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A Trace Theorem in Kinetic Theory 
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Abstract. A mathematical assumption made in a recent paper by Cercignaui on the traces of 
the solutions of initial-boundary value problems for the Boltemann Equation is shown here to 
be true in the case of a domain whose boundary is a Lyapunoff surface with purely diffusing 
boundary conditions. 

1. INTRODUCTION 

The global existence of a weak solution for the initial-boundary value problem for the Boltz- 
mann Equation was obtained by Hamdache [l] by means of the renormalization method 
of DiPerna and Lions [2]. His proof, however, introduces rather specific restrictions in the 
case of no net mass flow through the boundary. Recently, Cercignani [3] examined more 
general conditions, proving a theorem on the traces of the solutions that is needed in order 
to extend the results of Hamdache. In his proof, Cercignani assumed that a linear operator 
had a bounded inverse, since this is “physically meaningful.” 

The aim of this note is to show that this assumption is, in fact, mathematically correct in 
the case of a domain whose boundary is a Lyapunoff surface with purely diffusing boundary 
conditions. 

2. PROBLEM FORMULATION 

If Q is an open set of R3 with boundary Xl we denote by n(x) the unit internal normal 
at x E Xl and by da the Lebesgue measure on an; f(x,t) denotes, as usual, the molecular 
density of a rarefied gas in the vessel a, density of molecules at the point x E s1 with velocity 
t E R3. Let us now define D = Cl x R3 and dD* = {(x,0 E 852 x R3 : A$. n(x) > 0) and 
put, in the sense of distribution, 

(Af>W> =t. 2. P-1) 

we also put da* = I[. n(x)] da 4 (on dD*) and we introduce the spaces 

Wp = {f E LP(D,dxe) 1 Af E Lp(D,dxdQ} (2.2) 

LP1* = LP(dD*, dc*). (2.3) 

NOW the trace operator rof are first defined on C~(~) by [4] 

7,“f = fpo* f E Gus (2.4) 

and then [3,4] extended on IV’, but in general not with values in L’l* as is needed in order to 
solve the initial-boundary value problem for the Boltzmann Equation in L1 [l]. If, however, 
we impose suitable boundary conditions, then we can make some progress in the direction 
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of proving that -&j E L In* . To this end, let f satisfy a linear boundary condition of the 

form [l]: 

[r;f = (I - a) ji’[r;f + ah, (2.5) 

where h(x,t) is a given L ‘I+-function, Q E [0, l] and K : L’l- + L’l+ is a positive 
mass-preserving scattering operator which also transforms the restriction M; of the wall 
Maxwellian A4, to [ . n(x) < 0 into the restriction M$ of M, to [. n(x) > 0. 

Hamdache proved that $j E L’l* when Q # 0 and subsequently Cercignani was able to 

show this regularity property even when Q = 0, which is the case of no net mass flow through 
the wall. In order to review Cercignani’s result let us introduce the following operators. 

First, we define the operator P which reflects& i.e., 

Ptil(x,f) = ti(x, -f) a.e. (x,f). (24 

Then we denote by A$ the operator that carries roll, into r;ll, defined by 

Lml(Xlf~ = dJ(Cfl a.e. (x,0 E dD+, (2.7) 

here 5 = %(x,f) denotes the point of intersection of the ray e(x,f) = {y : y = x+e, 7 < 0) 
with BR, which is closest to x. Finally, we define the operator 

F = I - (PK)‘PAf, : Loo>- + Lm~-, (2.8) 

where I is the identity operator and (PI<)’ : L”b- + LcDl- is the dual operator of PK : 
LL- + L’,- defined by means of the duality product 

((PIi’)‘$,f)_ = (l+b,(PK)f)_ vlc, E LQ-, Vf E L+, 

where for the real value functions 4(x,0 E Lool- and g(x,f) E L’p- we put 

Let us now consider for any functions 11, E Loon- the decomposition into a constant 

PM+ = (@, K)- 
(1, MT)- 

plus the remainder 

[PO+] (x,f) = ti(Jbfl- pAI+. 

(2.9) 

(2.10) 

part 

(2.11) 

(2.12) 

All this makes sense if Nl has finite measure, in fact, if this holds, then M; E L’e-. 
Now LDol- is decomposed into the direct sum of the subspaces 0 and M of the functions 
having the form PO+ and Pm+. Then Cercignani proved [3] the following: 

THEOREM 1. Let f E W’, IfI*f E Ll(D,dx@), lfl*Af E Ll(D,dxdQ. If the boundary 
condition (2.5) applies with (Y = 0 and if the linear operator F has a bounded inverse in the 
subspace 0 of Loop-, then $f E Lll*. 

3. MAIN RESULTS 

Here we prove that F has a bounded inverse in 6, provided that dR is a Lyapunoff surface 
and that Ii is purely diffusing. Let us first recall the following definitions: 
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DEFINITION 1. A surface S in R! is caJJed a Lyapunoff surface if: 

i) at every point of S there is a well-defined tangent plane, and consequently a well- 
defined normal; 

ii) there is a number r > 0, the same for aJJ points of S such that if one takes the part 
C of S lying inside the Lyapunoff sphere B(ye, r) with center at an arbitrary point 
yo E S and radius P, then the lines parallel to the normal to S at yc meet C at most 
once; and 

iii) there are two numbers A > 0 and X, 0 < X 5 1, the same for the whole of S, such 
that for any two points ~1, y2 E S, 

PI < AlYl -Y21X, (3.1) 

where 0 is the angle between the normal to S at y1 and ~2. 

