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Abstract

In this paper we consider an initial boundary value problem for a parabolic inclusion whose

multivalued nonlinearity is characterized by Clarke’s generalized gradient of some locally

Lipschitz function, and whose elliptic operator may be a general quasilinear operator of

Leray–Lions type. Recently, extremality results have been obtained in case that the governing

multivalued term is of special structure such as, multifunctions given by the usual

subdifferential of convex functions or subgradients of so-called dc-functions. The main goal

of this paper is to prove the existence of extremal solutions within a sector of appropriately

defined upper and lower solutions for quasilinear parabolic inclusions with general Clarke’s

gradient. The main tools used in the proof are abstract results on nonlinear evolution

equations, regularization, comparison, truncation, and special test function techniques as well

as tools from nonsmooth analysis.
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1. Introduction

Let OCRN be a bounded domain with Lipschitz boundary @O: Let Q ¼ O� ð0; tÞ
and G ¼ @O� ð0; tÞ; with t40: Consider the problem with the unknown u ¼ uðx; tÞ:

@u

@t
þ Au þ @gð�; �; uÞ{Fu þ h in Q;

uð�; 0Þ ¼ 0 in O;

u ¼ 0 on G:

8>>><
>>>:

ð1:1Þ

Here A is a second-order quasilinear differential operator in divergence form of
Leray–Lions type

Auðx; tÞ ¼ �
XN

i¼1

@

@xi

aiðx; t; uðx; tÞ;ruðx; tÞÞ;

where ru ¼ ð @u
@x1

;y; @u
@xN

Þ; and F is the Nemytski operator associated with a

Carathéodory function f : Q � R-R: The function g: Q � R-R is such that
gð�; �; sÞ: Q-R is measurable and gðx; t; �Þ: R-R is locally Lipschitz. The notation
@g stands for the generalized gradient in the sense of Clarke (cf. [9]) with respect to
the third variable. Homogeneous initial and boundary conditions have been taken
into account only for the sake of simplifying our presentation. Problem (1.1) may
also be considered as the multivalued version of a parabolic hemivariational
inequality. Hemivariational inequalities arise, e.g., in mechanical problems governed
by nonconvex, possibly nonsmooth energy functionals, called superpotentials, which
appear if nonmonotone, multivalued constitutive laws are taken into account, cf.
[10,11].
Recently in [3,4,7] the existence of extremal solutions has been proved under the

assumption that the multifunction of the inclusion is either given by the
subdifferential of some convex function or Clarke’s gradient of so-called dc-
functions, see also [5] for a quasilinear elliptic problem with multivalued flux
boundary conditions.
The main goal of this paper is to extend the extremality results to parabolic

inclusions with a general Clarke’s gradient. More precisely, we are going to show the
existence of extremal solutions within a sector of appropriately defined upper and
lower solutions, and prove some compactness of the solution set within this sector.
The main tools used in the proofs are abstract results on nonlinear evolution
equations, regularization, comparison, truncation, and special test function
techniques as well as tools from nonsmooth analysis.
Our result extends previous works of the authors where the multivalued gradient

term were in a more particular form. Specifically, the existence of extremal solutions
has been proved in [7] under the assumption that s/gð�; �; sÞ is convex and @gð�; �; sÞ
is the usual subdifferential, and in [3,4] the function s/gð�; �; sÞ was supposed to be a
dc-function, which means that g is of the form gð�; �; sÞ ¼ j1ð�; �; sÞ � j2ð�; �; sÞ; where
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s/jkð�; �; sÞ are convex, k ¼ 1; 2: The crucial point in the extremality proof is to
show that the solution set is upward (downward) directed. One of the arguments to
prove this in the above-cited papers was the maximal monotonicity of the
subdifferential of a convex function. In the present paper we were able to deal
with a general Clarke’s gradient, which only is restricted by a kind of one-sided
growth condition, cf. (H1)(ii). This strongly extends the class of multifunctions that
can be taken into account. The proof of our result is more involved and requires
different tools.

