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SUMMARY
Advanced basal cell carcinomas (BCCs) frequently acquire resistance to Smoothened (SMO) inhibitors
through unknown mechanisms. Here we identify SMO mutations in 50% (22 of 44) of resistant BCCs and
show that these mutations maintain Hedgehog signaling in the presence of SMO inhibitors. Alterations
include four ligand binding pocket mutations defining sites of inhibitor binding and four variants conferring
constitutive activity and inhibitor resistance, illuminating pivotal residues that ensure receptor autoinhibition.
In the presence of a SMO inhibitor, tumor cells containing either class of SMO mutants effectively outcom-
pete cells containing the wild-type SMO. Finally, we show that both classes of SMO variants respond
to aPKC-i/l or GLI2 inhibitors that operate downstream of SMO, setting the stage for the clinical use of
GLI antagonists.
INTRODUCTION

Uncontrolled activation of the Hedgehog (HH) pathway drives

tumor progression in a number of cancers, including basal cell,

medulloblastoma, pancreatic, colon, lung, breast, prostate,

and blood cancers (Amakye et al., 2013). Normally, HH ligand ac-

tivates the pathway by binding to and inhibiting the receptor

Patched1 (PTCH1), derepressing G protein-coupled receptor

(GPCR) Smoothened (SMO) and activating the GLI transcription

factors. In oncogenic contexts, loss of PTCH1 and mutagenic

activation of SMO are the most common alterations that induce

the inappropriate activation of the HH pathway. Basal cell carci-

nomas (BCCs) represent the most common cancer in the United

States, with approximately two million new cases per year

(Rogers et al., 2010). Advanced BCCs, a small but significant

proportion of total BCCs, lead to functional impairment, invasive-

ness, metastasis, and increased mortality. HH pathway antago-

nists are under development to combat HH-driven cancers, with

most therapies directed at inhibiting SMO. Like other heptaheli-

cal transmembrane proteins (7-TM), SMO is believed to be auto-

inhibited in its baseline state through both interactions with a

PTCH1-dependent mechanism and through an unidentified

ligand binding in its ligand binding pocket (LBP). All current
Significance

Advanced BCCs acquire resistance to SMO inhibitors through
tances in BCCs and structurally elucidate SMO-mediated Hedg
functions similarly as other class AGPCRsdespite less than 10%
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pathway inhibitors targeting SMO bind the LBP and stabilize

the autoinhibited state, although the details of these interactions

remain unexplored.

As part of the Stanford BCCConsortium, we have enrolled and

treated patients for advanced BCCs that led to the approval of

the SMO inhibitor vismodegib by the Food and Drug Administra-

tion for treatment of advanced/inoperable and metastatic BCCs

(Sekulic et al., 2012; Tang et al., 2012). All syndromic BCCs in pa-

tients with basal cell nevus syndrome (Gorlin syndrome, caused

by inherited PTCH1 loss) respond to vismodegib and have a low

rate of acquired resistance (Tang et al., 2012). In contrast,

advanced and metastatic BCCs have an overall response rate

of 48% (Axelson et al., 2013; Sekulic et al., 2012), with an addi-

tional 20% of patients developing resistance during the first year

(Chang and Oro, 2012). Vismodegib and other SMO inhibitors

have also shown promising results in early clinical trials for me-

dulloblastoma (Gajjar et al., 2013). Despite these successes,

many tumors acquire clinical resistance during therapy (Atwood

et al., 2012), reinforcing the critical need to understand the basis

of inherent resistance at the time of diagnosis and how these

tumors evolve resistance during drug treatment. In contrast

to visceral tumors, patients with advanced BCCs have a low

mortality and often develop multiple resistant tumors that are
two distinct mechanisms that explain the majority of resis-
ehog signaling. These genetic alterations suggest that SMO
sequence identity. Furthermore, this work offers strategies

lps with the development of second-line therapies.
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accessible to sequential biopsies (Atwood et al., 2012), providing

a unique opportunity to assess spatially and temporally distinct

clones during the evolutionary process using genomic tools.

Studies in mice and humans have provided initial insights into

the mechanisms of resistance to SMO inhibitor therapy. Specific

to the HH pathway, germline loss of SUFU, which encodes a

GLI inhibitor downstream of PTCH1, has been shown to bestow

primary resistance to vismodegib in pediatric patients with

medulloblastoma (Kool et al., 2014). Additional mechanisms of

acquired resistance found in medulloblastoma include amplifi-

cation of GLI2 (Dijkgraaf et al., 2011), MYCN (Kool et al., 2014),

and CCND1 (Dijkgraaf et al., 2011) and a missense mutation

in SMO (D473H) that confers resistance through disruption of

vismodegib binding (Yauch et al., 2009). In BCCs, activation

of the GLI kinase atypical protein kinase C i/l (aPKC-i/l) was

found to be elevated in vismodegib-resistant tumors, and

aPKC-i/l inhibition in resistant cell lines suppressed growth (At-

wood et al., 2013). However, HH-driven medulloblastomas have

been shown to evade SMO inhibition by switching their onco-

genic signaling pathway and, therefore, losing their addiction

to theHH pathway (Buonamici et al., 2010; Kool et al., 2014;Met-

calfe et al., 2013). How BCCs evade SMO inhibition remains

unknown.

