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A Trace Theorem in Kinetic Theory

MARCO CANNONE AND CARLO CERCIGNANI

Abstract. A mathematical assumption made in a recent paper by Cercignani on the traces of
the solutions of initial-boundary value problems for the Boltzmann Equation is shown here to
be triue in the case of a domain whose boundary is a Ivannn off surface with purely diffusing

boundary conditions.

1. INTRODUCTION

The global existence of a weak solution for the initial-boundary value problem for the Boltz-
mann Equation was obtained by Hamdache {1] by means of the renormalization method
of DiPerna and Lions [2]. His proof, however, introduces rather specific restrictions in the
case of no net mass flow through the boundary. Recently, Cercignani [3] examined more
general conditions, proving a theorem on the traces of the solutions that is needed in order
to extend the results of Hamdache. In his proof, Cercignani assumed that a linear operator
had a bounded inverse, since this is “physically meaningful ”

The aim of this note is to show that this assumption is, in fact, mathematically correct in

the case of a domain whose boundary is a Lvasuno surface with purely diffusing boundary
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conditions.
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If Qis an open set of R® with boundary 8Q we denote by n(x) the unit internal normal

C UlL d.[lu Uy U(T Llle Leuesgue measure on Ulﬁ j\x,q) uenoueb as Ubud.l lxll(‘,' ﬂl()lc(,uld.l'
den31ty of a rarefied gas in the vessel 2, density of molecules at the point x €  with velocity
€ € R3. Let us now define D = Q x R3 and §D* = {(x,£) € 8Q x R3: £-n(x) > 0} and
put, in the sense of distribution,

(M) =€ 52 (21)

We also put do* = |£- n(x)|do df (on dD*) and we introduce the spaces

={f € L?(D,dxdf) | Af € L*(D, dx df)} (2.2)
LP* = [P(OD%, do®). (2.3)

Now the trace operator 73 are first defined on C3(D) by [4]

v5f = fop:  f € Ci(D) (24)
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solve the mltlal boundary value problem for the Boltzmann Equation in L! [1]. If, however,
we impose suitable boundary conditions, then we can make some progress in the direction
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of proving that 75 f € LY*. To this end, let f satisfy a linear boundary condition of the
form [1}:

[5f]= (- a)K[yp f]+ ah, (2:5)

where h(x,£) is a given LY*-function, « € [0,1] and K : LY~ — L% is a positive
mass-preserving scattering operator which also transforms the restriction Mg of the wall
Maxwellian M,, to £ -n(x) < 0 into the restriction M} of M, to £ - n(x) > 0.

Hamdache proved that 71*) f € LY* when a # 0 and subsequently Cercignani was able to
show this regularity property even when a = 0, which is the case of no net mass flow through
the wall. In order to review Cercignani’s result let us introduce the following operators.

First, we define the operator P which reflects §, i.e.,

[PY](x,€) = ¥(x, ) a.e. (x,£). (2:6)
Then we denote by /\'{) the operator that carries v, into 71")'1# defined by
PEY)(x,6) = ¢¥(%,6)  ae (x,§) €D, (27)

here x = X(x,£) denotes the point of intersection of the ray {(x,£) = {y : y = x+7€, 7 <0}
with 892, which is closest to x. Finally, we define the operator

F=1I-(PKYP)\,: L%~ — L>", (2.8)

where I is the identity operator and (PK)' : L*~ — L°:~ is the dual operator of PK :
L3~ — LY~ defined by means of the duality product

(PKY, f)- = (¥, (PK)f)- V9§ € L™, Vfe L\, (2.9)

where for the real value functions ¢(x,£) € L>'~ and g(x,£) € L'~ we put

wa-=[ [ sx0exlenpldode=[ [ sxgoxgyde. (210)

Let us now consider for any functions ¥ € L*~ the decomposition into a constant part

_ (Y, M)
Ppmy = (1, Mo ) (2.11)
plus the remainder
[Poy] (x,£) = ¥(x,§) — Pm. (2.12)

All this makes sense if Q has finite measure, in fact, if this holds, then M; € L.
Now L°~ is decomposed into the direct sum of the subspaces @ and M of the functions
having the form Po and Pat. Then Cercignani proved [3] the following:

THEOREM 1. Let f € W1, |€2f € LY(D,dx df), |€)*Af € LY(D,dx df). If the boundary
condition (2.5) applies with a = 0 and if the linear operator F has a bounded inverse in the
subspace O of L®~, then 75 f € L'*.

3. MAIN REsULTS

Here we prove that F has a bounded inverse in @, provided that 8 is a Lyapunoff surface
and that K is purely diffusing. Let us first recall the following definitions:
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DEFINITION 1. A surface S in R? is called a Lyapunoff surface if:

i) at every point of S there is a well-defined tangent plane, and consequently a well-
defined normal;

ii) there is a number r > 0, the same for all points of S such that if one takes the part
T of S lying inside the Lyapunoff sphere B(yo,r) with center at an arbitrary point
Yo € S and radius r, then the lines parallel to the normal to S at yo meet ¥ at most
once; and

iii) there are two numbers A > 0 and A,0 < A < 1, the same for the whole of S, such
that for any two points y;,y2 € S,

8] < Ay — y2l?, (3.1)
where O is the angle between the normal to S at y; and ys.

