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The ca. 1.4 Ga Roper Group of the greater McArthur Basin in northern Australia comprises the sedimentary fill of
one of the most extensive Precambrian hydrocarbon-bearing basins preserved in the geological record. It is
interpreted to have been deposited in a large epeiric sea known as the Roper Seaway. Trace element data suggest
that the redox structure of the basin was a shallow oxic layer overlying deeper suboxic to anoxic waters along
with a prominent episode of euxinia. These anoxic and sulfidic conditions, as inferred byMo, V, and U concentra-
tions (molybdenum, vanadium and uranium), developed due to high organic carbon loading consistent with
models that suggest that euxinic conditions cannot develop until theflux of organicmatter is significantly greater
than the flux of bioavailable iron, which permits sulphate reduction to proceed. Considering the high reactive
iron andmolybdenumcontents of these shales and the requirement for S/Fe ratios N 2 for euxinia to develop, sug-
gests that sufficient atmospheric O2 was available for oxidative scavenging of S andMo from the continents. This
is further supported by prominent negative cerium anomalies within these shales, indicative of active oxidative
redox cycling of cerium.Wepropose that thehigh organicmatterfluxwas the result of increased nutrient loading
to the Roper Seaway from weathering of the continental hinterland. Data from both major and high-field
strength elements (niobium, tantalum, zirconium and, hafnium) together with neodymium isotopes (143Nd/
144Nd) indicate that a likely mechanism for this enhanced nutrient delivery was a shift in sedimentary prove-
nance to amore primitive (i.e. mafic) precursor lithology. This switch in provenancewould have increased phos-
phorus delivery to the Roper Seaway, contributing to high primary productivity and the onset of euxinia. This
dataset and model serve as a basis for understanding the temporal evolution of the deepest sections of the
Roper Seaway and finer scale changes in the environment at this time.
Crown Copyright © 2016 Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

TheMesoproterozoic Era (1.6–1.0 Ga) experienced low atmospheric
pO2 (Lyons et al., 2014; Planavsky et al., 2014; Zhang et al., 2016), gen-
erally anoxic deep oceans (Canfield, 1998; Lyons et al., 2009b; Reinhard
et al., 2013; Sperling et al., 2015) although oxic deep water has been re-
ported (Sperling et al., 2014), a low abundance of passive margins
(Bradley, 2008), a period of reduced continental and oceanic arc volca-
nism (Cawood andHawkesworth, 2014), and a relativelywarmand sta-
ble climate (i.e. no evidence for glaciation; (Condie et al., 2001; Kasting
and Ono, 2006). Consequently, theMesoproterozoic has generally been
considered a period of environmental stability within the Earth system,
Box 378, Canberra, A.C.T. 2601,
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comprising the core of the unfortunately entitled “boring billion” years
(1.8–0.8 Ga; (Brasier and Lindsay, 1998; Buick et al., 1995). However,
against this backdrop of environmental stasis, this period includes the
apparent breakup of the supercontinent Nuna (Ernst et al., 2008;
Pisarevsky et al., 2014; Roberts, 2013; Rogers and Santosh, 2002;
Zhang et al., 2012), formation of the Rodinian supercontinent (Li et al.,
2008) and the first appearance of structurally complex microfossils of
likely eukaryotic origin (Javaux et al., 2001, 2004; Zhu et al., 2016).

The ca. 1.4 Ga Velkerri Formation, a black-shale dominated unit
within the greater McArthur Basin of northern Australia is a key envi-
ronmental archive for the early–middle Mesoproterozoic due to its
low metamorphic grade (sub-greenschist), exceptional thickness,
well-constrained age (Kendall et al., 2009) and large variations in or-
ganic carbon content. Previous studies of the Velkerri Formation have
been motivated by its hydrocarbon potential (Donnelly and Crick,
1988; Jackson and Raiswell, 1991; Volk et al., 2003; Warren et al.,
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1998), with a focus on source rock characterisation and hydrocarbon
generating potential. Prior work has shown that the Velkerri Forma-
tion hosts some of the oldest known ‘live’ hydrocarbon occurrences
(Jackson et al., 1986), and continues to generate substantial interest
as an unconventional gas play (Munson, 2014). Despite these
detailed studies on its source rock potential, the environmental
conditions prevailing during the deposition of the Velkerri Forma-
tion have not been fully elucidated. A better understanding of the
interplay between organic matter production, preservation and
environment is essential to developing models for Precambrian
petroleum systems.

High total organic carbon (TOC) content within sediments has been
attributed to various factors including high primary productivity
(Pedersen and Calvert, 1990), warm and wet climatic conditions
resulting in high nutrient fluxes (Condie et al., 2001; Meyer and
Kump, 2008), the combined effects of climate and palaeogeography cre-
ating nutrient traps (Meyer and Kump, 2008), basin redox conditions
facilitating enhanced preservation potential (Hartnett et al., 1998),min-
eralogical controls on preservation potential (Hedges and Keil, 1995;
Kennedy et al., 2002;Mayer, 1994) and the relative rate of clastic to bio-
genic sedimentation (Müller and Suess, 1979). In view of these compet-
ing processes, it is easy to envisage that the relative importance of these
factorsmay vary in both time and space. Therefore, an understanding of
the principal control on organic carbon burial serves to increase our
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understanding of both local and global environments and has implica-
tions for Mesoproterozoic atmospheric oxygen levels.