RESULTS

Hedgehog Signaling Is Maintained
in Vismodegib-Resistant BCC
As each BCC, regardless of patient origin, arises from a distinct

clone, we interrogated the nature of tumor resistance by

sequencing 44 resistant BCCs from 15 patients. ‘‘Resistant

BCCs’’ were defined as refractory to vismodegib (91%, 40 of

44 tumors) or recurrent (9%, 4 of 44) according to the National

Cancer Institute criteria. ‘‘Sensitive BCCs’’ were defined as

BCCs that exhibited a partial or complete response to vismode-

gib treatment. The histology of resistant tumors was similar to

sensitive tumors except for the absence of the superficial sub-

type (Figure 1A). All biopsies were obtained while patients were

undergoing at least 3 months of continuous vismodegib therapy.

Previous work on HH-driven medulloblastomas indicates that

medulloblastomas can switch oncogenic pathways to continue

tumor growth in the presence of SMO inhibition (Kool et al.,

2014), but it is not known whether BCCs behave similarly. Using

paired-end, high-throughput RNA sequencing and pathway

analysis with DAVID (Huang da et al., 2009), we identified

the HH signaling pathway as the most significantly enriched

signaling pathway in resistant BCCs (n = 9) compared with sen-

sitive BCCs (n = 4) or normal skin (n = 8, p = 0.0007) (Figure 1B).

Vismodegib-sensitive BCCs had slightly elevated GLI1 (a HH

target gene)mRNA levels comparedwith normal skin (Figure 1C).

In contrast, resistant BCCs had high GLI1 mRNA levels despite

concurrent treatment with vismodegib (p = 0.0001). Immunoflu-

orescence for GLI1 revealed elevated levels of GLI1 protein in

resistant BCCs compared with sensitive tumors, confirming

persistent HH signaling in resistant BCCs at the protein level (Fig-

ures 1D and 1E). These data suggest that resistant BCCs are still

addicted to the HH pathway and that genetic alterations that

maintain HH pathway output in the presence of vismodegib are

the primary mechanisms of resistance.
Exome Sequencing Identifies Recurrent SMOMutations
in Resistant BCCs
As resistant BCCs rely on the HH pathway for continued growth,

we wanted to identify the HH-specific genetic alterations under-

lying resistance. We performed whole genome and exome

sequencing on 14 resistant BCC tumors along with correspond-

ing matching skin samples with a mean target coverage of 114X

(Figure 2A). We identified a mean of 2,364 somatic coding muta-

tions per BCC. Although the non-silent single-nucleotide variant

(SNV) rate of 42/Mb (range, 5–107/Mb) is somewhat lower than

reported previously in BCCs (Jayaraman et al., 2014), it supports

the notion that skin cancers carry higher mutation rates than

other non-cutaneous tumors. PTCH1 alterations, the most com-

mon driver of BCC growth, were detected in 57% (8 of 14) of

samples. Given that TP53 mutations have been reported in

BCCs, we investigated whether there was a correlation between

TP53 and PTCH1mutations. We found TP53mutations in only 4

of 14 tumors, and they had no correlation with the associated

PTCH1 mutation (Figure 2B).

We next focused our analysis on genes downstream of

PTCH1 that are implicated in HH signaling to assess where

along the pathway resistance originates. We identified genetic

alterations in 15 of 29 HH pathway genes, including multiple

regulatory units of the cyclic AMP/protein kinase A signaling

pathway and amplification of GLI2, which has been shown pre-

viously to confer resistance against SMO antagonists in a me-

dulloblastoma allograft model (Dijkgraaf et al., 2011; Figure 2C).

In fact, genetic alterations of the HH pathway downstream of

PTCH1 were present in 85% of the resistant BCCs. Of these

genes, SMO was the most recurrently mutated gene (42%, 6

of 14 samples). Because one SMO mutation (D473H) has

been identified previously as a driver of resistance in a medullo-

blastoma patient (Yauch et al., 2009), we concentrated our ef-

forts on SMO. Interestingly, we detected SMO D473H and

D473G in two resistant BCCs originating from one sporadic tu-

mor and one Gorlin syndrome patient and W535L in another

three resistant BCCs (Figure 2B). Also known as SMO-M2,

W535L is a known oncogenic mutation present at low rates in

sporadic BCCs and can drive tumor progression in the absence

of PTCH1 loss (Xie et al., 1998). The genetic alterations in SMO

were significantly more frequent than reported previously in

BCCs (Reifenberger et al., 2005), suggesting that SMO could

be a key driver of BCC resistance.

SMO Mutations Are Enriched in Resistant BCCs
Compared with Untreated BCCs
To interrogate how SMO drives tumor resistance, we sequenced

an additional 30 resistant BCCs along with 36 untreated, spo-

radic BCCs (Figures 2D and 2E). The coding regions of SMO

and PTCH1 were amplified using the Fluidigm Access Array mi-

crofluidic device followed by next-generation sequencing with a

mean coverage of 2365X (±755). This validation set did not have

paired germline DNA; therefore, we cannot exclude the possibil-

ity that some of the genetic alterations are germline. However,

non-pathogenic mutations present in dbSNP with a minimum

allele frequency of >3% were excluded during our analysis.

