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a b s t r a c t

Recently, Youssef constructed a new theory of fractional order generalized thermoelasticity
by taking into account the theory of heat conduction in deformable bodies, which
depends upon the idea of the Riemann–Liouville fractional integral operator. In this paper,
the variational theorem is obtained for the generalized thermoelasticity model for a
homogeneous and isotropic body.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Serious attention has been paid to the generalized thermoelasticity theories in solving thermoelastic problems in place
of the classical uncoupled/coupled theory of thermoelasticity. The absence of any elasticity term in the heat conduction
equation for uncoupled thermoelasticity appears to be unrealistic, since due to the mechanical loading of an elastic body,
the strain so produced causes variation in the temperature field. Moreover, the parabolic type of the heat conduction
equation results in an infinite velocity of thermal wave propagation, which also contradicts the actual physical phenomena.
Introducing the strain-rate term in the uncoupled heat conduction equation extended the analysis to incorporate coupled
thermoelasticity [1]. In this way, although the first shortcoming was over, there remained the parabolic type partial
differential equation of heat conduction,which leads to the paradox of infinite velocity of the thermalwave. To eliminate this
paradox generalized thermoelasticity theory was developed subsequently. The development of this theory was accelerated
by the advent of second sound effects observed experimentally by Ackerman et al. [2] and Ackerman and Overtone [3] in
materials at a very low temperature. In heat transfer problems involving very short time intervals and/or very high heat
fluxes, it has been revealed that the inclusion of second sound effects in the original theory yields results that are realistic
and very much different from those obtained with classical theory of elasticity.
Due to the advancement of pulsed lasers, fast burst nuclear reactors, particle accelerators, etc. which can supply heat

pulses with a very fast time-rise [4,5], generalized thermoelasticity theory is receiving serious attention from different
researchers. The development of the second sound effect has been nicely reviewed by Chandrasekharaiah [6]. At present
mainly two different models of generalized thermoelasticity are being extensively used—one proposed by Lord and
Shulman [7] and the other proposed by Green and Lindsay, [8]. The L–S theory suggests one relaxation time and according
to this theory, only the Fourier heat conduction equation is modified; while G–L theory suggests two relaxation times and
both the energy equation and the equation of motion are modified.
Bahar and Hetnarski [9,10] developed a method for solving coupled thermoelastic problems by using the state-space

approach inwhich the problem is rewritten in terms of the state-space variables, namely the temperature, the displacement
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Nomenclature

λ,µ Lamé’s constants
ρ Density
CE Specific heat at constant strain
αT Coefficient of linear thermal expansion
γ = (3λ+ 2µ)αT
t Time
T Temperature
To Reference temperature
θ = (T − To) Increment temperature such that

∣∣∣ θTo ∣∣∣� 1
σij Components of stress tensor
eij Components of strain tensor
ui Components of displacement vector
Fi Body force vector
k Thermal conductivity
τo Relaxation times

and their gradients. Erbay and Suhubi [11] studied longitudinal wave propagation in an infinite circular cylinder, which
is assumed to be made of the generalized thermoelastic material, and thereby obtained the dispersion relation when the
surface temperature of the cylinder was kept constant. Generalized thermoelasticity problems for an infinite body with a
circular cylindrical hole and for an infinite solid cylinder were solved respectively by Furukawa et al., [12,13]. A problem
of generalized thermoelasticity was solved by Sherief [14] by adopting the state-space approach. Chandrasekharaiah and
Murthy [15] studied thermoelastic interactions in an isotropic homogeneous unbounded linear thermoelastic body with
a spherical cavity, in which the field equations were taken in unified forms covering the coupled, L–S and G–L models of
thermoelasticity. The effects of mechanical and thermal relaxations in a heated viscoelastic medium containing a cylindrical
hole were studied by Misra et al. [16]. Investigations concerning interactions between magnetic and thermal fields in
deformable bodies were carried out by Maugin [17] as well as by Eringen and Maugin, [18]. Subsequently Abd-Alla and
Maugin [19] conducted a generalized theoretical study by considering themechanical, thermal andmagnetic field in centro-
symmetric magnetizable elastic solids. Among the theoretical contributions to the subject are the proofs of uniqueness
theorems under different conditions by Ignaczak [20,21].
This work is dealing with Youssef theory of fractional order generalized thermoelasticity in which the theory of heat

conduction in deformable bodies depends upon the idea of the Riemann–Liouville fractional integral operator. Hence, the
variational theorem will be obtained for the fractional order generalized thermoelasticity theorem [22].

2. Formulation of the variational theorem

Under the assumption of small deviations of the thermodynamics system from the state of equilibrium, we will consider
the statement of virtual external work:∫

v

Fiδ uidv +
∫
s
piδ uids, (1)

where v is an arbitrary material volume bounded by a closed and bounded surface s, Fi is the external forces per unit mass
and pi the components of surface traction applied to the surface s.
We have the relation

σij nj = pi, (2)

where σij are the stresses components and ni are the normal components to the surface s.
Using Eq. (2) and Gauss’ divergence theorem in the second term of the relation (1), we obtain∫

s
pi δ uids =

∫
s
σji nj δ uids =

∫
v

σji,j δ uidv +
∫
v

σji δ eijdv, (3)

where eij = 1
2

(
ui,j + uj,i

)
.