Here organic carbon data is coupled with major and trace element
geochemistry, neodymium isotopic ratios and high-resolution quantita-
tive mineralogy, in order to discriminate between competing processes
that contributed to the formation of the exceptionally organic-rich sed-
iments of the Velkerri Formation. This approach provides a basis for un-
derstanding key environmental controls on organic matter production
and preservation that can be appliedmore broadly to assessing Precam-
brian petroleum systems.
2. Regional geology

2.1. The Roper Group

TheRoper Group (Wilton Package of Rawlings, (1999)) of theNorth-
ern Territory is younger of the four unconformity-bound sedimentary
packages (Fig. 1A) of the McArthur Basin (Jackson et al., 1987;
Rawlings, 1999). Previous work has left the Roper Group with variable
interpretations with it comprising of three (Warren et al., 1998), five
(Powell et al., 1987) to possibly six (Abbott and Sweet, 2000; Jackson
et al., 1987) shoaling (coarsening up) sequences forming a thick pack-
age (~1–5 km) of dominantly siliciclastic sedimentary rocks preserved
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over ~145,000 km2 (Abbott and Sweet, 2000; Jackson et al., 1987; Sweet
and Jackson, 1986) (Fig. 2).

Significant lateral thickness changes occur within the Roper Group.
It is thin (~1–2 km) in the vicinity of the east–west trending Urapunga
Fault Zone (theUrapunga Tectonic Ridge of Powell et al. (1987)) (Fig. 2),
ofmoderate thickness over the Broadmere Inversion Structure (Lindsay,
2001) (~2 km), and thinnest (b500 m) over the north-south trending
Batten Fault Zone (Fig. 2) (Abbott and Sweet, 2000; Jackson et al.,
1987; Plumb and Wellman, 1987; Rawlings et al., 2004). Southwest of
the Batten Fault Zone, the Roper Group thickens to N5 km in the
Beetaloo Sub-basin (Abbott and Sweet, 2000; Jackson et al., 1987;
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Plumb and Wellman, 1987; Rawlings et al., 2004) (Fig. 2), which is
interpreted to represent the main depocentre of the Roper Seaway
(Abbott and Sweet, 2000; Plumb and Wellman, 1987). Thick sections
are also present north of the Urapunga Fault Zone (Powell et al.,
1987), however, the northerly extent of the Roper Group is lesswell de-
fined but likely extends offshore under the Arafura Basin (Pietsch et al.,
1991; Plumb and Roberts, 1992).

Two contrasting tectonic models have been proposed for the origin
of the Roper Seaway. One model suggests that the Roper Group strata
were deposited in a shallow-marine to shelf environment that originat-
ed as an epicontinental platform in response to lithostatic extension and
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sagging (Betts and Giles, 2006; Foster and Ehlers, 1998; Spikings et al.,
2001; Spikings et al., 2002). A second model suggests that the Roper
Group was deposited on an intracratonic ramp that developed during
orogenic flexure (Abbott and Sweet, 2000).

Donnelly and Crick (1988) inferred deposition of the Roper Group
within a large lake or silled basin based upon isotopically heavy sulphur
values (δ34S + 3.6‰ to +34.4‰) from disseminated pyrite presented
as evidence for a low sulphate environment. In contrast, Jackson and
Raiswell (1991), inferred a marine environment based on C–S–Fe sys-
tematics in the shales of the Velkerri Formation. Shen et al. (2003) pro-
posed that δ34Spyrite values as light as ~−30‰ reflect inner shelf to
basinal gradients in sulphate concentrations in a low sulphate
Mesoproterozoic ocean, consistent with data from other
Mesoproterozoic basins that imply lowmarine sulphate concentrations
(e.g. Kah et al., 1999). A marine origin is further supported by the wide
lateral continuity of the Roper Group (Rawlings, 1999; Rawlings et al.,
2004), facies associations and stacking patterns typical for sequence de-
velopment on a siliciclastic continental shelf, and preserved sedimenta-
ry structures typical of open marine deposition such as hummocky and
swaley cross-stratification (Abbott and Sweet, 2000).

Correlations between the Roper Group and the South
Nicholson Group have been used to infer the existence of a larger
‘Roper Superbasin’ (Abbott and Sweet, 2000; Jackson et al., 1999).
Despite divergence in tectonic interpretations, agreement exists
on its intra-cratonic setting and that its deposition is distinct from
the underlying sedimentary packages of the greater McArthur
Basin.
2.2. The Velkerri Formation

The Velkerri Formation comprises the initial deep water facies of se-
quence 3 ofWarren et al. (1998), sequence L of Jackson et al. (1988) and
the Veloak sequence of Abbott et al. (2001) (Fig. 1A) The Veloak se-
quence comprises dominantly basinal facies, including organic-rich
muds and silts transitioning up-section to cross-bedded sandstones of
the Moroak Sandstone (Fig. 1B). Abbott et al. (2001) define the top of
the sequence as the base of the Sherwin Ironstone (which they regard
as the transgressive systems tract of the overlying Shermi sequence)
and argue that the Veloak sequence representsmainly a high-stand sys-
tems tract above a condensed transgressive systems tract whose base is
the top of the underlying Bessie Creek Sandstone. This is observed in the
Altree 2 core (Fig. 1B), which forms the basis of this study and was
drilled within the Beetaloo Sub-basin (Fig. 2). This core preserves
~930 m of Velkerri Formation mudstones and siltstones, which transi-
tion into minor sandstones at the top of the section, where it is uncon-
formably overlain by basaltic lava flows of the Nutwood Downs
Volcanics. The formation itself is informally sub-divided into the
lower,middle and uppermembers based upon variations in total organ-
ic carbon content (TOC) and gamma ray response (Fig. 1B) (Warren
et al., 1998). The detailed sedimentology of the Velkerri Formation has
been described by Jackson and Raiswell (1991) and Warren et al.
(1998). High resolution X-ray diffraction (XRD) analysis of the fine-
grained components (this study) reveals a dominant mineralogy com-
prising illite, smectite, kaolinite, feldspar, and quartz withminor phases
including glauconite, pyrite and carbonate. As discussed in detail later in
this contribution, this mineralogy varies systematically up section
(Fig. 3).