Overall, we detected heterozygous SNV mutations in SMO in

77% (23 of 30) of resistant and 33% (12 of 36) of untreated

BCCs (p = 0.0001), suggesting that genetic alterations in SMO
Cancer Cell 27, 342–353, March 9, 2015 ª2015 Elsevier Inc. 343



Figure 1. Hedgehog Signaling Is Upregulated in Resistant BCCs

(A) Clinical photographs (scale bar, 1 in) and histology (scale bar, 100 mm) depicting the time course of a sensitive and a resistant BCC in the same patient during

vismodegib therapy.

(B) Pathway-driven gene set enrichment analysis (DAVID) in resistant BCCs compared with sensitive BCCs and normal skin.

(C) A boxplot representation comparing the log2 RPKM forGLI1 in resistant BCCs, sensitive BCCs, and normal skin (p = 0.0001). The box represents the first and

third quartiles, with whiskers representing range. Center line, median; diamond, mean; circle, outliers.

(D) Quantification of GLI1 immunofluorescence pixel intensity in K14-positive regions (n = 10). Error bars indicate SEM.

(E) Representative immunofluorescence staining against GLI1 and K14 as well as DAPI counterstaining. Adjacent sections were stained with H&E. Scale bar,

100 mm.
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may be the predominant mechanism by which tumors evade

SMO inhibitor therapy.

Identification of Ligand Binding Pocket Mutations that
Confer Vismodegib Resistance
The recently reported crystal structure of SMO bound to

LY2940680, a SMO inhibitor, revealed that vismodegib puta-

tively binds at the extracellular end of the 7-TM bundle, forming

extensive contacts with the loops in the LBP (Wang et al., 2013).

SMO D473 interacts with a water molecule in the LBP that may

have an important role in the conformation of the pocket without

directly contacting the inhibitor. We identified mutations at D473

in 17% of our resistant BCCs (5 of 30). In addition, we detected a

significant number of genetic alterations affecting amino acids

structurally positioned in the LBP of SMO. LBP mutations were

detected in 40% (12 of 30) of resistant BCCs and 6% (2 of 36)

of untreated BCCs (p = 0.0002) (Figures 2D and 2E).

Because D473 mutations are associated with resistance, we

first wanted to test whether LBP mutations would confer resis-

tance in BCC by becoming less sensitive to SMO inhibitors

such as vismodegib. We expressed human wild-type SMO

(SMOWT) or SMO-LBP mutants in Smo�/� mouse embryonic fi-

broblasts (MEFs) to assess the ability of these mutants to confer

drug resistance to vismodegib. Using mRNA levels of the HH

target gene Gli1 as a reporter for HH activity, the SMO-LBP mu-

tants did not significantly alter basal HH activity (Figure 3A).

However, in contrast to SMO WT, the SMO-LBP mutants

D473G, H231R, W281C, and Q477E retained high levels of HH

activity in the presence of 100 nM vismodegib and amino-termi-

nal Sonic Hedgehog (SHH-N) ligand without altering protein pro-

duction. Surprisingly, although structural analysis indicates that

the V386 residue contacts LY2940680 and would be predicted

to confer resistance (Wang et al., 2013; Figure 3B), the V386A

variant showed a response similar to SMO WT. This result sug-

gests that vismodegib may bind slightly different residues than

LY2940680, with distinct contact points within the SMO-LBP.

We then quantified the dose-response curve of eachmutant to

vismodegib. SMO WT and V386A had IC50 concentrations at

8.23 and 7.42 nM, respectively (Figure 3C). The rest of the

SMO-LBP mutants segregated into two classes: moderate or

high drug resistance. The IC50 of H231R (37.8 nM) was 4.5-fold

higher compared with SMO WT, whereas D473G, W281C, and

Q477E had IC50 concentrations of more than 320 nM (roughly

40-foldmore than the IC50), which was the endpoint of our assay.

Interestingly, the functional LBP mutants were only observed in

resistant BCCs, indicating that tumor cells expressing this class

of mutants are selected during therapy (Figure 2E). These exper-

iments demonstrate SMO-LBP mutants present in resistant

BCCs that functionally confer resistance to vismodegib while re-

taining normal regulatory control by PTCH1 and HH ligand.

Because the concentration of vismodegib in our initial

screening assay was roughly 12-fold above the IC50 and

because the data from our initial studies demonstrated that

even small changes in IC50 appeared to provide a growth advan-

tage, we assessed the vismodegib sensitivity of recurrent SMO

mutants and SMO mutations in the Catalogue of Somatic Muta-

tions in Cancer (COSMIC) database at low drug concentrations

near the IC50 of 10 and 20 nM. Using this more sensitive assay,

we identified Q635E as a mutant with resistance at low but not
high vismodegib concentrations with an IC50 of 26.7 nM (Figures

3C and 3D). These data suggest that some SMO mutations may

confer a partial reduction in vismodegib sensitivity that, in the

appropriate context, could contribute to clinical resistance in

BCC.