The equation of motion takes the form

σji,j + Fi = ρüi. (4)
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Using equation of motion (4), Eq. (3) will be reduced to∫
s
pi δ uids +

∫
v

Fi δ uidv =
∫
v

ρ üi δ uidv +
∫
v

σji δ eijdv, (5)

Duhamel–Neumann relation takes the form

σij = 2µ eij + (λ ekk − γ θ) δij, (6)

where δij is the Kronecker delta symbol.
Using Eq. (6) into the second term on the right-hand side of Eq. (5), yields∫

v

σji δ eijdv =
∫
v

(
2µ eij + λ ekk δij

)
δ eij dv −

∫
v

γ θδeii dv. (7)

We arrive at the theorem of virtual work from Eqs. (5) and (7), we obtain∫
s
pi δ uids +

∫
v

Fi δ uidv −
∫
v

ρ üi δ uidv = δW −
∫
v

γ θδ eiidv (8)

where

δW =
∫
v

(
2µ eij δ eij + λ ekkδ eii

)
dv. (9)

The functionW implies the work of the deformation may be expressed by Naotak et al. [23]:

W =
∫
v

(
µ eij eij +

λ

2
ekk eii

)
dv. (10)

The three terms on the left-hand side of Eq. (8) express the virtual external work of the body forces, of tractions on the
boundary and of inertia forces, respectively, while the right-hand side expresses the virtual internal work.
The entropy balance without internal heat generation is [23]:

qi,i = −T η̇ ≈ −Toη̇, (11)

where qi are the components of the heat flux and η is the entropy.
We introduce an entropy flux H , which is related to the heat flux through the equation

qi = ToḢi, (12)

and

η = −Hi,i. (13)

The entropy increment satisfies the following relation for unit mass [23]:

Toη = CEθ + Toγ eijδij. (14)

The modified Fourier law of heat conduction in generalized form of isotropic medium is [22]:

qi + τoq̇i = −kIα−1θ ,i, (15)

where

Iα f (t) =

 1
Γ (α)

∫ t

0
(t − τ)α−1 f (τ ) dτ for 0 < α ≤ 2

f (t) for α = 0

 , (16)

Γ (α) is the gamma function and I−α f (t) = ∂α

∂ tα f (t).
By eliminating the entropy between Eqs. (13) and (14), we get

Hi,i =
CE
To
θ − γ eii. (17)

By eliminating qi between Eqs. (12) and (15), we obtain

To
(
Ḣi + τo Ḧi

)
= To

(
∂α

∂ tα
+ τo

∂α+1

∂ tα+1

)
Hi = −kθ ,i . (18)
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Without loss of generality, we can put a parameter for the parakeet in the above equation that includes the time
derivatives, i.e.

∂α

∂ tα
+ τo

∂α+1

∂ tα+1
= β,

hence, the Eq. (18) takes the form

Toβ
k
Hi + θ ,i = 0. (19)

Multiplying δHi by the above equation and integrating over the region v of the body, we find∫
v

(
Toβ
k
Hi + θ ,i

)
δ Hi dv = 0. (20)

The second term of the Eq. (20) is reduced to∫
v

θ,i δHi dv =
∫
v

(θ δHi),i dv −
∫
v

θδHi,i dv,

which gives∫
v

θ,i δHi dv =
∫
s
(θ δHi) ni ds−

∫
v

θδHi,i dv. (21)

From Eq. (17), we have

δ Hi,i = −
CE
To
δθ − γ δeii. (22)

Using Eq. (22) in the last term of Eq. (21), we get∫
v

θ,i δHi dv =
∫
s
(θ δHi) ni ds+

CE
To

∫
v

θδθ dv + γ
∫
v

θδeii dv. (23)

Now, Eq. (20) takes the form∫
v

(
Toβ
k
Hi + θ ,i

)
δ Hi dv =

Toβ
k

∫
v

Hiδ Hi dv +
∫
s
(θδHi) nids+

CE
To

∫
v

θδθ dv + γ
∫
v

θδeii dv = 0. (24)

We introduced the heat potential P in the form [23]:

P =
CE
2 To

∫
v

θ2 dv, (25)

where

δ P =
CE
To

∫
v

θδθ dv (26)

and the dissipation function D in the form [23]:

D =
Toβ
2k

∫
v

H2i dv. (27)

Hence, we get

δD =
Toβ
k

∫
v

Hi δHi dv. (28)

Introducing Eqs. (26) and (28) into Eq. (24), we obtain the variational equation for heat conduction

δP + δD+ γ
∫
v

θδeii dv = −
∫
s
(θ δHi) ni ds. (29)

By elimination the term γ
∫
v
θδeii dv in Eqs. (8) and (29), we get

δW + δP + δD =
∫
s
pi δ uids +

∫
v

Fi δ uidv −
∫
v

ρ üi δ uidv −
∫
s
(θδHi) nids. (30)
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The terms on the right-hand side of Eq. (30) expresses the virtual external work of the body forces, of tractions on the
boundary, of inertia forces, and of heating of the boundary, respectively, while the left-hand side expresses the virtual
internal work of deformation, the variation of heat potential, and the variation of the dissipation function, respectively [23].
Introducing the Biot thermoelastic potential φ [23]:

φ = W + P =
∫
v

(
µeij eij +

λ

2
eii ejj +

CE
2 To

θ2
)
dv. (31)

We obtain the variational principal of the fraction order generalized thermoelasticity with one relaxation time in the form

δ (φ + D) =
∫
s
(pi δ ui − (θδHi) ni) ds +

∫
v

(Fi − ρ üi ) δ ui dv. (32)
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