Two rhenium–osmium (Re–Os) ages of 1417 ± 29 Ma and 1361 ±
21 Ma (Kendall et al., 2009) from the base and top of the Velkerri For-
mation, respectively, constrain the age of the Veloak sequence between
ca. 1420–1360Ma, but given the error on the ages, donot permit precise
constraints on the timescale of Velkerri deposition. These ages are con-
sistentwith a Sensitive High Resolution IonMicroProbe (SHRIMP) U–Pb
zircon (tuff) age of 1492 ± 4 Ma from the Mainoru Formation of the
lower Roper Group (Southgate et al., 2000).
3. Method summary

Rocks samples were obtained from the Altree 2 drillcore, housed at
the Northern Territory core library in Darwin. Samples were collected
approximately every 10 m. Samples were washed to be free of surface
contamination and crushed to a fine powder in a tungsten carbide
mill. X-ray diffraction (XRD) analyses were performed on the raw pow-
der using a Bruker D4™X-ray diffractometer. Quantification of themul-
tiphase mixtures using Rietveld quantitative analysis was undertaken
using the DIFFRAC™ software suite. Major and select trace element
abundances were analysed by X-ray fluorescence (XRF) using a Bruker
S8 Tiger™ spectrometer. Major elements, chromium (Cr), nickel (Ni)
and vanadium (V) were analysed using 30 mm diameter fused beads
prepared from a 1:6 sample/lithium tetraborate mixture from calcined
powder. The trace elements scandium (Sc), rubidium (Rb), strontium
(Sr), zirconium (Zr), niobium (Nb) and yttrium (Y) were analysed
using 35 mm diameter pressed pellets prepared at a pressure of 2 t
from a mixture of 15 g raw sample powder with 1.6 mL of a PVA/
water binder. Trace elements, including rare earth element (REE) anal-
yses, were undertaken via quadrapole inductively coupled plasmamass
spectrometry (Q-ICP-MS) using an Agilent 7500 series machine. Solu-
tions for Q-ICP-MS analysis were prepared from the multi-acid dissolu-
tion of ~200 mg of the individual fused disks. Ten replicate samples
were analysed along with multiple analyses of two international shale
standards (SCo-1 and SBC-1— see Table S2) and a single internal basalt
standard (WG1 — see Table S2). Samarium and neodymium (Sm–Nd)
analyses were carried out on purified (via chromatography) Sm and
Nd solutions after multi-acid digestion of calcined powders. Measure-
ments were made on a Nu Plasma II Multicollector Inductively Coupled
Plasma Mass Spectrometer (MC-ICP-MS) and internal mass fraction-
ation was corrected utilising the isotope dilution method. Total organic
carbon measurements and Rock-Eval pyrolysis parameters were deter-
mined via pyrolysis using ~60 mg of raw sample powder with blanks
run every 10 samples on a Rock-Eval 6™ instrument. Rock-Eval pyroly-
sis data was screened using quality control criteria defined in Hall et al.
(2016). Details of these methods can be found in the Supplementary
material.

4. Results

4.1. Mineralogy

Major mineral phases for the Velkerri Formation shales include
quartz, kaolinite, smectite, K-feldspar, plagioclase and illite, while
minor phases include glauconite, pyrite, magnetite and carbonate.
While nearly all samples contain this assemblage, systematic changes
occur with depth (Fig. 3). Specifically, the abundance of plagioclase de-
clines markedly up section, disappearing (from detection) altogether
above ~597 m, which corresponds to a significant increase in kaolinite
content. Most samples contain both siderite and dolomite with both
being only a minor component of most samples (generally b1%). Two
exceptions contain 34% (at 410.55 m) and 42% (at 480.65 m) siderite.
Total clay mineral content of all samples varies between 22% and 69%.
Based on the black shale series of Stribrny and Urban (1989), the
upper Velkerri Formation primarily consists of argillaceous to siliceous
shales, the middle Velkerri of argillaceous black shales, while the
lower Velkerri are dominantly argillaceous shales with minor intervals
of argillaceous black shales.

4.2. Rock-Eval pyrolysis

Total organic carbon (TOC) for the Velkerri Formation shales
(Fig. 4A) varies from 0.04% to 8.07% (average = 1.96%, st. dev. = 2.17)
with the highest TOC contents confined principally to the middle
Velkerri (average = 4.63%, st. dev. = 0.7%). Using the quality control
criteria defined in Hall et al. (2016), the majority of samples provide
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reliable datawhile analysis of standard referencematerial shows the ac-
curacy and precision of the Rock-Eval pyrolysis analyses which were
less than one standard deviation (see Table S2). Middle and upper
Velkerri samples have low Tmax values indicative of low thermal matu-
rity while values for the lower Velkerri indicate overmaturity. Member
averages for Rock-Eval pyrolysis variables are shown in Table 1. Expla-
nation of Rock-Eval pyrolysis variables is listed in Table S1 while the
full data set can be found in Table S4 of the Supporting Supplementary
material.

4.3. Major and trace elements

Fig. 5 shows stratigraphic variations in selected environmentally
sensitive major and trace elements. FeT/Al ratios are variable but are
higher than that of the Post Archean Australian Shale (PAAS) composite
(Fig. 5A) (Taylor and McLennan, 1985). Molybdenum (Mo) exhibits
strong up-section variations reaching maximum observed concentra-
tions of nearly 100 ppm within the middle Velkerri (Fig. 5C), whereas
Mo/TOC data indicate that Mo concentrations are partially decoupled
from TOC (Fig. 5D). Trends for uranium (U) and vanadium (V) are
similar to that of Mo (Fig. 5E–H). Phosphorous (P) concentrations are
generally found at crustal concentrations (Taylor and McLennan,
1985) within organic-poor shales but are enriched by an order of mag-
nitude in organic-rich shales (Fig. 5B). REE concentrations (Table S6) are
typical of shales (i.e. PAAS; (Nance and Taylor, 1976) but variations in
calculated cerium anomalies (Ce*) are present and are observed in
organic-rich rich samples (Fig. 5I). No positive Eu anomalies (Eu*) are
evident (Fig. 5J). The full major and trace element dataset can be
found in the Supporting Supplementary information (Tables S5 and S6).
4.4. Sm/Nd isotopes