SMO Mutations in Structural Pivot Regions of the
Transmembrane Helices Confer Constitutive Activity
and Drug Resistance
We detected a number of SMO mutations outside of the LBP,

and many were recurrent or detected in other solid tumors,

including medulloblastoma, colon carcinoma, and glioma

(COSMIC, Sanger Institute) (Forbes et al., 2011). COSMIC and

recurrent mutations were found in 47% (14 of 30) of resistant

compared to 28% (10 of 36) of untreated BCCs (p = 0.05) (Fig-

ures 2D and 2E). In support of this, we found constitutively active

(CA)W535mutants in only 1 of 36 of our sporadic but in 5 of 30 of

our resistant tumors. Interestingly, residue W535 maps to trans-

membrane helix 7 of SMO and structurally aligns near pivot res-

idues involved in activating class A GPCRs through structural

conformations (Figures 4A and 4B; Wang et al., 2013). 7-TM

GPCRs maintain inactivity through multiple autoinhibitory inter-

actions. Although previous studies suggest SMO functions like

other GPCRs (Ayers and Thérond, 2010; Riobo et al., 2006),

SMO possesses less than 10% sequence identity at the amino

acid level. Moreover, in key domains thought to be pivot regions

for activation, SMO lacks key prolines thought to allow trans-

membrane movement and G protein activation (Wang et al.,

2013), bringing into question whether SMO functions similarly

as other GPCRs.

Intriguingly, functional studies of the B2 adrenergic receptor

indicate the existence of key activating residues in pivot regions

of transmembrane helices 3, 5, and 6 (Katritch et al., 2013). In the

SMO crystal structure, these regions correspond to residues

320–340, 410–415, and 455–465, respectively. Several SMO

mutations (V321M, L412F, and F460L) mapped to the pivot re-

gions and led us to hypothesize that these residues may play

critical roles in enabling conformational changes between active

and inactive states (Figures 4A and 4B). Confirming our hypoth-

esis, when we expressed these SMO mutants into Smo�/�

MEFs, we observed constitutive HH activation in the absence

of HH ligand without an increase in protein production (Fig-

ure 4C). These mutants were also partially or completely unre-

sponsive to vismodegib, suggesting that these residues play

an important role in the transmission of the inhibitory signal (Fig-

ure 4D). These mutants also separated into two classes of drug

sensitivity, with F460L moderately responding to vismodegib at

an IC50 of 32 nM, whereas W535L, V321M, and L412F had

IC50 concentrations of more than 320 nM, which was the

endpoint of our assay (Figure 4E). In addition, these mutants dis-

played a range of PTCH1 inhibition states where high amounts of

constitutive activity in GLI-luciferase assays correspond to a

strong resistance to PTCH1 inhibition, suggesting that SMO-

CA mutant activity is at least partly based on their ability to pre-

vent a PTCH1 catalytic signal (Figure 4F). Moreover, examination

of the distribution of these CA and vismodegib-resistant mutants

revealed that they were present in both untreated and SMO in-

hibitor-resistant tumors and not paired with PTCH1 CNV loss

or frameshift mutations, suggesting that this class of mutants
Cancer Cell 27, 342–353, March 9, 2015 ª2015 Elsevier Inc. 345
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Figure 2. Resistant BCCs Harbor Recurrent SMO Mutations

(A) Schematic of the tumor biopsy and adjacent normal skin collection followed by whole-exome or genome sequencing and analysis.

(B) List of SMO, PTCH1, and TP53 mutations identified for each resistant BCC sample subjected to exome sequencing.

(C) Spectrum of HH pathway genes with genetic alterations seen in exome sequencing of resistant tumor-normal pairs. The genes are listed on the left side, and

the tumor samples are across the bottom. The fraction of samples with HH pathway mutations is listed in the bar graph to the right.

(legend continued on next page)
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Figure 3. Variation in Responsiveness of SMO Ligand Binding Pocket Mutations

(A) SMO variants expressed in Smo�/�MEFs and treated with SHH-N conditionedmedium (CM) with or without 100 nM vismodegib. TheWestern blot shows the

expression of SMO WT and SMO variants. dR, delta reporter.

(B) Side view (left) and top-down view (right) of the position of the SMO variants within the SMO crystal structure showing their arrangement relative to an inhibitor

(Wang et al., 2013).

(C) Response of the indicated SMO mutants with different concentrations of vismodegib. IC50 values are shown in brackets.

(D) HH pathway activity in Smo�/� MEFs expressing the indicated SMO and treated with SHH-N CM with or without 10, 20, or 80 nM vismodegib.

All error bars indicate SEM.
drives initial BCC tumorigenesis and confers inherent resistance

at the time of treatment (Figure 2B). These results identify SMO-

CA mutants, in addition to W535L, that impart dual roles in

tumorigenesis and acquired resistance, pointing to a class of

mutations that would cause inherent resistance to SMO

inhibition.

SMO Mutations Confer Both Intrinsic and Acquired
Resistance to Vismodegib
To better understand tumor evolution, we identified 12 resistant

BCCs in which we had obtained paired pre-treatment biopsies

and interrogated these samples for the presence of SMO muta-

tions. Eight of the post-treatment samples had functionally

proven resistant SMO mutations (Figure 5A). Four of the resis-

tant BCCs harbored either D473G or Q477E LBP mutations

that were undetectable in the matched pre-treatment tumors.