2. Hypotheses

Let 2ppoN and q satisfy 1
p
þ 1

q
¼ 1: We set

V ¼ Lpð0; t;W 1;pðOÞÞ

with the dual V� ¼ Lqð0; t; ðW 1;pðOÞÞ�Þ and

W ¼ wAV :
@w

@t
AV�

� �
;

where the derivative @=@t is understood in the sense of vector-valued distributions,
see [12]. It is known that W is a reflexive, separable Banach space endowed with the
norm

jjwjjW ¼ jjwjjV þ @w

@t

����
����

����
����
V�

and the embedding WCLpðQÞ is compact, see [12]. We introduce

V0 ¼ Lpð0; t;W
1;p
0 ðOÞÞ

with the dual V�
0 ¼ Lqð0; t;W�1;qðOÞÞ and

W0 ¼ wAV0:
@w

@t
AV �

0

� �
:

The function h is supposed to satisfy hAV �
0 :

We assume the following hypotheses on the coefficient functions ai; i ¼ 1;y;N;
entering the definition of the operator A:

(A1) ai: Q � R� RN-R are Carathéodory functions, i.e. aið�; �; s; xÞ: Q-R is

measurable for all ðs; xÞAR� RN and aiðx; t; �; �Þ: R� RN-R is continuous
for a.e. ðx; tÞAQ: In addition, one has

jaiðx; t; s; xÞjpk0ðx; tÞ þ c0ðjsjp�1 þ jxjp�1Þ
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for a.e. ðx; tÞAQ and for all ðs; xÞAR� RN ; for some constant c040 and
some function k0ALqðQÞ:

(A2)
PN

i¼1 ðaiðx; t; s; xÞ � aiðx; t; s; x0ÞÞðxi � x0iÞ40

for a.e. ðx; tÞAQ; for all sAR and all x; x0ARN with xax0:
(A3)

PN
i¼1 aiðx; t; s; xÞxiXnjxjp � k1ðx; tÞ
for a.e. ðx; tÞAQ and for all ðs; xÞAR� RN ; for some constant n40 and

some function k1AL1ðQÞ:
(A4) jaiðx; t; s; xÞ � aiðx; t; s0; xÞjp½k2ðx; tÞ þ jsjp�1 þ js0jp�1 þ jxjp�1oðjs � s0jÞ

for a.e. ðx; tÞAQ; for all s; s0AR and all xARN ; for some function k2ALqðQÞ
and a continuous function o: ½0;þNÞ-½0;þNÞ satisfying

Z
0þ

1

oðrÞ dr ¼ þN:

For example, we can take oðrÞ ¼ cr; with c40; in (A4).
Let /�; �S be the duality pairing between V�

0 and V0: By (A1) the semilinear form a

associated with the operator A by

/Au;jS :¼ aðu;jÞ ¼
XN

i¼1

Z
Q

aiðx; t; u;ruÞ @j
@xi

dx dt; 8u;jAV0; ð2:1Þ

is well-defined, and the operator A : V0-V �
0 is continuous and bounded.

We denote by L
p
þðQÞ the positive cone of nonnegative elements of LpðQÞ: A partial

ordering in LpðQÞ is defined by upv if and only if v � uAL
p
þðQÞ: If

%
u; %uAW0 with

%
up %u; we denote by

½
%
u; %u ¼ fuAW0:

%
upup %ug

the order interval formed by
%
u and %u:

We define the notion of weak solution of problem (1.1).

Definition 2.1. A function uAW0 is called a solution of problem (1.1) if FuALqðQÞ
and if there is a function vALqðQÞ such that

(i) uð�; 0Þ ¼ 0 in O;
(ii) vðx; tÞA@gðx; t; uðx; tÞÞ for a.e. ðx; tÞAQ;
(iii) /@u

@t
;jSþ/Au;jSþ

R
Q

vðx; tÞjðx; tÞ dx dt ¼
R

Q
ðFuÞðx; tÞjðx; tÞ dx dt þ

/h;jS; for all jAV0:

We now give an extension of the upper and lower solutions for single-valued
equations to the multivalued problem (1.1).
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Definition 2.2. A function %uAW is called an upper solution of problem (1.1) if
F %uALqðQÞ and if there is a function %vALqðQÞ such that

(i) %uðx; 0ÞX0 in O and %uX0 on G;
(ii) %vðx; tÞA@gðx; t; %uðx; tÞÞ for a.e. ðx; tÞAQ;
(iii) /@ %u

@t
;jSþ/A %u;jSþ

R
Q %vðx; tÞjðx; tÞ dx dtX

R
Q
ðF %uÞðx; tÞ jðx; tÞ dx dt þ

/h;jS; for all jAV0-L
p
þðQÞ:

Similarly, a function
%
uAW is called a lower solution of problem (1.1) if the reversed

inequalities hold in Definition 2.2 with %u; %v replaced by
%
u;
%
v:

We additionally impose the following hypotheses on problem (1.1).

