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1. Introduction, notatinn, and results

Let R be a complete discrete valuation ring with prime element n and residue
field k. Let A be an R-order in the semisimple finte-d.mensional algebra over the
quotient field of R and A, a hereditary R-order in the same algebra such that
rad AgCACAy. Put A=A/rad Ay, B=Ay/rad Ay. Then A is a k-subalgebra of
the semisimple k-algebra B. We assume A to be basic, so that A, too.

In this paper, we shall study latt A, the category of all right A-lattices, through
a generalized vector space category K associated with 4 and B. Recently, Green and
Reiner [2] and Ringel and Roggenkamp [4] have succeeded to reduce latt A to a
certain subcategory over an artinian k-algebra obtained from 4 and B. Then it has
become a problem to investigate these subcategories arising from latt A. Green and
Reiner [2], Ringel and Roggenkamp [4, 5], Roggenkamp [6] have considered this
problem under some conditions. On the other hand, Ringel [3] and Simson [7] have
investigated vector space categories, in particular, Simson [7] showed many useful
results by using a category of socle projective modules over a right peak ring. Thus
applying the results of [7] we can consider orders which include those in [2,4,5,6].

Following Simson [7, §6, B] for K=K, X --- X K, with each K; a division ring, a
generalized vector space category K over K is an additive category with a faithful
additive functor |-|:K—mod K, where mod K is the category of all finitely
generated right K-modules. The factor space category V(K) of K is defined as
follows. The objects of V(K) are triples (V, X, ¢) where Vemod K, XeK, and
@:|X|x— Vg is a K-homomorphism. The map from (V, X, ) into (V', X',¢"} s a
pair (4, h) with ue Homg(V, V') and he Homg(X, X’) such that ¢'|h|=u@. Let
V,(K) be the full subcategory of V(K) consisting of the objects which have no
direct summands of the form (V,0,0) or (0, W,0) where Vemod K and WeKX.

We shall define the generalized vector space category K which plays a crucia. role
in this paper. Let S;,..., S, be the representatives of nonisomorphic simple right
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B-modules. Put K;=Endg §; (1=si<t), K=[]/_,K;, G=@|_, S;. Thea each K,
(1<is<t) is a division ring over k and G is a K-B-bimodule. Put X*=Homg(X, K)
for a K-module X. We put K={Hom,(P, xG)* I P is a finitely generated projective
A-module} (cf. [3,3.2], [8, Theorem 1.1]). Then K is a generalized vector space
category over K. We note Homg(Hom,(P, G)* Hom, (P, G)*)=Hom,(P, P’) by
definition.

We have our main result.

Theorem 1. There exists a representation equivalence latt A = V;(K).

A B
C=
(6 »)
be a generalized triangular matrix k-algebra. Let ¢ be a full subcategory of mod C
consisting of the modules X =(P,, V3, ¢) such that P, is finitely generated projec-
tive, ker ¢Crad P4, and Im ¢ - B=V, where we identify Xemod C with a triple

(P4, Vg, ¢), Pemod A, Vemod B, p e Hom,(P, V). In [2,4] the following was
proved.

Let

Theorem 2. There exists a representation equivalence latt A= %.

Indeed, we shall show the following.

Theorem 3. There exists a functor & : mod C — V(K) which induces a representation
equivalence ¢ = V;(K).

Thus Theorem 1 follows from Theorems 2 and 3.

Let M,,...,M, be all pairwise nonisomorphic indecomposable objects in K.
Then we can associate to K the right peaks k-algebra, that is, a finite-dimensional
k-algebra which has a projective right socle

E M n
Cx= (o EK">, where M= @ |M;|, E=Endg M.
N i=1

Combining Theorem 1 with [7, Theorem 3.3] we get.

Theorem 4. There exists u representation equivalence latt A= moclsp Ck, where

modsp Cx is the full subcategory of mod Cx whose modules have a projective socle
and no direct summand of the form (0,K;,0).

In what follows, the notation provided above is preserved.
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2. Proof of Theorems 3 and 4

We construct the functor @:mod C— V(K). Let X=(Uy, Vg, ¢9)emod C with
¢eHom,4(U, V). Let p: P~ U be a projective cover of U, and J the composition
Hom(V, G) —=%9), Hom(U, 6) —2229), yom(p, G),

Then 6*: Hom(P, G)*~>Hom(V, G)*is a K-homomorphism of right K-modules. Let
@d(X)=(Homg(V,G)* Hom,4(P,G)* d*) € V(K). Defining &(u) naturally for
ueHome(X, X') we get a functor @ : mod C—V(K). Let Y =(Vg, Hom(P,G)* y,) e
V), y=yi, V*=TI;_, K" Put w=(W) <i<, With y;:xK*—xHomy(P,S)
and each y; =(y;)1<j<q, With y;;: g K;=Hom,(P, ) for 1<i<t. Let ¢; =y, (1)
(Isistl=sj=s@), ;=@ sj<q, (1Si<t)and ¢=(9;);<i<,- Then g eHom4(P, V)
where V=@@;_, $* and we can prove X=(P,V,¢)emod C and &(X)=7Y. It is
clear that @ induces a representation equivalence ¢ = V;(K).