In fact, we were unable to detect any functionally validated
(D) Bar graph showing recurrent, LBP, and COSMIC database SMO mutations in

(E) Schematic showingSMOmutations in resistant BCCs comparedwith untreated

represents a unique sample with patient number and other relevant information lis

acid located in the SMO-LBP; blue, amutation also reported as somatically mutat

LBP nor the COSMIC database.
LBP mutations in untreated BCCs (Figure 2E), suggesting that

tumor cells expressing this class of mutant are selected during

therapy. Interestingly, one patient developed two spatially

distinct resistant clones during treatment with vismodegib.

Both clones arose from a single sporadic BCC that harbored

the original PTCH1 H233fs driver mutation. One clone acquired

a D473H LBP mutation, whereas the second clone had no

detectable SMO mutation, illustrating the heterogeneity of tu-

mor evolution and acquired drug resistance (Figure 5B). In

contrast, three pretreatment BCCs harbored subclones of the

W535L allele that was then enriched in the post-treatment-

resistant BCCs (Figure 5A). Additionally, another resistant

BCC acquired a S533N clone that is a putative SMO-CA variant

and has been shown to cause medulloblastoma in mice (Dey

et al., 2012). Because SMO-CA mutants are present in both un-

treated and resistant tumors in the larger BCC cohort (Fig-

ure 2E), this suggests that SMO-CA mutants may confer
resistant BCCs compared with untreated samples.

BCCs.SMOmutations are listed on the left side of each row, and each column

ted at the bottom. The mutations are color-coded. Red, a mutation in an amino

ed in cancer in the COSMIC database; green, a recurrent mutation neither in the

Cancer Cell 27, 342–353, March 9, 2015 ª2015 Elsevier Inc. 347



A

C

E F

D

B

Figure 4. Two Distinct Mechanisms of SMO-Mediated Resistance in BCCs

(A) Position of the SMO variants within the SMO crystal structure showing their arrangement relative to an inhibitor (Wang et al., 2013) in TM3 (V321), TM5 (F460),

TM6 (L412F), and TM7 (W535L).

(B) Side view (left) and top-down view (right) of the overlay of the pivot regions of the B2 adrenergic receptor (gray) with those of SMO (green). Black numbers

represent prolines in the B2 adrenergic receptor structure, around which the lower receptor pivots.

(C) Baseline HH pathway activity inSmo�/�MEFs under serum starvation conditions expressing SMOWT or indicated SMO-CA variants. Shown is aWestern blot

of the expression of SMO WT compared with SMO variants.

(D) HH pathway activity in Smo�/� MEFs expressing the indicated SMO treated with SHH-N CM with or without 100 nM vismodegib.

(E) Response of the indicated SMO with different concentrations of vismodegib. IC50 values are shown in brackets.

(F) Coexpression of SMO-CA variants and PTCH1 or GFP in a GLI-luciferase reporter assay.

Error bars indicate SEM.
intrinsic resistance prior to treatment and may represent a sig-

nificant population in untreated samples. The apparent low

allele fraction of the SMO-CA mutants prior to treatment may

point to robust heterogeneity of tumor clones within these large

advanced tumors that constantly compete and evolve, with

only the drug-resistant clones enriching upon drug treatment.

Taken together, our results show that 50% (22 of 44) of resis-

tant BCCs harbor SMO mutations that have been shown func-

tionally to confer vismodegib resistance either through disrup-
348 Cancer Cell 27, 342–353, March 9, 2015 ª2015 Elsevier Inc.
tion of ligand responsiveness or release of autoinhibition

(Figures 2E and 5C).

SMO Mutations Impart a Growth Advantage in the
Presence of Vismodegib
Our data suggest that tumor clones that can maintain high HH

activation in the presence of a SMO antagonist gain a selective

growth advantage and become overrepresented within the

tumor. To quantify the selective advantage of identified SMO
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(A) Bar graph showing the allele fraction (red) of the indicated SMO-LBP or CA mutants in pre-treated (Pre) or treated and resistant (Post) BCCs.

(B) Schematic showing sequencing of two resistant clones arising from the same sporadic BCC under vismodegib selection.

(C) Frequencies of BCC having functional SMO mutations shown to either impart constitutive activity or confer resistance to vismodegib.

(D and E) Representative fluorescent images (D; scale bar, 100 mm) and quantitation (E) of the competition assay with stable ASZ001 BCC cell lines coexpressing

SMO WT and mCherry or SMO variants and GFP with or without vismodegib.

(F) HH pathway activity in Smo�/�MEFs expressing the indicated SMO variant and treated with SHH-NCMwith or without 32 nM vismodegib, 20 mMPSI, or 8 mM

ATO.