(H1) There exist an upper solution %u and lower solution
%
u of problem (1.1) such

that
%
up %u:

(H2) The function g : Q � R-R satisfies
(i) gð�; �; sÞ : Q-R is measurable for all sAR:
(ii) gðx; t; �Þ :R-R is locally Lipschitz and there exist constants a40 and

c1X0 such that

x1px2 þ c1ðs2 � s1Þp�1

for a.e. ðx; tÞAQ; for all xiA@gðx; t; siÞ; i ¼ 1; 2; and for all s1; s2 with

%
uðx; tÞ � aps1os2p %uðx; tÞ þ a:

(iii) There is a function k3AL
q
þðQÞ such that

jzjpk3ðx; tÞ

for a.e. ðx; tÞAQ; for all sA½
%
uðx; tÞ � 2a; %uðx; tÞ þ 2a and all

zA@gðx; t; sÞ; where a is the one entering (ii).
(H3) The function f : Q � R-R is Carathéodory and there exists k4AL

q
þðQÞ such

that

j f ðx; t; sÞjpk4ðx; tÞ
for a.e. ðx; tÞAQ; for all sA½

%
uðx; tÞ; %uðx; tÞ:

In the appendix we shall prove that the following result holds.

Lemma 2.1. Assume (A1)–(A4) and (H1)–(H3) be satisfied. Then problem (1.1) admits

at least one solution u within the order interval ½
%
u; %u formed by the given lower and

upper solutions
%
u and %u; respectively.

Definition 2.3. A solution u� is the greatest solution within ½
%
u; %u if for any solution

uA½
%
u; %u we have upu�: Similarly, u� is the least solution within ½

%
u; %u if for any

solution uA½
%
u; %u we have u�pu: The least and greatest solutions are the extremal ones.
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Remark 2.1. One possibility to determine upper and lower solutions of the
multivalued problem (1.1) is to replace the problem by the following single-valued
one

@u

@t
þ Au þ #gð�; �; uÞ ¼ Fu þ h in Q;

uð�; 0Þ ¼ 0 in O;

u ¼ 0 on G;

8>>><
>>>:

ð2:2Þ

where #g : Q � R-R may be any single-valued measurable selection of @g: Then
obviously any upper (lower) solution %u ð

%
uÞ of the single-valued problem (2.2) is an

upper (lower solution) of the multivalued one with %v :¼ #gð�; �; %uÞ ð
%
v :¼ #gð�; �;

%
uÞÞ: We

illustrate this technique with two examples.

Example 2.1. Let p ¼ q ¼ 2 and, for some hAV �
0 ; consider the initial-Dirichlet

boundary value problem

@u

@t
�
PN
i¼1

@

@xi

aiðx; t;ruðx; tÞÞ þ @gð�; �; uÞ{Fu þ h in Q;

uð�; 0Þ ¼ 0 in O;

u ¼ 0 on G:

8>>><
>>>:

ðEÞ

Here g : Q � R-R verifies condition (H2)(i), gðx; t; �Þ :R-R is locally Lipschitz and
the generalized gradient @g satisfies

(i) x1px2 þ c1ðs2 � s1Þ for a.e. ðx; tÞAQ and for all xiA@gðx; t; siÞ; i ¼ 1; 2; with
s1os2; and c1 some positive constant.

(ii) There is some function k5AL2
þðQÞ such that jxjpk5ðx; tÞ þ c2jsj for a.e.