DEFINITION 2. A scattering operator Ii’ is purely diffusing if: 

with the normalization condition 

J e(f)lf. n(x) I4 = 1 a.e. x E aR. 
C-(x)> 0 

(3.2) 

(3.3) 

A simple calculation shows that the linear operator F is now given by 

PVI (xX) = +(xX) - h.,X,<O J%Y(t’) +(x, -C) IQ . WI 4’ a.e. (x,0 E aD_ (3.4) 

Now we prove that rk F = 0 and that F : 0 -+ 0 has a bounded inverse if dfl is a 
Lyapunoff surface. Let us first prove that rk F C 0. To this end we have only to check that 

PM[F?j] = 0 vll, E L”l- (3.5) 

but Equation (3.3) implies that (l,M;)_ = ,u(aQ) so that Equation (3.5) is written 

1 JJ f4w a-l C’.n(x)<O W~(01clM’) IQ .n(x)ldo4’ = 

1 JJ 439 Bn Cj.n(x)<o WF(t’) Icl(% 4’) IQ + 4x1 I da 4’, (3.6) 

which is true if we let in the 1.h.s. Q --, +,x -+ 2 and observe that Q . n(x) < 0 e 
-f . n(2) < 0. In order to show that rk F = 0, let cr(x,Q E 0 c Loo’- be given and 
observe that if 11, E Loo*- is a solution of 

a.e. (x,0 E aD_, (3.7) 

then it is written in the following form 

$+,fl = A(x) + 4x,0 a.e. (x,f) E dD_, (3.3) 

where A(x) is a function in L”l-, independent off, such that 

A(x) = s(x) + 
J 

~,n(*)<o M,- (0 A(g) If’ . n(x)1 4’ a.e. x E as2 (3.9) 



66 M.CANNONE,C.CERCIGNANI 

with s(x) given by 

s(x) = J ~,.n(x)<o n/r,-(f) 4% 4’) IQ . n(x)1 4’ a.e. x E aR. (3.10) 

Please note that b(x,c) E 0 c L”l- =+ s(x) E U c L”l-, i.e., s(x) E Loo>- and satisfies 

J s(x) da = 0. 
an 

In order to solve Equation (3.9) let us put [5, pp. 137-1381 

(3.11) 

(3.12) 

where of course x = x(x,t’) and observe that 

J ~,_n(x)<o M,Z(iZ’) A(x) IQ+n(x)l& = i 1 ,n(x)<o A(x) V-n(x)1 du’ a-e. x E 8R (3.13) 

which follows from Equation (3.3) and the fact that 

J 
2n 

J J 
* 

Iu'.n(x)Idu'= dp ’ cos0sinedB = T. 
u’-n(x)<0 0 0 

(3.14) 

Now Equation (3.9) is written 

A(x) = s(x) + J A(%) Iu’ . n(x)] du’ a.e. x E aQ. (3.15) 
u’.n(x)<O 

If we observe that (x - 57) = u’ Ix - $1 and that Ix - xl2 du’ = Iu’ . n(x)] dc?, [dc? being the 

surface element at x] and put x = P, x = Q we finally obtain 

A(P) = s(P) + i Jsn(p) A(Q) V’, &Ida(Q) a-e. F’ E do3 (3.16) 

where b(P, Q) is given by 

b(P &I = IP - Q) WV IO’ - Q) 4Q)l 
1 

IP - &I4 
(3.17) 

and an(P) is the part of the surface Xl which is seen from the point P. 
Equation (3.16) is a linear integral equation in R3 with a singular kernel [6-81; A(P)= 

const is the only solution in L2 (and therefore in L” c L2) of the corresponding homoge- 

neous equation [s(P) = 0] (th’ f 11 is o ows from Equation (3.14) and Schwarz’s inequality). 
Equation (3.16) can now be solved in an L2-framework, by means of F’redholm theorems, 

provided that b(P, Q) h as a weak singularity, i.e., [7, p. 6, Equation (l.ll)] has the form 

BP, Q) 
W’,Q) = Ip _ QIa 

(3.18) 

with B(P,Q) b a ounded function and CY = const. such that 0 < (Y < 2. If Equation (3.18) 
holds and if s(P) E L2 fulfills the integral condition (3.11), then all the solutions of Equa- 
tion (3.16) in L2 are written [6, Chapter 1, Section 151 

A(P) = C +&J(P), (3.19) 
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where C is an arbitrary constant and AD(P) a particular solution such that [9, p. 1991 

J AO(P) da(P) = 0. 
an 

(3.20) 

Moreover, if Equation (3.18) is satisfied, and if s(P) c L”, then Equation (3.19) holds in Loo, 
i.e., Ao E L” [6, p. 94, Theorem 31, and finally Equation (3.19) shows that Equation (3.9) 
[and consequently Equation (3.7)] h as a unique solution in 0 % L*/M. Thus the linear 
operator F has a bounded inverse in 0, provided that condition (3.18) is satisfied. To this 
end, we have only to recall the Definition 1 or, more precisely, Equation (3.1) written for 
the points y1 = P and y2 = Q (this is possible because both lie on the boundary &l); now 
if we denote by A and )r the Lyapunoff constants of afi we have: 

l(P - Q) .nP)I IV’ - Q) .n(Q)I A2 

IP - &I4 s Ip _ Ql2(1--X) ’ (3.21) 

thus Equation (3.18) is valid if we let a = 2(1 - A) and B(P, Q) = b(P, Q) IP - Q12(‘-x). 

4. CONCLUDING REMARKS 

The existence of a bounded inverse in 0 of F is the result that is needed in order to prove 
Cercignani’s theorem. In the present paper we have shown that F has a bounded inverse 
in 0, provided that dR is a Lyapunoff surface with purely diffusing boundary conditions; the 
same result should apply for a more general scattering operator I(. A detailed examination 
will be presented in a forthcoming paper. 
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