Sm/Nd analysis was undertaken on 28 samples covering the lower,
middle and upper Velkerri Formation. Initial εNd(t) varies from primitive
values of +0.7 to as evolved as −6.6, whereas initial 147Sm/144Nd
values fall within the distinctly crustal range, averaging 0.1254, typical
of Proterozoic sediments (Goldstein et al., 1984). Although variations
occur between the variousmembers of theVelkerri Formation, averages
for each member reveal that the middle Velkerri Formation is the most
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isotopically primitive member from the perspective of both εNd(t) and
147Sm/144Nd ratios. Full results are detailed in Table 2.

5. Discussion

5.1. Evaluation of total organic matter and source rock potential

Pyrolysis data suggest that variations in thermal maturity (Tmax) are
decoupled from kerogen content (i.e. S2, r = −0.17, statistically insig-
nificant atα=0.05) with a small inverse relationship with free hydro-
carbon content (S1, r = −0.21, statistically significant at α = 0.05)
(Table 3). A plausible interpretation of this relationship is that very little
organic matter has been lost (i.e. by generation and expulsion of hydro-
carbons) from the upper and middle Velkerri samples. Consequently, it
seems likely that the TOC measured is an accurate reflection of primary
organic matter content.

With respect to the upper and middle Velkerri, while they have
largely indistinguishable thermal maturity based on invariant Tmax

(Table 1 and Fig. 4), hydrocarbon production (i.e. PI= S1/(S1+S2)) in-
creases with depth from the upper to middle Velkerri (Fig. 6), this co-
variation with respect to depth, most likely indicates increasing
thermal maturity with burial depth. However, this relationship breaks
down at either side of the informal middle–lower Velkerri boundary.
The variance exhibited in both TOC and PI for the lower ~200 m to
300 m of the Velkerri Formation, and seen elsewhere in the McArthur
Basin (Crick et al., 1988; Warren et al., 1998), is possibly best explained
by their increased thermal maturity and variable retention and expul-
sion of hydrocarbons. This increase in thermal maturity for the lower
Table 1
Rock-Eval variables presented as averages for eachmember of the Velkerri Formation. HI= hyd
organic carbon, RC = residual carbon, MINC = mineral carbon, PI = production index (PI = [

Member S1 S2 S3 Tmax (°C)

Ave. Upper Velkerri 0.34 1.90 0.40 428.43
St. Dev. Upper Velkerri 0.61 3.38 0.48 5.31
Ave. Middle Velkerri 2.10 11.50 0.26 431.23
St. Dev. Middle Velkerri 0.73 6.37 0.10 5.67
Ave. Lower Velkerri 0.22 0.63 0.09 463.05
St. Dev. Lower Velkerri 0.47 1.23 0.06 25.31
Velkerri Formation may be simply a function of increased burial
depth, alternatively, the presence of proximate dolerite sills in the
lower portions of the Altree 2 core may have resulted in post-
depositional magmatic heating. The ‘live’ oil in BMR Urapunga 4
(Jackson et al., 1986) is attributed to transient magmatic heating of
organic-rich rocks over a narrow depth/maturity interval (Crick et al.,
1988). Considering that dolerite sills are found throughout the
McArthur Basin (Abbott et al., 2001), this may be either a regional fea-
ture of the Beetaloo Sub-basin or it may apply to the entire extent of
the Roper Group.

5.2. Basin redox conditions

5.2.1. Deep water redox
In order to assess basin redox conditions, we havemade use of those

trace elements that are naturally redox sensitive and exhibit substantial
changes in behaviour through the transition from oxic, suboxic, anoxic
to euxinic conditions. The elements Mo, V and U have been commonly
used for this purpose (e.g. Algeo and Maynard, 2004; Kunzmann et al.,
2015; Lyons et al., 2009a; Tribovillard et al., 2006).

Molybdenum (Mo) is a widely used tracemetal redox indicator hav-
ing formed the basis formanyprominent redox studies (e.g. Anbar et al.,
2007; Scott et al., 2008). Under oxidising conditions Mo is weathered
from crustal sulphides and delivered to themarine environment via riv-
ers. Mo occurs as the molybdate ion in seawater (MoO4

2−) and is the
most abundant trace metal in the modern ocean (Tribovillard et al.,
2006) being present at levels of ~105 nM (Collier, 1985). Its utility as
a redox proxy is related to the fact thatMo concentrations areminimally
rogen index (HI= 100 ∗ S2 / TOC), OI= oxygen index (OI= 100 ∗ S3 / TOC), TOC= total
S1 / (S1 + S2)]). See Table S1 for further explanation of Rock-Eval variables.