ðx; tÞAQ; for all sAR and xA@gðx; t; sÞ:

Further we assume conditions (A1)–(A3) for ai (note that (A4) is trivially satisfied),
and suppose f : Q � R-R to be a Carathéodory function having the following
growth:

(iii) j f ðx; t; sÞjpk6ðx; tÞ þ c2jsj; for a.e. ðx; tÞAQ; for all sAR; and with some

function k6AL2
þðQÞ and a positive constant c2:

Now we consider the following uniquely solvable single-valued problems:

@u

@t
�
PN
i¼1

@

@xi

aiðx; t;ruðx; tÞÞ � ðk5ðx; tÞ þ c2jujÞ

¼ k6ðx; tÞ þ c2juj þ h in Q;

uð�; 0Þ ¼ 0 in O;

u ¼ 0 on G;

8>>>>>><
>>>>>>:

ðUÞ
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@u

@t
�
PN
i¼1

@

@xi

aiðx; t;ruðx; tÞÞ þ ðk5ðx; tÞ þ c2jujÞ

¼ �ðk6ðx; tÞ þ c2jujÞ þ h in Q;

uð�; 0Þ ¼ 0 in O;

u ¼ 0 on G:

8>>>>>><
>>>>>>:

ðLÞ

Denote the unique solutions of (U) and (L) by %u and
%
u; respectively. Then by

comparison we get
%
up %u: Furthermore, %u and

%
u are upper and lower solutions for

problem (E). To verify this for the case of the upper solution, let #g be any single-
valued measurable selection of @g; then the conditions of Definition 2.2 are satisfied
with %v ¼ #gð�; �; %uÞ: Similarly one verifies that

%
u is a lower solution. One easily sees also

that all the hypotheses (H1) and (H2) are fulfilled. For instance, the function k3ðx; tÞ
in (H2) (iii) is

k3ðx; tÞ ¼ k5ðx; tÞ þ c2 maxfj %uðx; tÞ þ c0j; j
%
uðx; tÞ � c0jg;

with a constant c0ð¼ 2aÞ40; while k4ðx; tÞ required in (H3) is

k4ðx; tÞ ¼ k6ðx; tÞ þ c2 maxfj %uðx; tÞj; j
%
uðx; tÞjg:

Thus our main result (i.e., Theorem 3.1 below) can be applied.

Example 2.2. We give an example where Theorem 3.1 below provides nonnegative
bounded solutions of initial-Dirichlet boundary value problem (1.1). Assume

(i) aiðx; t; 0; 0Þ ¼ aiðx; t; 1; 0Þ ¼ 0 for a.e. ðx; tÞAQ; i ¼ 1;y;N:
(ii) h ¼ 0:
(iii) g : Q � R-R is a Carathéodory function and gðx; t; �Þ is locally Lipschitz for

a.e. ðx; tÞAQ:
(iv) There exist constants a40 and c1X0 such that

x1px2 þ c1ðs2 � s1Þp�1

for a.e. ðx; tÞAQ; for all xiA@gðx; t; siÞ; i ¼ 1; 2; and for all s1; s2 with
�aps1os2p1þ a:

(v) There is some function k3AL
q
þðQÞ such that jzjpk3ðx; tÞ for a.e. ðx; tÞAQ; for

all sA½�2a; 1þ 2a and zA@gðx; t; sÞ:
(vi) f : Q � R-R is a Carathéodory function for which there exists k4AL

q
þðQÞ

such that

j f ðx; t; sÞjpk4ðx; tÞ for a:e: ðx; tÞAQ; 8sA½0; 1:

(vii) One has for a.e. ðx; tÞAQ that

maxfz: zA@gðx; t; 1ÞgXf ðx; t; 1Þ
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and

minfz: zA@gðx; t; 0Þgpf ðx; t; 0Þ:

By taking %vðx; tÞ ¼ maxfz: zA@gðx; t; 1Þg in Definition 2.2, it is clear that %u ¼ 1 is an
upper solution of problem (1.1). Similarly, setting

%
vðx; tÞ ¼ minfz: zA@gðx; t; 0Þg; we

find that
%
u ¼ 0 is a lower solution of problem (1.1). Assumptions (H1)–(H3) are

readily verified from the imposed conditions. Theorem 3.1 can be applied yielding a
solution of problem (1.1) which belongs to the interval [0,1].

3. Main result

Let us denote by S the set of the solutions of problem (1.1) enclosed by the lower
and upper solutions, i.e.

S ¼ fuAW0: uA½
%
u; %u and u is a solution of ð1:1Þg:

In view of Lemma 2.1 it follows that Sa|: Next, we state our main result.