Error bars indicate SEM.
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mutations, we designed a red:green competition assay where

ASZ001 BCC cells expressing SMO WT were marked with

mCherry and those expressing SMO-LBP or SMO-CA mutants

were marked by GFP to determine which alleles confer a growth

advantage and outcompete the other in the presence of vismo-

degib. Interestingly, in the absence of selection, SMO-D473G,

W535L, L412F, and W281C grew at approximately the same

rate as wild-type SMO-containing cells, presumably because

of the high pathway activation already present because of

PTCH1 loss. However, in the presence of vismodegib, tumor

cells expressing any of the variants gained a significant growth

advantage and outcompeted SMO WT-containing tumor cells,

indicating that these SMOmutations can selectively grow during

SMO antagonist therapy to cause drug resistance (Figures 5D

and 5E).

HHAntagonists Downstreamof SMOAre Effective in the
Presence of SMO Variants
A subset of SMO variants has slightly elevated IC50 concentra-

tions, suggesting that higher SMO inhibitor concentrations may

be therapeutically beneficial. However, many other variants do

not significantly respond to the drug, even at high inhibitor con-

centrations. This led us to explore whether previously identified

GLI antagonists that act downstream of SMO may be effective

in suppressing the HH pathway in the presence of SMO inhibi-

tor-resistant variants. We expressed SMO-LBP and SMO-CA

variants into Smo�/� MEFs and observed a loss of Gli1 mRNA

in the presence of SHH-N ligand and inhibitor concentrations

4-fold greater than their respective IC50. As expected, all variants

had partial or complete resistance to vismodegib (Figure 5F).

However, the aPKC-i/l/GLI inhibitor PSI (Atwood et al., 2013)

and the GLI2 antagonist arsenic trioxide (ATO) (Kim et al.,

2013) were both effective at suppressing HH pathway activation

in the presence of any SMO variant, suggesting that GLI antag-

onists may be useful against SMO inhibitor-resistant tumors.

DISCUSSION

The nature of acquired resistance in advanced BCCs has been

largely unexplored despite skin tumors representing an easily

accessible model system to study tumor evolution. We made

the surprising discovery that, despite the ability of other cancers

to feed on oncogenic signals originating frommultiple pathways,

BCCs rely exclusively on the HH pathway for growth. This unique

property of BCCs allowed us to use SMO inhibitor-resistant tu-

mors as a robust system to uncover how tumors evolve to

bypass SMO inhibition and maintain high levels of HH activity.

Our results indicate that 50% of resistant BCCs operate under

two distinct modes of resistance: disruption of ligand respon-

siveness and release of autoinhibition. In addition, HH antago-

nists downstream of SMO are effective at suppressing HH acti-

vation andmay present viable therapies to treat resistant tumors.

Despite the high mutational load in BCCs that makes it one of

the most mutated human cancers (Jayaraman et al., 2014), a

finding we confirmed in our study, the inherently low rate of resis-

tance to SMO antagonists is surprising. A likely reason may be

the limited repertoire of variants that could confer pathwaymain-

tenance in the presence of vismodegib. Although HH-dependent

medulloblastomas use multiple signaling pathways for growth
350 Cancer Cell 27, 342–353, March 9, 2015 ª2015 Elsevier Inc.
and differentiation (Metcalfe et al., 2013), we find that BCCs

have an absolute dependence on the HHpathway. This limitation

appears to reduce the chance that another mutation outside of

the HH pathway would cause drug resistance and may be the

reason why we observe a high proportion of SMO mutations in

resistant BCCs. Another reason may be that only one copy of

SMO is required to transduce the active signal. Low selective

pressure and the slow growth potential of BCCs may naturally

suppress any need to bypass SMO as the active signal trans-

ducer of the HH pathway.

Our data provide strong structural support that a conserved

autoinhibitory mechanism exists in SMO despite less than 10%

sequence identity at the amino acid level (Wang et al., 2013).

This structural conservation allowed us to predict which SMO

variants would confer resistance. We identified five SMO muta-

tions that mostly decorate the LBP and conferred resistance to

vismodegib in our assays. The functionally relevant mutations

were not found in untreated BCCs, presumably because they

did not confer additional HH activity in the presence of ligand

and, therefore, would have no selective pressure and appear

after drug treatment. Moreover, because CA mutants would

confer a growth advantage to BCCs in addition to resistance to

therapy, it is not surprising that we find these inherently resistant

variants in both untreated and resistant tumors. Consistent

with this idea, we found that non-advanced BCCs from Gorlin

syndrome patients that contain PTCH1 mutations lack SMO

mutations and respond to vismodegib (K. Y. Sarin, personal

communication).

In addition, SMO contains 7-TM a helices that act in concert to

transduce activity, with helices 3, 5, 6, and 7 having pivotal roles

in the activation of the receptor. W535L is a previously described

CA mutant found on helix 7 (Xie et al., 1998) and is believed to

interact with helices 5 and 6 to prevent activation. We found CA

mutants on helix 3 (V321M), helix 5 (L412F), and helix 6 (F460L)

that complementW535L. The proximity within the SMO structure

of L412 and F460 suggests that they interact to reinforce autoin-

hibition through helix 5 and 6 interaction. Because V321 lies at the

interface between the LBP and the autoinhibitory loops, we

postulate that this residue may help LBP inhibition with helices

5 and 6. Our study defines key interface residues for SMO activa-

tion that may be hotspots for resistance alleles in other HH-

dependent cancers.