Although Theorem 4 follows from Theorem 1 and [7, Theorme 3.3}, we add some
explanations here. Especially, we replace Cx by a ring obtained directly from A4
and B and construct a functor ¥: mod C —~mod Cg which induces a representation
equivalence % zmodgp Cx. According to [7], we call a ring R’ a right peaks ring if
R’ is semiperfect with essential and projective right socle. By [7, Proposition 2.2]
a right peaks ring has a triangular form

T Ng
(o %)
where F'=[] F; is a product of finite division rings F; and a 7-F-bimodule N is 7-
faithful and finitely generated over F. Let mod,, R’ be the full subcategory of
mod R’ consisting of modules having a projective socle. modng’ is the full sub-
category of mod,, R’ whose modules have no direct summand of the form (0, 7;,0).
For R’ a right peaks algebra, mod,, R’ was investigated in [7], and also in [5] for

R’ hereditary.
Returning to our case,

E pMy
Cy =
K (0 K)

is a right peaks ring induced by a generalized vector space category K, where
M=|M;®--®M,| and E=Endg M. Decompose A=P,@---@® P, where the P,
are indecomposable projective right A-modules. Then since {M,,...,M,}=
{Hom,(P;,G)* ...,Hom,(P,, G)*}, we have

EEEndK<® HomA(P,-,G)*)sEndA(@ P,->.-=A
i=1 \i=1
and

M= @ Homy,(P;, G)*sD(HomA (G—) P;, G>> =DG
izl i=1



212 K. Nishida

where D is the duality D(—)=Homy(—,k). Thus we have

A DG
s (2 20

Define a functor H : V(K)—mod, Cx as follows (cf. [7]). For
X =(Vg, Hom,(P, G)* ¢) € V(K),
put ¢’ the image of ¢ under an isomorphism
Homg (Hom4(P, G)* V)=Homg(DV,Hom, (P, G)
=Hom,(P, Homg(DV, G))
=Hom,4(P, Homg (DG, V)).

Let H(X)=(Q,V,t) where Q =Img¢’ and ¢ is the map adjoint to the in-
clusion Q<Homg(DG, V). Next, for X=(Uy, Vp,¢)emod C, we put ¥(X)=
(Uys V®p DG, ) e mod Cx where y is the composition

P31

U®,DG=U®, BQy DG V®;zDG.

¥ is a functor mod C —mod Cx. Then the following is easily proved.

Lemma. We have ¥ = H®.

By [7, Theorem 3.3] H induces a representation equivalence V| (K)zmodfp Ck,»
and then ¥ induces a representation equivalence ¢ = mod?p Ck-

3. Concluding remarks

Let k' be a commutative field and

T M,
C’=( T F)
\0 F

a right peaks k'-algebra, where F=[];_, F; with each F; a finite-dimensional di-
vision algebra over k’ and M is a T-F-bimodule finite-dimensional over k’ and a
faithful left 7-module. Put B=Endg M. Then there exists a k’-algebra monomor-
phism ¢:7 —B and a hereditary R’-order I" and an R’-order A such that rad I'C
ACT, A/rad I'=T, I'/rad I'=B where R’ is a complzte discrete valuation ring (cf.
proof of [6, (1.11) Theorem II}). Thus we have latt A zmod?p C’ by Theorem 4.

Example 1. (cf. [7, Example]). Let

k k k2 F, M, M,
C={k k k*|)=|,M, F, ,M;]}.
0 0 k 0 0 F
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The multiplications in C are induced from the following.
IMyQ My = M3, x® (), 2)= (x,0),
2M & My My, x® (Y, 2)~ (0, x2),
1My@, M, —Fy,  x®@y-0,
M@ M- F,, x®y~0, x,y.zek.

We have B=End,(;M;®,M;)=(k), and d: A—>B is

x 0 0 0
X N |0 x 0 z
Zw y 0w 0]’
0 0 0 w
so that

k\\OOO R n n =n
o™k 0 k 2 R 7 R
A= k 0 k 0 Hence A= | p © R 1
0 0 0 Kk nnn\\R

where we use the same 7 to indicate the ideal 7R and latt A = mod?p C is of "nfinite
type by [7,8].

In [7} Simson defines the differentiation algorithm for a right peak ring. The dif-
ferentiation algorithm includes the reduction technique used in {5]. The details
about the differentiation algorithm for a right peak ring are seen in [1,7], so that
we only provide here a sketch of it and the succeeding example will be available for
the reader’s understanding. Let Py,..., P, be all pairwise nonisomorphic indecom-
posable right C-modules, ;M;=Hom¢(P;, P;), and F;=End P;. Assume C to be
Schurian, that is, all F; are division rings.