Theorem 3.1. Assume (A1)–(A4) and (H1)–(H3) be satisfied. Then problem (1.1)
admits extremal solutions u within the order interval ½

%
u; %u formed by the given lower

and upper solutions
%
u and %u; respectively.

In the following we proceed to prove Theorem 3.1. Throughout this section we
assume that the hypotheses of Theorem 3.1 are fulfilled. We shall prove the existence
of the greatest solution of problem (1.1), while a similar reasoning will lead to the
existence of the least solution of problem (1.1).
The next lemma expresses that the setS is upward directed, i.e. whenever u1; u2AS

there is an uAS such that u1pu and u2pu:

Lemma 3.1. Let u1; u2AS: Then there exists a function uAS satisfying

maxfu1; u2gpu:

Proof. The proof of Lemma 3.1 will be done in several steps.
Step 1: Preliminaries. Let u0 :¼ maxfu1; u2g: For k ¼ 0; 1; 2 we define the

truncation mapping Tk as follows:

ðTkuÞðx; tÞ ¼
%uðx; tÞ if uðx; tÞ4 %uðx; tÞ;
uðx; tÞ if ukðx; tÞpuðx; tÞp %uðx; tÞ;
ukðx; tÞ if uðx; tÞoukðx; tÞ:

8><
>:
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With a given in (H2)(ii) we introduce the truncation operator Ta by

ðTauÞðx; tÞ ¼
%uðx; tÞ þ a if uðx; tÞ4 %uðx; tÞ þ a;

uðx; tÞ if
%
uðx; tÞ � apuðx; tÞp %uðx; tÞ þ a;

%
uðx; tÞ � a if uðx; tÞo

%
uðx; tÞ � a:

8><
>:

It is known that the truncation operators Tk; k ¼ 0; 1; 2; and Ta are continuous and
bounded from V into V (see, e.g., [6]).
Let r: R-R be a mollifier function, that is rACN

0 ðð�1; 1ÞÞ; rX0 and

Z þN

�N

rðsÞ ds ¼ 1:

For any e40 we define the regularization ge of g with respect to the third variable by
convolution, i.e.

geðx; t; sÞ ¼ 1

e

Z þN

�N

gðx; t; s � zÞr z
e

� 
dz:

Let us define Ge
a :LpðQÞ-LqðQÞ by

Ge
au :¼ ðgeÞ0ð�; �; ðTauÞð�; �ÞÞ: ð3:1Þ

The definition makes sense since, by (H2)(iii), k3ALqðQÞ and we have that

jðGe
auÞðx; tÞj ¼ jðgeÞ0ðx; t; ðTauÞðx; tÞÞjpk3ðx; tÞ ð3:2Þ

for a.e. ðx; tÞAQ; for all uALpðQÞ and for all e with 0oeoa: In order to show that
(3.2) is true, we see from (H2)(iii) that

ðgeÞ0ðx; t; ðTauÞðx; tÞÞA1
e

Z þN

�N

@gðx; t; ðTauÞðx; tÞ � zÞr z
e

� 
dz: ð3:3Þ

Here we used Aubin–Clarke Theorem (cf. [9]) whose application is possible due to
the inequalities

%
uðx; tÞ � 2ap

%
uðx; tÞ � a� zpðTauÞðx; tÞ � zp %uðx; tÞ þ a� zp %uðx; tÞ þ 2a:

Using again (H2)(iii) it results that

jðgeÞ0ðx; t; ðTauÞðx; tÞÞjp 1

e

Z þN

�N

k3ðx; tÞr z
e

� 
dz ¼ k3ðx; tÞ;

i.e. (3.2) is true.
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Next we introduce the cut-off function b : Q � R-R given by

bðx; t; sÞ ¼
ðs � %uðx; tÞÞp�1 if s4 %uðx; tÞ;
0 if u0ðx; tÞpsp %uðx; tÞ;
�ðu0ðx; tÞ � sÞp�1 if sou0ðx; tÞ:

8><
>: ð3:4Þ

We have that b is a Carathéodory function satisfying the growth condition

jbðx; t; sÞjpk5ðx; tÞ þ c2jsjp�1 ð3:5Þ

for a.e. ðx; tÞAQ and for all sAR; where c240 is a constant and k5ALqðQÞ:
Moreover, one has the following estimate:Z