HI OI TOC RC MINC TPI

130.19 67.16 0.97 0.76 0.43 0.12
82.77 96.58 0.97 0.67 0.64 0.08
238.77 8.35 4.63 3.49 0.26 0.19
72.12 9.42 1.96 1.51 0.52 0.08
67.62 63.67 0.75 0.67 0.07 0.11
30.73 74.46 1.35 1.21 0.11 0.10
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Fig. 5. Selected redox sensitivemajor and trace element plots element versus stratigraphic height. (A) FeT/Al, (B) P/Al, (C)Mo concentrations. (D)Mo/TOC, (E) V concentrations, (F) V/TOC
contents, (G) U concentrations, (H) U/TOC contents, (I) Ce anomaly calculated as Ce*SN = CeSN / [0.5(LaSN + PrSN)] where SN refers to shale normalisation using PAAS. (J) Eu anomaly
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affected by detrital material, it complexeswith organicmolecules, and it
reacts strongly with hydrogen sulphide, such that it is effectively re-
moved from seawater and porewaters under anoxic and sulphidic (i.e.
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with PI is apparent.
euxinic) conditions. Mo concentrations above background (i.e. crustal
and average shale values) occur when it is trapped in shales through
the deposition of organo-metallic complexes, where basin anoxia al-
lows for the preservation of organic matter (this still requires hydrogen
sulphide of ~10 μM(Erickson andHelz, 2000) to quantitatively form the
particle reactive thiomolybdates (Scott and Lyons, 2012), or under
euxinic conditions where it can be sequestered in sediments by sul-
phides. Enrichments are also linked to the global Mo seawater invento-
ry, which is linked to atmospheric O2 level, consequently, authigenicMo
enrichment requires both an oxidative source ofmolybdate (Scott et al.,
2008) and hydrogen sulphide to be sequested in sediments (Scott and
Lyons, 2012).

Vanadium is the second most abundant trace metal in modern sea-
water (~40 nM) (Tribovillard et al., 2006) and also has strong affinities
towards organo-metallic complexes (Algeo andMaynard, 2004). Specif-
ically, under oxic conditions, vanadium occurs as V5+ as vanadate
oxyanionswhile under anoxic conditions V5+ is reduced by both organ-
ic compounds and hydrogen sulfide to V4+ (Breit and Wanty, 1991).
Consequently, while organic matter and authigenic clays (Peacor et al.,
2000) are the sinks for V, marked enrichment occurs at both the oxic–
anoxic boundary and anoxic–euxinic boundary (Algeo and Maynard,
2004; Tribovillard et al., 2006). Hyper V enrichment is also documented
when sulphide levels are high enough so as to allow further reduction of
V4+ to V3+ (Breit andWanty, 1991; Lewan andMaynard, 1982;Wanty
and Goldhaber, 1992).

Uranium also shares some of the above characteristics, and is pres-
ent in seawater in the oxidised form of U6+ but at lower concentrations
(~13.4 nM) thanMo andV and is typically bound to dissolved carbonate
ions (UO2(CO3)34−); (McManus et al., 2005). Most simply, when
oxidised, U is soluble and when reduced it is immobile (Langmuir,
1978). Uranium has a similar redox potential to Fe over a wide range
of pH conditions (Barnes and Cochran, 1993; Bruno et al., 1995), but is
unaffected by the redox cycling of Fe and Mn complexes. McManus
et al. (2005) showed that U inversely correlates with oxygen
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penetration depth and is positively correlated with TOC content. This
correlation persists under euxinic conditions, revealing the decoupling
of U from sulphide phases (Klinkhammer and Palmer, 1991;
Tribovillard et al., 2006). Consequently, in a dominantly oxic water col-
umn, U enrichment may occur within the sediment below the oxygen
penetration depth, however, undermildly anoxic water column, it is re-
duced to U4+ and precipitates as UO2, U3O7, or U3O8 (Klinkhammer and
Palmer, 1991; Tribovillard et al., 2006). The formation of organo-
metallic complexes may speed the transport of U from the water col-
umn to sediments (Klinkhammer and Palmer, 1991; McManus et al.,
2005; Tribovillard et al., 2006).

In summary, Mo, V and U contents used together, highlight crucial
redox controlled variations in their abundances; specifically, Mo and
V, show strong linear covariation under anoxic conditions, being re-
moved by organic matter, but undergo further nonlinear enrichment
when conditions become euxinic and sulphide sinks become important.
U is enriched under both low oxygen and anoxic (sulphidic and ferrugi-
nous) conditions (Anderson et al., 1989; Klinkhammer and Palmer,
1991).

Fig. 5 shows that Mo and V are enriched above values typical of the
Post Archean Australian Shale (PAAS (Nance and Taylor, 1976)) for
the middle Velkerri Formation and some samples of the upper and
lower Velkerri Formation, while U is enriched with respect to PAAS
throughout the entire formation (Fig. 5G). Correcting for variable dilu-
tion by biogenic and authigenic phases (i.e. organic matter, opal, car-
bonate) through normalisation to Al (Calvert and Pedersen, 1993;
Tribovillard et al., 2006) it is evident that trace element (TE) values co-
vary significantly with TOC contents (Fig. 7). This simple linear relation-
shipwith TOC content, however, breaks down at both low (~b0.5%) and
high (~N4%) values. Themechanistic underpinnings for this relationship
have been described by Algeo andMaynard (2004) and Scott and Lyons
(2012), where strong linear relationships between TE enrichments and
TOC persist under sub-oxic and anoxic conditions where the principal
sink for these TEs is organo-metallic complexes. At higher TOC contents,
TE enrichments are still ubiquitous, but do not covary linearly with TOC
because under these conditions, the presence ofwater column sulphide,
as a sink itself (i.e. for Mo), or in the case of V and U, leading to further
reduction and precipitation of reduced V and U species.

This observed pattern in TE enrichment versus TOC content (Fig. 7)
suggests pore water enrichment between ~0.5% and ~4% TOC (suboxic
to anoxic, non-euxinic; closed system) and water column enrichment
above ~4% TOC (euxinic—water columnH2S, open system), and conse-
quently euxinic conditions (Algeo and Maynard, 2004; Scott and Lyons,
2012). In contrast to the middle Velkerri samples, themajority of upper
Velkerri samples exhibit strong linear TE covariation with respect to
TOC content, consistent with a dominant role for an organic matter
sink under suboxic or anoxic conditions (Algeo and Maynard, 2004;
Scott and Lyons, 2012).