Because a subset of functionally validated SMO variants is

present in untreated BCCs, our data present an opportunity for

genetic prescreening to determine the optimal personal therapy

to evade drug resistance. All functionally validated SMO variants

operated on a spectrum of vismodegib sensitivity that point to

two important criteria for treatment options. Tumors harboring

mutations that partially suppress vismodegib sensitivity may

be treatable with higher drug concentrations to overcome their

elevated IC50. We found that HH target gene expression can

be effectively suppressed at higher drug concentrations but

not at low concentrations. Tumors harboring mutations that

show nearly complete vismodegib resistancemay be better can-

didates for drugs that inhibit HH activity outside of the SMO-LBP.

In fact, we found that HH antagonists such as PSI, which targets

the GLI kinase aPKC-i/l (Atwood et al., 2013), or ATO, which tar-

gets GLI2 (Kim et al., 2013), are quite effective at suppressing HH

activation associated with any SMO variant. Other inhibitors that



target at the level of GLI, such as the bromodomain and extrater-

minal domain family of chromatin modifiers or S6K1, that have

been shown to function in medulloblastoma or esophageal

adenocarcinoma, respectively, may also be useful in counteract-

ing resistance (Tang et al., 2014; Wang et al., 2012). Knowledge

of the genetic alterations present in resistant BCCs improves our

understanding of SMO structure and function, enables personal-

ized therapy based on pre-existing mutations, and helps with the

development and application of future treatments.

EXPERIMENTAL PROCEDURES

Case Samples

After Stanford Human Subjects panel approval, written informed consent was

obtained from patients 18 years or older with advanced BCCs for tumor

sequencing (protocol 18325). BCCs were defined as resistant or sensitive to

vismodegib therapy using the following criteria: resistant BCC, continuous

treatment with vismodegib at therapeutic doses of 150mg/day with stable dis-

ease or progressive disease as defined by the response evaluation criteria in

solid tumors (RECIST v. 1.1); sensitive BCC, partial or complete response to

vismodegib therapy at doses of 150 mg/day as defined by RECIST.

RNA Sequencing

RNA sequencing (RNA-Seq) was performed on nine resistant BCCs, four sen-

sitive BCCs, and eight normal skin biopsies. 2 mg of total RNA was extracted

from tissue samples stored in RNALater using the RNeasy kit (QIAGEN) ac-

cording to the manufacturer’s protocol. RNA integrity was confirmed with

the Agilent 2001 bioanalyzer. cDNA was prepared using the Ovation RNA-

Seq System V2 (NuGen) according to the manufacturer’s protocol. cDNA li-

braries were sheared by sonication (Covaris model S1) and purified using

the QIAGEN Minelute kit. End repair was performed with T4 DNA polymerase,

T4 polynucleotide kinase, and KlenowDNApolymerase (NewEngland Biolabs)

at 20�C for 30 min and purified using the QIAGEN Minelute kit. dA tailing was

performed with Klenow fragment 30 to 50 exonuclease (New England Biolabs)

at 37�C for 30 min and purified using the QIAGENMinelute kit. Adaptor ligation

was performed with Illumina adapters and T4 DNA ligase (New England Bio-

labs) and purified with the QIAGEN Minelute kit, and 150–400 base pair (bp)

fragments were gel-purified on a 3% GTG low melting point agarose gel.

RNA-Seq libraries were PCR-amplified for 18 cycles with Phusion DNA poly-

merase (New England Biolabs), purified with the QIAGEN Minelute kit, and

size-selected on a 3% GTG low melting point agarose gel. RNA-Seq libraries

were analyzed with the Agilent 2001 bioanalyzer and were sequenced paired-

end at 100 bp using an Illumina HiSeq 2500.

RNA-Seq reads were aligned to the human reference genome sequence

(hg19) with TopHat. We obtained an average of 250 million reads per sample

and 88% alignment to the human genome. Uniquely genomic and split-map-

ped reads were used to quantify the expression levels for GLI1. The NCBI

Reference Sequence (RefSeq) databases were used as reference annotations

to calculate values of reads per kilobase of transcript permillionmapped reads

for known transcripts (RPKM) (Mortazavi et al., 2008). RPKM values were then

log2-transformed, and box plot analysis was used to visualize the differential

expression of GLI1 among the normal skin, sensitive BCC, and resistant

BCC tissue samples. The general linear model (GLM) was used to assess sta-

tistical differences among the groups.

Whole-Exome Sequencing and Analysis

Fresh tissue samples of 14 resistant BCCs and adjacent normal skin were ob-

tained and stored in RNALater at�20�C (Ambion). DNA was isolated using the

DNeasy blood and tissue kit according to the manufacturer’s protocols

(QIAGEN). Capture libraries were constructed from 2 mg of DNA from BCC

and normal skin using the Agilent SureSelect XTHuman All Exon V4 kit accord-

ing to the manufacturer’s specifications. Enriched exome libraries were multi-

plexed and sequenced on the Illumina HiSeq 2500 platform to generate

100-base pair paired-end reads. Sequencing reads were aligned to the human

reference genome sequence (hg19) using Burrows-Wheeler aligner (BWA).