Definition. A pair, P, of indecomposable projective C-modules with a #s is said to
be smooth if P, is simple, and

8)) dimF,(sMa) = dim(sMa)F}, =1,

(2) c50: M@ M,— M,, fRg+ fg, is surjective provided c,, #0,

(3) there is no j#s,a with ;M;+0 and ;M,#0,

(4) for s"={j| ;M,;+0 or ;M,+0 for a simple projective module P, with b #a}
and s"={l,...,n} —s", a right peak k-algebra 7= Endc(@jesh P;) is sp-repre-
sentation finite, that is, mod,, T is of finite representation type.

If P, P, is a smooth pair then we can define a differentiation C;, of C with

respect to a pair of points s,a and the following holds.

Theorem 5 [7, Theorem 5.2 and §6, B]. C;, is also a right peaks k-algebra and
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there exists a functor ¢;:modg, C—modg, C;, which induces a category equi-
valence

mod,, C/[mod, T} =mod,, C; o
and a representation equivalence
mod;, C=mody, C; .,

where mods, C is the full subcategory of modg, C consisting of modules X such
that Homq(Pg, X)#0 or Homc(Py, X)#:0 for a simple projective module with
Py#P,.

Corollary. C is sp-representation finite if and only if the finite iterated differentia-
tion of C is sp-representation finite.

Example 2. Let C be the path algebra of the bounded quiver
4 + 5 +9

-~

ge—6

.
e

3 »2 »7

l
1

with commuting cycles. Let P; be an indecomposable projective module correspon-
ding to each ie! and 5=5, a=9. We have s"={1,...,5} and s"“={6,...,9}. T is
the path algebra of the quiver

0

0+« 0« 0
and the Auslander-Reiten quiver of mod,, T is

1
110

1 1 / \ 1
000 ———— 010 11.
\ //"
yd
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Put P/ =Homc(®,.,. P;, P) (i=6,...,9), E=Er(PJ) an injective envelope of a
simple projective T-module P9 Then Pl (i=6,...,9), E are all pairwise
nonisomorphic indecomposable modules in mod,, 7. Let .L=®?: 6P,~T(~BE, and
I'=Endy L. I' is the path algebra of the bounden quiver

N
N

with a commuting cycle. Let 7° be the path algebra of the quiver

® \
@
Then there exists a functor v: mody, T—mod, T; and, by definition,

S M _
CM=( st )Ts> where S=Endc( ® PJ-).
0 7;' Jjes - {s}

C, . is the path algebra of the bounden quiver

4 ;@‘ﬁ : @: @

1
with a commuting cycle. Next we put s'=4, a’=() and do the differentiation of
C; .- Then (C; ) . is the path algebra of the quiver

9] « (8]« (5] « (4] « (7]« 2 3.




216 K. Nishida

Further, we do for s”=[8], a”=[9], and so on. Finally, deleting [9], [8], [5], we
reach the path algebra of the quiver Dg:

0 > ()« I 0« 0

which is of finite type. Thus C is sp-representation finite by the Corollary. Since

3
(k

o N
o X &

R R WL,
oo o oo
FoocorEE
o OO X K o
roocococOo KK —
O E o I E XX O

i\

0

-

latt A is of finite type for the order

~

R R
R

A X

™™™

A AN
N3

I I B R - -
N AN
x 3 'th:?a‘—'!:?:h:'mj

Acknowledgement

The author expresses his hearty thanks to Professor D. Simson for his many sug-
gestions and encouragements.



Representations of orders and vector space categories 217

References

[1] R. Bautista and D. Simson, Torsionless modules over 1-Gorenstein /-hereditary artinica rings,
Comm. in Algebra, to appear.

[2] E.L. Green and 1. Reiner, Integral representations and diagrams, Michigan Math. J. 25 (1978) 53-84.

(3] C.M. Ringel, Report on the Brauer-Thrall conjectures, in: Representation Theory I, Lecture Notes
in Math. 831 (Springer, Berlin, 1980) 104-136.

[4] C.M. Ringel and K.W. Roggenkamp, Diagrammatic methods in the representation theory of orders,
J. Algebra 60 (1979) 11-42.

[S] C.M. Ringel and K.W. Roggenkamp, Socle-determined categories of representations of artinian
hereditary tensor algebras, J. Algebra 64 (1980) 249-269.

[6] K.W. Roggenkamp, Indecomposable representations of orders of global dimension two, J. Algebra
64 (1980) 230-248.

[7} D. Simson, Vector space categories, right peak rings and their socle projective modules, to appear.

{8] D. Simson, On methods for the computation of indecomposable modules over artinian rings, in: 28th
Reports of Symposiums on Algebra: ‘‘Ring Theory and Algebraic Geometry’’, 26-29 July 1982,
University of Chiba (Japan), 143-170.