So far we have limited our discussion of redox to the middle and
upper Velkerri Formation, whereas the lower Velkerri Formation sam-
ples have variable TE enrichments (Figs. 5 and 7) and show little to no
covariance with respect to TOC contents. However, FeT/Al ratios reach
values as high as ~0.8 (Fig. 5A), Mo concentrations reach values up to
maximum of 12 ppm (Fig. 5C), maximum V of ~200 ppm (Fig. 5E),
and U is uniformly enriched with respect to typical shale values
(Fig. 5G). However, TOC contents in the lower Velkerri Formation ap-
pear to have undergone post-depositional changes (Figs. 4 and 6), and
consequently the original redox conditions may be somewhat ambigu-
ous. Despite ambiguity in regard to the lower Velkerri member, redox
sensitive trace element data are consistent with suboxic to anoxic bot-
tom waters with occasional episodes of euxinia during the deposition
of the Velkerri Formation sediments. These episodes of euxinia are
most pronounced during deposition of the middle Velkerri and lower
parts of the upper Velkerri.

Johnston et al. (2010) suggested that in a low pO2 environment, and
consequently a low nitrate environment, the dominant electron
acceptors would be Fe3+ and SO4
2−. Taking into account their relative

order of reduction (Fe3+, then SO4
2−), Johnston et al. (2010) argued

that sulphate reduction should not proceed until all reactive Fe3+ had
been reduced. Based on stoichiometric relationships, and in anoxic
and nitrate poor environments, this would not occur until the flux of or-
ganic matter was 4.25 times the flux of reactive Fe3+. Considering the
high TOC content of the middle Velkerri samples, it is plausible that
this model for euxinic conditions explains the onset of euxinia during
this time and that the organic flux exceeded this threshold, allowing
for euxinia to develop.

An important implication of this euxinic episode is that euxinia re-
quires S/Fe ratios to exceed 2 and considering that FeT/Al ratios
(Fig. 5) and the presence of siderite (Table S3) suggest high levels of re-
active Fe, very high levels of seawater sulphate would be required for S/
Fe ratio N 2. This is combined with the high Mo values recorded by the
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middle Velkerri (up to 100× crustal values), also require high levels of
seawater Mo (Scott et al., 2008). This combination would seem to re-
quire significant levels of atmospheric O2 (Scott et al., 2008) to supply
the necessary Mo and SO4

2− to the water column. Consequently, the re-
sults presented provide indirect evidence against the upper pO2 esti-
mate of b0.1% PAL (Present Atmospheric Level) recently published by
Planavsky et al. (2014) and are more consistent with estimates of
pO2 N 4% PAL (Gilleaudeau et al., 2016; Zhang et al., 2016).

5.2.2. Oxygenated surface waters?
Whereas the shales of the Velkerri Formation provide evidence for

suboxic to anoxic bottom waters with occasional episodes of euxinia,
they also display negative cerium anomalies (Ce*), which are typically
associatedwith anoxygenatedwater column. In themodern ocean, sea-
water contains a prominent negative Ce* with respect to bulk earth
(Elderfield et al., 1981). This relative depletion in Ce results from the ox-
idation of Ce3+ to Ce4+ and incorporation into ferromanganese nodules
(Elderfield and Greaves, 1981; Nagender Nath et al., 1994), which con-
versely preserve positive Ce*. Thus Ce anomalies are sensitive to the
redox state of the water column, because under oxic conditions, it is
preferentially converted to Ce4+ and removed from seawater, whereas
under anoxic conditions, it should behave like its neighboring REEs.

To discriminate against the effect of positive La anomalies, we have
used the method of Bau and Dulski (1996) to define true negative Ce*
(Fig. 8). The Velkerri shales define a coherent array into the field of un-
ambiguous negative Ce anomalies, having values for both Ce* and Pr*
that fall well away from unity (Fig. 8).

Although interpretation of the Ce data is complicated by the influ-
ence of the detrital component to these sediments (i.e. with REE compo-
sitions similar to PAAS), the variations in Ce* apparent in Fig. 8 suggest
at the very least, active Ce redox cycling in the Roper Seaway. Further-
more, if it is assumed that the few samples with a positive Ce* are a re-
sult of local Ce cycling under suboxic to anoxic conditions (Slack et al.,
2007), the array of Ce* and Pr* data is broadly consistent with mixing
between an end member with no Ce* and a component that carries an
authigenic signature. The relationship between Ce* and TOC content
(Fig. 9) indicates that the negative Ce* is limited to those samples
with TOC values greater than ~2%, whereas those with low TOC values
have no negative Ce anomaly. This pattern suggests that the negative
Ce* is carried by organic matter.

Negative Ce* hosted in the organicmatter content of black shales has
been interpreted to represent an authigenic imprint of oxygenated sea-
water (Dumoulin et al., 2011; Pi et al., 2013; Slack et al., 2015).
Positive La
anomaly

Positive Ce
anomaly

True
negative Ce

anomaly

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
0.6

0.8

1.0

1.2

1.4

Pr*SN

Upper VelkerriMiddle VelkerriLower Velkerri

C
e*

S
N

UCC
PAAS

Fig. 8. Shale normalised Ce and Pr anomalies cross plot after Bau and Dulski (1996).
Ce*SN = CeSN / 0.5[LaSN + PrSN], Pr*SN = PrSN / 0.5[CeSN + NdSN]. Normalization was to
the Post Archean Australian Shale (PAAS) (Nance and Taylor, 1976). Values for the
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Considering that negative Ce* is generated in oxic seawater and record-
ed by authigenic minerals precipitated from seawater, the negative Ce*
in theVelkerri shalesmost likely records highly productive zoneswithin
the surface mixed layer of the Roper Seaway. Once again, these results
provide indirect evidence against an upper pO2 estimate of b0.1% PAL
(Planavsky et al., 2014).

