash F \) with \(|F| = f_0 = 1 \) for some \(i = 0, 1, 2, 3 \) is 5-panconnected.

Proof. By Lemma 7, it suffices to construct an \(s-t \) path of length \(5 \). If \(s \) and \(t \) are contained in \(G_i \oplus G_{i+1 \mod 4} \) for some \(i = 0, 1, 2, 3 \), we are done since \(G(8, 4) \times K_2 \) is 1-fault 5-panconnected. It is assumed w.l.o.g. that \(s = v_1^0 \) and \(t = v_j^3 \) for some \(j \neq 1 \). We can see that (i) \(f_2 = 0 \) and \((s, v_1^3, v_j^3)\) is a fault-free path, or (ii) \(f_0 = 0 \) and \((t, v_1^0, v_j^0)\) is a fault-free path. If condition (i) is satisfied, we have an \(s-t \) path \((s, v_1^3, P'')\), where \(P'' \) is a \(v_1^3 \)-\(t \) path in \(G_2 \) of length \(3 \); otherwise, an \(s-t \) path can be constructed symmetrically. □

Remark 1. Let \(l_m^* \) be the minimum \(l_m^* \) such that \(G(2^m, 4) \) is \(m-3 \)-fault \(l_m^* \)-panconnected. Theorem 1 suggests an upper bound \(m + 1 \) on \(l_m^* \). Of course, \(l_m^* \) cannot be smaller than \(D_m \), and thus we have \(\lceil \frac{3m-1}{4} \rceil \leq l_m^* \leq m + 1 \).

4. Edge-pancyclicity of faulty \(G(2^m, 4) \)

In this section, we will show that \(G(2^m, 4), m \geq 3, \) is \(m-3 \)-fault nearly edge-pancyclic. Since an \(f \)-fault \(l \)-panconnected graph is always \(f \)-fault \(l+1 \)-edge-pancyclic, by Theorem 1, we have the following lemma.

Lemma 9. \(G(2^m, 4), m \geq 3, \) is \(m-3 \)-fault \(m+2 \)-edge-pancyclic.
We are to show that $G(m, 4)$, $m \geq 3$, with at most $m - 3$ faulty elements, has a cycle of every length l, $l = 4, 6, 7, 8, \ldots, m + 1$, passing through an arbitrary fault-free edge.

Lemma 10. (a) $G(2^3, 4)$ is 0-fault almost edge-pancyclic.
(b) $G(2^4, 4)$ is 1-fault nearly edge-pancyclic.

Proof. The statement (a) is obvious from Lemma 6(a). To prove (b), it suffices to construct a cycle of length 4 that passes through an arbitrary edge e by Lemma 9. There are two cases up to symmetry. If $e = (v_0^0, v_0^1)$, then at least one of the two cycles $(v_0^0, v_1^0, v_2^0, v_3^0)$ and $(v_0^0, v_1^1, v_2^1, v_3^0)$ is fault-free. If $e = (v_0^0, v_0^1)$, then cycles $(v_0^0, v_0^1, v_1^1, v_1^0)$ or $(v_0^0, v_1^0, v_2^0, v_2^1)$ are fault-free. Thus, we have the lemma. □

Theorem 2. $G(2^m, 4)$, $m \geq 3$, is $m - 3$-fault nearly edge-pancyclic.

Proof. For $m = 3, 4$, the theorem holds by Lemma 10. Assume $m \geq 5$. Let e be an arbitrary fault-free edge whose two end-vertices are also fault-free. By Lemma 9, it suffices to construct a cycle of every even length $l = 4, 6, 7, 8, \ldots, m + 1$, that passes through e. There are two cases up to symmetry.

Case 1. $e = (v_i^0, v_i^1)$.
If $f_0 \leq (m - 2) - 3$, we have a cycle of every even length l, $l = 4, 6, 7, 8, \ldots, 2m - f_0^0$, and we are done since $m + 1 \leq 2m - 2 - (m - 5) \leq 2m - 2 - f_0^0$ for any $m \geq 5$. Let $f_0 \geq m - 4$. Then, there exists at most one faulty element outside G_0, and thus $F_{0,1} \cup F_1 = \emptyset$ or $F_{0,3} \cup F_3 = \emptyset$. Assume w.l.o.g. that $F_{0,1} \cup F_1 = \emptyset$. There exists a $v_i^1 - v_{i+1}^0$ path P' in G_1 of length l', $l' = 1, 3, 4, 5, \ldots, 2m - 1$, by Lemma 4. Thus, we have a cycle (v_i^0, P', v_i^0) of every length l, $l = 4, 6, 7, 8, \ldots, 2m - 2 + 2$.