Q

bðx; t; uðx; tÞÞ uðx; tÞ dx dtXc3jjujjpLpðQÞ � c4; 8uALpðQÞ; ð3:6Þ

for some constants c340 and c440:
By (3.5), the Nemytski operator B : LpðQÞ-LqðQÞ defined by

Buðx; tÞ ¼ bðx; t; uðx; tÞÞ ð3:7Þ

is continuous and bounded.
We introduce the following regularized truncated problem:

@u

@t
þ Au þ Ge

au þ lBu

¼ F3T0u þ
P2
i¼1

jF3Tiu � F3T0uj þ h in Q;

uð�; 0Þ ¼ 0 in O;

u ¼ 0 on G;

8>>>>>>>><
>>>>>>>>:

ðPeÞ

where l40 is any constant satisfying l4c1: In the next steps we shall study
existence, convergence and comparison properties on problem ðPeÞ:

Step 2: Existence of solutions of ðPeÞ ð0oeoaÞ: Let the operator L ¼
@=@t : DðLÞCV0-V�

0 ; with the domain

DðLÞ ¼ fuAW0: uð�; 0Þ ¼ 0 in Og

defined by

/Lu;jS ¼
Z t

0

@u

@t
ðtÞ;jðtÞ

� �
W�1;qðOÞ;W 1;p

0
ðOÞ

dt; 8uADðLÞ;jAV0:

The linear operator L is closed, densely defined and maximal monotone (cf. [12]).
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Fix 0oeoa: Problem ðPeÞ can be reformulated as follows:

uADðLÞ; ðL þ A þ Ge
a þ lBÞu ¼ Eu þ h in V�

0 ; ð3:8Þ

where the operator E : LpðQÞ-LqðQÞ is defined by

Eu :¼ F3T0u þ
X2
i¼1

jF3Tiu � F3T0uj:

Using (H3) and the continuity of the truncation operators Tk; k ¼ 0; 1; 2; we have
that the operator E : LpðQÞ-LqðQÞ is continuous and uniformly bounded. In
addition, since the embedding W0CLpðQÞ is compact, endowing DðLÞCW0 with the
graph norm

jjujjDðLÞ ¼ jjujjV0
þ jjLujjV�

0
¼ jjujjW0

;

we obtain that E : DðLÞ-LqðQÞCV �
0 is completely continuous.

Similarly, using now (3.2) and the continuity of the truncation operator Ta; we
derive that the operator Ge

a : LpðQÞ-LqðQÞ is continuous and uniformly bounded.

Using the compactness of the embedding W0CLpðQÞ yields that the continuous,
bounded operators Ge

a;B : DðLÞ-LqðQÞCV �
0 are completely continuous on DðLÞ

endowed with the graph norm topology.
The Leray–Lions conditions (A1)–(A3) and the properties of the operators Ge

a; B;
E imply that A þ Ge

a þ lB � E : DðLÞCV0-V �
0 is continuous, bounded and pseudo-

monotone with respect to the graph norm topology of DðLÞ (see, [6, Theorem
E.3.2]). Thus the mapping L þ A þ Ge

a þ lB � E : DðLÞ-V�
0 is surjective provided

that A þ Ge
a þ B � E : V0-V�

0 is coercive. This means that there exists at least a

solution of problem (3.8), which solves problem ðPeÞ:
We show that the coerciveness property of A þ Ge

a þ lB � E : V0-V �
0 is satisfied.

Using (2.1), (3.7), (A3), (3.6) as well as the uniform boundedness of the operators Ge
a

and E; one has

/ðA þ Ge
a þ lB � EÞu; uS

¼ /Au; uSþ l/Bu; uSLqðQÞ;LpðQÞ þ/ðGe
a � EÞu; uS

X

XN

i¼1

Z
Q

aiðx; t; u;ruÞ @u

@xi

dx dt þ l
Z

Q

bðx; t; uðx; tÞÞ uðx; tÞ dx dt

� jjðGe
a � EÞujjV�

0
jjujjV0

Xn
Z

Q

jrujp dx dt �
Z

Q

k1ðx; tÞ dx dt þ lc3jjujjpLpðQÞ � lc4 � c̃jjujjV0

X%cjjujjpV0
� c; 8uAV0; ð3:9Þ
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where c̃; %c; c are positive constants. Thus the use of hypothesis pX2 in (3.9) ensures
that A þ Ge

a þ lB � E : V0-V�
0 is coercive. The existence of a solution of problem

ðPeÞ is proved.
In the next step the notation ‘‘,’’ stands for the weak convergence, while ‘‘-’’

represents the strong convergence with respect to different topologies.
Step 3: Convergence of solutions of ðPen