Shen et al. (2003) independently argued for a redox stratified Roper
Seaway, with a shallow oxic layer and anoxic deepwaters based on sul-
phur isotope and iron speciation data. Furthermore, hematite oolitic
iron formation is present within the Roper Group (Sherwin Iron Forma-
tion; Fig. 1A). Whereas ferrous iron may be oxidized by either oxygenic
or anoxygenic pathways (Bekker et al., 2010), the presence of negative
Ce* in the black shales analysed herein, favors the former, either in mi-
croenvironments rich in cyanobacterially-generated O2 or, more broad-
ly under oxic conditions in shallow waters.

5.3. Controls on organic matter: climate, sediment provenance and basin
redox?

Whereas basin redox conditions may strongly influence organic
matter preservation (i.e. Hartnett et al. (1998)), the observation that
suboxic to anoxic and euxinic conditions persisted throughout much
of the deposition of the Velkerri Formation, suggests that other factors
contributed to the variations observed in TOC content. Here we explore
two possible extrinsic controls on primary productivity and organic car-
bon burial in the Roper Seaway; climate and nutrient delivery.

Changes in bulk rock mineralogy and bulk rock chemistry of shales
are sensitive to both climate and changes in sediment provenance.
Nesbitt and Young (1982) introduced the Chemical Index of Alteration
(CIA= [Al2O3] / [Al2O3 + CaO* + Na2O + K2O] × 100 in molar quanti-
ties) and determined that the CIA in shales scaled directly with the in-
tensity of chemical weathering, because more heavily weathered
source rocks should be more Al2O3-rich. As chemical weathering is
strongly affected by climate, they argued that the CIA could be used as
a climate proxy where high values indicate warm and wet conditions
in the sedimentary catchment, whereas low values indicate dry and
cool conditions. This prediction, often corroborated by quantitative
mineralogy, has been borne out in numerous studies (Colin et al.,
2006; Fagel, 2007; Gingele et al., 1998; Schneider et al., 1997).

Due to the influence of climate on the intensity of chemical
weathering and hence on bulk sediment geochemistry, changes in cli-
mate can drive changes in nutrient delivery to the oceans, and thus im-
pact primary productivity. In short, intense weathering, so long as
accompanied by a regular supply of new material, should increase
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nutrient fluxes. Stratigraphic variations in TOC content, feldspar/kaolin-
ite ratios and CIA through the Velkerri Formation appear to confirm
such a relationship (Fig. 10); TOC and feldspar/kaolinite ratios are
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Fig. 11.Covariation of Al, Zr, Ta, Hf andNb. AsAl is supplied overwhelmingly by the detrital
fraction of shales, such covariation implies that the HFSE are also hosted by the detrital
fraction of these shales.
strongly positively correlated (r = 0.87), whereas TOC and CIA are
strongly but inversely correlated (r = −0.79).

A prima facie interpretation of the coupled feldspar/kaolinite ratios
and CIA data is that the middle Velkerri shales record a shift to less in-
tense chemical weathering, presumably due to the onset of a cooler
and drier climate. However, high TOC levels during the low CIA interval
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are unusual given that cooler conditions and lower release of nutrients
should impede primary productivity and organic carbon burial. This
paradox could be resolved if the changes in mineralogy and whole
rock geochemistry, at least in part, reflect changes in sedimentary prov-
enance rather than climate alone. To evaluate the contribution of source
rock variations to the CIA signal, we examine high field strength ele-
ments (HFSE) of Nb, Hf, Ta and Zr which tend to be depleted in mafic
versus felsic rocks (Sun and McDonough, 1989; Taylor and McLennan,
1995). The HFSE are largely redox-insensitive (Takeno, 2005), have no
known biological function, have extremely low aqueous solubilities
901

850.9

800.8

750.7

700.6

SiO2 (wt. %)P2O5 (wt. %)

0.1

650.5

600.4

550.3

500.2

450.1

400

0.2K
D

E

0.3

0.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1
60

0.9
58

0.8
56

0.7 54
0.6 52

0.2

P2O5 (wt. %) SiO2 (wt. %)

0.5 50

0.4 48

0.3 46

0.2 44

0.1 42

0.4

0 40

0.6K
D

E 0.8

1

1.2

1.4

0.2

0.4

0.6

0.8

1

1.2

A) Continental Flood Basalts

C) Arc Volcanics

Median SiO2 = 50.23
Median P2O5 = 0.23

Median SiO2 = 57.10
Median P2O5  = 0.17

Fig. 15. Phosphorus in igneous rocks. X and Y axis are in weight percent oxide while the Z ax
(A) continental flood basalt (CFB), (B) rift volcanics, (C) arc volcanics and (D) Archean b
compositions and depleted in felsic compositions. Data is from the GEOROC repository (http://
Modified from Cox et al. (2016).
(i.e. pM; (Firdaus et al., 2011)), and are largely immune to secondary al-
teration. Consequently, HFSE concentrations in shales should be primar-
ily determined by the siliciclastic fraction, as seen in their covariation
with Al (Fig. 11). Furthermore, HFSE cross plots clearly lie along the
mantle-continental crust array (Fig. 12), which is distinct from the
HFSE Zr–Hf array in seawater (Fig. 12A) (Firdaus et al., 2011). It is evi-
dent that the middle Velkerri shales have more primitive HFSE compo-
sitions than either the lower or upper Velkerri shales (Fig. 12).

Evidence for amore primitive source to themiddle Velkerri shales is
also apparent in the Sm/Nd isotopic variations. While the sampling
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resolution is coarser, εNd(t) variations show a clear shift to more primi-
tive compositions for themiddle Velkerri samples (Fig. 13). This isotopic
shift, when considered in conjunction with the primitive HFSE compo-
sitions, is hard to reconcile with anything other than amoremafic prov-
enance for the middle Velkerri Formation.