SAM-to-BAM conversion and marking of PCR duplicates were performed us-
ing Picard tools (version 1.86), followed by local realignment around indels and

base quality score recalibration using the Genome Analysis Toolkit (GATK)

(v2.3.9). We obtained mean target coverage of 114X over the coding regions.

Somatic SNVs and indels were called using both Samtools mpileup andGATK.

Variants were annotated for standard quality metrics for the presence in

dbSNP138 and for the presence in the National Heart, Lung, and Blood Insti-

tute (NHLBI) Exome Sequencing Project (ESP) (ESP6500, Exome Variant

Server, http://evs.gs.washington.edu/EVS/) and COSMIC database v. 64. Var-

iants were filtered when they did not result in a predicted change to the protein

coding sequence. Genetic alterations were selected when they occurred in

genes listed in the human HH signaling pathway in the KEGG database. To

determine copy number variation for PTCH1 and TP53, read counts were

calculated for each exon and scaled to 10 million. Log2 (tumor/normal) was

calculated, and the average log2 (tumor/normal) was calculated for each tu-

mor. A copy number gain or loss was called when the average log2 (tumor/

normal) for a given gene was less than or more than 0.35.

Targeted Resequencing of SMO and PTCH1 in FFPE Samples

Five to eight 10-mm sections were obtained from the formalin-fixed, paraffin-

embedded (FFPE) tumor block, and DNA was isolated using the QIAGEN

DNeasy blood and tissue kit according to manufacturer’s protocol (QIAGEN).

The exonic regions of PTCH1 and SMOwere amplified using the Access Array

platform (Fluidigm). The samples were amplified in a multiplex format with

genomic DNA (100 ng) according to the manufacturer’s recommendation

(Ambry Genetics). Subsequently, the multiplexed library pools were subjected

to deep sequencing using the Illumina MiSeq platform. After demultiplexing

and FASTQ file generation for the raw data, 150 base pair reads were aligned

to the human reference genome sequence (hg19) using the BWA aligner. Sam-

tools mpileup was used to call variants. Only basesmeeting theminimum base

quality score of 20 from reads meeting the minimum mapping quality score of

20 were considered. A minimum allele frequency of 5% at a position with a

read depth of >100 was required to make calls. Identified variants were anno-

tated using SeattleSeq138 to exclude non-pathogenic variants reported in

dbSNP138 and to identify variants that had nonsynonymous consequences

or affected splice sites.

Hedgehog Signaling Assays

Variants were inserted into the full-length human SMO gene by standardmuta-

genesis and cloned into peGFP-C1 (Clontech). SMO variants were nucleo-

fected (Amaxa) into Smo null mouse embryonic fibroblasts and plated at

confluence in DMEM plus 10% FBS. To test for HH response, the serum

was removed after 48 hr, and SHH-N conditioned medium was added. Cells

were treated with or without varying concentrations of vismodegib (LC

Labs), PSI (Atwood et al., 2013), or ATO (Sigma) for 48 hr, and RNA was har-

vested using the RNeasy Minikit (QIAGEN). Quantitative RT-PCR was per-

formed using the Brilliant II SYBR Green qRT-PCR Master Mix kit (Agilent

Technologies) on a Mx3000P qPCR system (Agilent). The fold change in

mRNA expression of the HH target gene Gli1 was measured using DDCt anal-

ysis with Gapdh as an internal control gene. For luciferase assays, vectors ex-

pressing SMO variants and either PTCH1 or GFP were transfected (Fugene6,

Promega) into CH310T1/2 cells with pGL3B 6xGliCS (Atwood et al., 2013) and

serum-starved for 48 hr. Cells were lysed and luciferase expression was deter-

mined using the Dual-Luciferase Assay System (Promega) and a TD-20/20 lu-

minometer. For competition assays, lentiviral pCDHGFP or pCDHmCherry

(SBI) vector expressing SMO WT or SMO variants were used to generate sta-

ble lines in ASZ001 BCC cells using puromycin selection. Cells coexpressing

SMO WT and GFP were mixed with cells coexpressing a SMO variant and

mCherry and grown in the presence or absence of vismodegib for the specified

amount of time. Live fluorescent images (Zeiss Axio Observer with 103 objec-

tive) of four random fields per competition assay per biological replicate were

taken at each time point, and the number of green and red cells was counted to

generate green-to-cherry ratios.

Statistical Analysis

The p values for the comparison of the log2 RPKM for GLI1 among the normal

skin, resistant, and sensitive BCCs were calculated using the GLM test.

The p values for the percentage of samples with SMOmutations in resistant

BCCs compared with the untreated BCCs were calculated using a Z test
Cancer Cell 27, 342–353, March 9, 2015 ª2015 Elsevier Inc. 351
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for two population portions. p Values were calculated using two-tailed

comparisons.

Immunofluorescence Staining

Immunofluorescence staining was carried out using antibodies against GLI1

(1:100; R&D Systems, catalog no. AF3455) and keratin 14 (1:500; Abcam, cat-

alog no. ab7800). Secondary antibodies were from Invitrogen. GLI1 staining

was quantified using pixel intensity measurements in ImageJ. Pixel intensity

was measured in K14-positive regions in ten fields for both sensitive and resis-

tant BCCs. Adjacent tumor sections were stained with H&E.
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