DEFINITION 2. A scattering operator K is purely diffusing if:

KN0O=MIE [ [xE)IE n(0lde  ae (xEDT ()

n(x)<0

with the normalization condition
/ MY@®|€ - n(x)|d=1 ae x€00. (3.3)
&n(x)>0
A simple calculation shows that the linear operator F is now given by

[FY) (x,6) = ¥(x,6) — / Mz (€) (%, —€) 1€ n(x)|d  ae. (x,€) €D~ (34)

€ n(x)<0

Now we prove that rk FF = O and that F : O — O has a bounded inverse if 09 is a
Lyapunoff surface. Let us first prove that rk F C . To this end we have only to check that

Pu[Fy]=0 Vo€ L™ (3.5)

but Equation (3.3) implies that (1, Mg )_ = u(0Q) so that Equation (3.5) is written

= n( ! ' _
1(6Q) »/80 ~£’~n(x)<0 Mg €) (x££ n(x)|do & =

1 / / v X I
—_— M, P(x, -n(x)|do df’, 36
ST o o 5 € ¥ €€ -m0l o (36)
which is true if we let in the Lhs. € — —§,x — X and observe that § -n(x) < 0 <=

—¢ -n(x) < 0. In order to show that rk F = O, let o(x,£) € O C L™~ be given and
observe that if ¥ € L®~ is a solution of

[Fyl(x,€) = o(x,£)  ae. (x,6) €6D, (3.7)
then it is written in the following form
¥(x,6) = A(x) + o(x,§)  ae (x,£)€0D7, (3-8)

where A(x) is a function in L*'~, independent of £, such that

A(x) = s(x) + / MI@E)AR)|E nx)|d  ae x €00 (3.9)

€ n(x)<0
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with s(x) given by

s(x) = / Mg () o(x,-¢)|€& -n(x)|df’ a.e. x € 0Q. (3.10)
€/ -n(x)<0
Please note that o(x,§) € O C L~ = s(x) € O C L™, i.e., s(x) € L%~ and satisfies
/ s(x)do = 0. (3.11)
a0
In order to solve Equation (3.9) let us put [5, pp. 137-138]
& x—-X

w=t - X°X 3.12
€1~ %] 12

where of course X = x(x,§’') and observe that
/ Mg () A(x) |€ n(x)|df’ = —1-/ A(x) o' n(x)|du’  ae.x €0Q (3.13)
€ -n(x)<0 T Ju'n(x)<0

which follows from Equation (3.3) and the fact that

2 5
/ [u’ - n(x)|dua’ :/ d<p/ cosfsinfdd = 7. (3.14)
u’ n(x)<0 0 0
Now Equation (3.9) is written

A(x) = s(x) + /,, <o AX)u’ -n(x)|da’ ae.x €90 (3.15)

If we observe that (x — X) = u’ |x — X| and that |x — X|? du’ = |u’ - n(X)| d, [d& being the
surface element at %] and put x = P, X = Q we finally obtain

A(P) =s(P) + %/an(p) A(Q)b(P,Q)dr(Q) a.e. P €oQ, (3.16)

where b(P, Q) is given by

I(P - Q) -n(P)[|(P - Q) -n(Q)|
P QF (3.17)

and 0Q(P) is the part of the surface 2 which is seen from the point P.

Equation (3.16) is a linear integral equation in R® with a singular kernel [6-8}; A(P)=
const is the only solution in L? (and therefore in L>® C L?) of the corresponding homoge-
neous equation [s(P) = 0] (this follows from Equation (3.14) and Schwarz’s inequality).

Equation (3.16) can now be solved in an L?-framework, by means of Fredholm theorems,
provided that b(P, Q) has a weak singularity, 1.e., [7, p. 6, Equation (1.11)] has the form

_ B(P,Q)
P - Qle
with B(P,Q) a bounded function and a = const. such that 0 < « < 2. If Equation (3.18)

holds and if s(P) € L? fulfills the integral condition (3.11), then all the solutions of Equa-
tion (3.16) in L? are written [6, Chapter 1, Section 15]

5P,Q) =

b(P,Q) (3.18)

A(P) = C + Ao(P), (3.19)
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where C is an arbitrary constant and Ap(P) a particular solution such that [9, p. 199]

/ Ao(P)do(P) = 0. (3.20)
ol

Moreover, if Equation (3.18) is satisfied, and if s(P) € L, then Equation (3.19) holds in L*°,
i.e., Ao € L* [6, p. 94, Theorem 3], and finally Equation (3.19) shows that Equation (3.9)
fand consequently Equation (3.7)] has a unique solution in O 2 L°/M. Thus the linear
operator F has a bounded inverse in (9, provided that condition (3.18) is satisfied. To this
end, we have only to recall the Definition 1 or, more precisely, Equation (3.1) written for
the points y; = P and y» = Q (this is possible because both lie on the boundary 9); now
if we denote by A and A the Lyapunoff constants of 92 we have:

(P -Q) n(®)I(P-Q) n(@) _ __ A
P~ QF = P - Qe

(3.21)

thus Equation (3.18) is valid if we let o = 2(1 — ) and B(P,Q) = b(P, Q) |P — Q|2(}-»).

4. CONCLUDING REMARKS

The existence of a bounded inverse in @ of F is the result that is needed in order to prove
Cercignani’s theorem. In the present paper we have shown that F has a bounded inverse
in @, provided that dQ is a Lyapunoff surface with purely diffusing boundary conditions; the
same result should apply for a more general scattering operator K. A detailed examination
will be presented in a forthcoming paper.
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