The CIA values from the Velkerri Formation need to be viewed
against the backdrop of a shift in provenance, which would strongly
alter bulk chemistry. Major element CN–K–Al ternary plots (Fig. 14),
while showing a typical chemical weathering trend (Taylor and
McLennan, 1995) towards Al2O3-rich compositions, also reveal that
the middle Velkerri is less chemically weathered, having distinctly
lower CIA values (Fig. 14A). Critically, however,middle Velkerri samples
are also offset towards the CaO–Na2O–Al2O3 join (Fig. 14B), intersecting
the plagioclase-potassium feldspar join atmore plagioclase rich compo-
sitions, indicative of differing provenance (Fedo et al., 1995). As the
slopes of the two trends (Fig. 14B) are the same, increased potassic al-
teration of clays cannot explain this observation, as potassic alteration
of clays from a common source terrain results in differing slopes but
identical intercepts along the plagioclase-potassium feldspar join
(Fedo et al., 1995). Furthermore, if this offset was due to authigenic K-
feldspar formation (alteration of plagioclase to potassium feldspar) we
would expect to see strong negative covariation between plagioclase
and potassium feldspar, especially for the middle and upper Velkerri,
such a trend is not observed (Fig. 3). This does not preclude potassic al-
teration, but does imply that it is not a major driver of major element
variations. Consequently, major element data is consistent with a
more primitive provenance contribution for themiddle Velkerri, as sup-
ported by HSFE and Nd isotope data.

5.4. A mafic nutrient pump

While it has been determined that changes in climate (i.e. warmer
andwetter conditions) can result in an increase in the nutrientflux sup-
plied to sedimentary basins, the same can be achieved when sediment
provenance changes to a more primitive (i.e. mafic) composition due
to the relative phosphorus enrichment of mafic lithologies (Fig. 15).
Such a scenario has been proposed for the Neoproterozoic through the
preferential weathering of contemporary Large Igneous Provinces
(LIP) (Cox et al., 2016; Horton, 2015; Rooney et al., 2014). Amafic nutri-
ent pump driven by the weathering of continental mafic lithologies is
supported by large compilations of Continental Flood Basalt (CFB)
(Fig. 15A), rift volcanics (Fig. 15B), continental arc (Fig. 15C) and Arche-
an basement (Fig. 15D) data. These data highlight that a switch to the
weathering of rocks with a more primitive composition has the poten-
tial to increase phosphorous delivery to sedimentary basins. This flux
would be pronounced for CFB's (Cox et al., 2016; Horton, 2015), but
would also be apparent for most continental mafic lithologies
(Fig. 16). Increased nutrient delivery would be further enhanced by
the ~10× greater weatherability of mafic lithologies over their felsic
counterparts (White and Brantley, 1995), potentially offsetting any
switch to a colder and drier climate, which is suggested by the CIA
data (Figs. 10 and 14). Assuming that phosphorus is the limiting nutri-
ent on geological timescales (Tyrrell, 1999), an increase in mafic prove-
nance, as evinced by HFSE (Fig. 12), εNd(t) (Fig. 13) and major elements
(Fig. 14), may help account for the high organic content of the middle
Velkerri shales, reconciling the increased TOC content with a climate
signal suggesting cooler and drier conditions.

5.5. Implications for continental reconstructions

Variations in the isotopic composition of fine-grained sediments, in
particular, variations towards more primitive signatures, have been
used previously to constrain the extent of eroded flood basalt provinces
(Barovich and Foden, 2000; Cox et al., 2016).While there is no direct ev-
idence for contemporary emplacement of continental basaltswithin the
Roper Group during deposition of the Velkerri Formation (Abbott et al.,
2001; Ernst et al., 2008), rifting of the North Australian Craton (NAC)
from Laurentia has been proposed at ~1380 Ma (Betts and Giles,
2006; Mulder et al., 2015; Pisarevsky et al., 2014). Possible Australian
source terranes include the ~1600 Ma mafic granulites of the Yambo
Metamorphic Group (Blewett and Black, 1998; Blewett et al., 1998)
and similar aged mafic magmas associated with the Holroyd Group, Sa-
vannah Province (Blewett et al., 1997). Non-Australian source terranes
that are coincident with ~1380 Ma rifting include the Hart River sills
and dykes of northwestern Laurentia (1380 + 5.3/−3.7 Ma; (Abbott,
1997; Thorkelson et al., 2005). While this link between Laurentian vol-
canism and source provenance for the Roper basin is speculative, it is
consistent with the available age constraints for deposition of the
Velkerri Formation of 1417 ± 29 Ma and 1361 ± 21 Ma (Kendall
et al., 2009).

6. Conclusion

Our new dataset provides a temporal record of the deep-basin com-
ponent of the Roper Seaway. Trace element data reveal that the basinal
waters were suboxic to anoxic with episodes of euxinia. This onset of
euxinia occurred during an influx of organic matter, this flux may
have been greater than the contemporary reactive Fe flux, allowing
H2S to build up. Considering that euxinic conditions require the S/Fe
ratio to be greater than 2, and that the Velkerri Formation geochemistry
imply high levels of reactive Fe, significant sulphate must have been
available for sulphate reduction. This implies that sufficient levels of at-
mospheric O2 were available to drive the oxidative continental
weathering of sulphides. Furthermore, although deep-water suboxic
to anoxic conditions prevailed, the presence of negative Ce anomalies
at the very least, implies active redox cycling of Ce, and most likely
points towards oxygenated shallow water.

Asmajor and trace element data support long-lived suboxic to anox-
ic deep-water, the high organic content of the middle Velkerri Forma-
tion cannot be explained through redox-controlled enhancement in
preservation potential, nor through climate change. However, the high
TOC contents can be reconciled due to its covariation with both major
element and high-field strength element abundances, and 143Nd/
144Nd ratios, with a transition in sediment provenance to more mafic
sources. These mafic sources would have resulted in increased phos-
phorus delivery, potentially resulting in enhanced primary productivity.
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