Þ: Let ðenÞ be a sequence such that enAð0; aÞ
and en-0 as n-N:We know from the previous step that for all n problem ðPen

Þ has
at least a solution denoted by un:
Let us show that the sequence ðunÞ is bounded in W0: First, we remark that

/Lu; uS ¼
Z t

0

@u

@t
ðtÞ; uðtÞ

� �
W�1;qðOÞ;W 1;p

0
ðOÞ

dt

¼
Z t

0

@

@t

1

2
jjuðtÞjj2L2ðOÞ

� 
dt ¼ 1

2
jjuðtÞjj2L2ðOÞX0; 8uADðLÞ: ð3:10Þ

Using that un is a solution of ðPen
Þ; (3.10) and (3.9) with un in place of u we can write

jjhjjV�
0
jjunjjV0

X/h; unS ¼ /Lun; unSþ/ðA þ Gen
a þ lB � EÞun; unSX%cjjunjjpV0

� c:

Since pX2; the previous inequality implies that ðunÞ is bounded in V0: Using again
that un is a solution of ðPen

Þ; we have

@un

@t
¼ ð�A � Gen

a � lB þ EÞun þ h in V�
0 :

The boundedness of the sequence ðunÞ in V0 ensures that the right-hand side in the

previous equality is bounded in V �
0 : This implies that ð@un

@t
Þ is bounded in V �

0 ; so the

sequence ðunÞ is bounded in W0:
In the following we prove that there is a subsequence of ðunÞ having the properties

below.

(i) un,u in W0; i.e. un,u in V0 and
@un

@t
, @u

@t
in V�

0 as n-N;

(ii) un-u in LpðQÞ as n-N;
(iii) Gen

a un,v in LqðQÞ as n-N; where vðx; tÞA@gðx; t; ðTauÞðx; tÞÞ for a.e. ðx; tÞAQ:

Property (i) is a consequence of the boundedness of ðunÞ in the reflexive Banach
space W0; while condition (ii) results from property (i) and the compactness of the
embedding W0CLpðQÞ:
By (3.2) and (H2)(iii), Gen

a un is bounded in LqðQÞ; thus along a subsequence

Gen
a un ,v in LqðQÞ; for some vALqðQÞ: In order to obtain (iii) we have to prove that

vðx; tÞA@gðx; t; ðTauÞðx; tÞÞ for a.e. ðx; tÞAQ; with uAW0 entering (i), (ii) and
vALqðQÞ entering (iii).
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To this end, let us first establish the following inequality:

Z
Q

lim sup
n-N

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞr z
en

� 
dz

� 
dx dt

X/v;wSLqðQÞ;LpðQÞ; 8wALpðQÞ; ð3:11Þ

where the notation g0 stands for the generalized directional derivative in the sense of
Clarke [9] of g with respect to the third variable. For any wALpðQÞ; using (3.1), (3.3)
and Proposition 2.1.2 in [9], we have

/Gen
a un;wSLqðQÞ;LpðQÞ

¼ /ðgenÞ0ðTaunÞ;wSLqðQÞ;LpðQÞ

¼
Z

Q

ðgenÞ0ðx; t; ðTaunÞðx; tÞÞwðx; tÞ dx dt

¼
Z

Q

1

en

Z þN

�N

znðx; t; zÞr z
en

� 
dz

� 
wðx; tÞ dx dt

p
Z

Q

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞr z
en

� 
dz

� 
dx dt;

with znðx; t; zÞA@gðx; t; ðTaunÞðx; tÞ � zÞ: Passing to the upper limit in the previous
inequality and using Gen

a un,v in LqðQÞ as well as Fatou’s lemma (see, e.g., [2, p. 54])

we obtain

/v;wSLqðQÞ;LpðQÞ ¼ lim
n-N

/Gen
a un;wSLqðQÞ;LpðQÞ

p lim sup
n-N

Z
Q

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ
�

�z;wðx; tÞÞr z
en

� 
dz


dx dt

p
Z

Q

lim sup
n-N

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ
�

�z;wðx; tÞÞr z
en

� 
dz


dx dt;
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i.e. (3.11). The application of Fatou’s lemma was possible due to the inequalities