Case 2. $e = (v_i^0, v_i^1)$.
We first construct a cycle of every even length l, $4 \leq l \leq m + 1$. Let $F' = \{ (v_a^0, v_b^1) \in F \text{ or } (v_a^0, v_b^0) \in F \} \cup \{ (v_a^0, v_b^0) \in E \}$. Obviously, $|F' \cup F_0| \leq m - 3$. By Lemma 3(a), there exists a hamiltonian path in $G_0 \setminus F_0 \cup F'$ of length at least $2m - 2 - (m - 3) - 1$. The hamiltonian path passes through v_i^0, and thus we can construct a fault-free v_i^0-path of every length k, $1 \leq k \leq \left\lfloor \frac{2m - 2 - (m - 3)}{2} \right\rfloor$. Let the v_i^0-path in $G_0 \setminus F_0 \cup F'$ be $(v_i^0, v_i^{0,1}, v_i^{1,0}, \ldots, v_i^{k,0})$. Then, by the construction, v_i^0-path $(v_i^1, v_i^0, v_i^1, \ldots, v_i^0)$ is also fault-free. Furthermore, the edge (v_i^0, v_i^1) is fault-free. Thus, we have a cycle $(v_i^0, v_i^1, \ldots, v_i^0, v_i^1, \ldots, v_i^1, v_i^0)$ of length $2k + 2$ for every k, $1 \leq k \leq \left\lfloor \frac{2m - 2 - (m - 3)}{2} \right\rfloor$. The construction of every even cycle passing through e is completed since $2\left[\frac{2m - 2 - (m - 3)}{2} \right] + 2 \geq 2m - 2 - (m - 3) + 1 \geq m + 1$ for any $m \geq 5$.

Now, it remains to construct a cycle of every odd length l, $7 \leq l \leq m + 1$. We first claim that for some vertex v_i^0 in G_0 adjacent to v_i^0, a cycle $C_2 = (v_i^0, v_i^0, v_i^1, v_i^1, v_i^0, v_i^0)$ associated with v_i^0 is fault-free. There are in total $m - 2$ cycles associated with vertices in G_0 adjacent to v_i^0, and any two cycles among them are disjoint excluding v_i^0, v_i^1, and v_i^1. Note that it is impossible for both v_i^1 and $v_i^{0,1}$ to be adjacent to v_i^0 since $G(2^m, 4)$ has no cycle of length 3. Since there are at most $m - 3$ faulty elements, at least one of the cycles is fault-free. Thus, the claim is proved. Observe that C_2 has a single edge in G_0, in G_1, and in G_3, respectively. It is straightforward to see that at least one of G_0, G_1, and G_3 has at most $m - 3$ faulty elements. Assume w.l.o.g. that $f_0 \leq m - 5$. Remember that the cycle C_2 is of length 7. Since G_0 is $m - 5$-faulty nearly edge-pancyclic, $G_0 \setminus F_0$ has a cycle C passing through (v_i^0, v_i^1) of even every even length l', $4 \leq l' \leq 2m - 2 - f_0^0$. Thus, there exists a $v_i^0 - v_{i+1}^0$ path $P = C \setminus (v_i^0, v_i^0)$ in G_0 of every odd length l'', $3 \leq l'' \leq 2m - 2 - f_0^0 - 1$. If we replace the edge (v_i^0, v_i^0) of C_2 with $v_i^0 - v_{i+1}^0$ path P, we have a cycle of every odd length l, $9 \leq l \leq 2m - 2 - f_0^0 + 5$. Obviously, $m + 1 \leq 2m - 2 - (m - 5) + 5 \leq 2m - 2 - f_0^0 + 5$ for any $m \geq 5$. This completes the proof. □

Remark 2. $G(2^4, 4)$ has a unique cycle $(v_i^0, v_i^0, v_i^0, v_i^0)$ of length 5 passing through edge (v_i^0, v_i^0). Thus, we cannot say that every $G(2^m, 4)$, $m \geq 3$, is $m - 3$-fault almost edge-pancyclic.

5. Concluding remarks

In this paper, we have proven that every recursive circulant $G(2^m, 4)$ with $m \geq 3$ is $m - 3$-fault $m + 1$-panconnected. Here, the upper bound $m - 3$ on the number of faulty elements is the maximum possible in a sense that, for any f
with \(f \geq m - 2 \), there exists a fault set \(F \) with \(|F| = f \) such that \(G(2^m, 4) \setminus F \) is not \(l_m \)-panconnected for any \(l_m, l_m \leq |V(G \setminus F)| - 1 \). We have also shown that the result on fault-panconnectivity of \(G(2^m, 4) \) leads to the fact that \(G(2^m, 4), m \geq 3 \), is \(m - 3 \)-fault nearly edge-pancyclic. There remain a number of interesting issues for future research. Finding the minimum \(l^*_m \) such that \(G(2^m, 4) \) is \(m - 3 \)-fault \(l^*_m \)-panconnected will be one of them.

References