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞr z
en

� 
dz

¼ 1

en

Z þN

�N

znðx; t; zÞwðx; tÞr z
en

� 
dz

p
1

en

Z þN

�N

k3ðx; tÞwðx; tÞr z
en

� 
dz ¼ k3ðx; tÞwðx; tÞ;

with k3wAL1ðQÞ; and
Z

Q

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞr z
en

� 
dz

� 
dx dt

X�
Z

Q

1

en

Z þN

�N

jznðx; t; zÞj jwðx; tÞjr z
en

� 
dz

� 
dx dt

X�
Z

Q

k3ðx; tÞjwðx; tÞj dx dt;

where znðx; t; zÞA@gðx; t; ðTaunÞðx; tÞ � zÞ is fixed such that

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞ ¼ znðx; t; zÞwðx; tÞ:

Next we show that

lim sup
n-N

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞr z
en

� 
dz

� 
pg0ðx; t; ðTauÞðx; tÞ;wðx; tÞÞ for a:e: ðx; tÞAQ; 8wALpðQÞ: ð3:12Þ

Towards the proof of (3.12) we note that, by (ii) and the continuity of Ta;
we get Taun-Tau in LpðQÞ as n-N: Then passing eventually to a subsequence it
results

ðTaunÞðx; tÞ-ðTauÞðx; tÞ for a:e: ðx; tÞAQ as n-N: ð3:13Þ

Thus to prove (3.12) it is sufficient to show that (3.12) holds for every wALpðQÞ and
every point ðx; tÞAQ satisfying (3.13) (because (3.13) is valid for a.e. ðx; tÞAQ). Fix
wALpðQÞ and any point ðx; tÞAQ satisfying (3.13). Let an arbitrary number e40:

The upper semicontinuity of g0ðx; t; �;wðx; tÞÞ yields a number d40 such that for all x
with jx� ðTauÞðx; tÞjod one has

g0ðx; t; x;wðx; tÞÞog0ðx; t; ðTauÞðx; tÞ;wðx; tÞÞ þ e: ð3:14Þ
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On the other hand, the convergence in (3.13) gives a positive integer ne (depending on
ðx; tÞ) such that

jðTaunÞðx; tÞ � z� ðTauÞðx; tÞjpjðTaunÞðx; tÞ � ðTauÞðx; tÞj þ jzj

pjðTaunÞðx; tÞ � ðTauÞðx; tÞj þ enod; 8nXne; 8zAð�en; enÞ:

This allows us to apply (3.14) with x ¼ ðTaunÞðx; tÞ � z to get

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞog0ðx; t; ðTauÞðx; tÞ;wðx; tÞÞ þ e

for all nXne and all zAð�en; enÞ: Consequently, we may write

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞr z
en

� 
dz

¼ 1

en

Z en

�en

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞr z
en

� 
dz

og0ðx; t; ðTauÞðx; tÞ;wðx; tÞÞ þ e:

Passing to the upper limit as n-N we derive that

lim sup
n-N

1

en

Z þN

�N

g0ðx; t; ðTaunÞðx; tÞ � z;wðx; tÞÞr z
en

� 
dz

� 
pg0ðx; t; ðTauÞðx; tÞ;wðx; tÞÞ þ e:

As e40 was arbitrary, we conclude that (3.12) holds true.
Combining (3.11) and (3.12) it results that

Z
Q

vðx; tÞwðx; tÞ dx dtp
Z

Q

g0ðx; t; ðTauÞðx; tÞ;wðx; tÞÞ dx dt ð3:15Þ

for all wALpðQÞ: We use Lebesgue’s point argument in (3.15).
Let an arbitrarily fixed rAR and the open ball Bðð %x; %t Þ; ZÞ in Q centered at some

fixed point ð %x; %t Þ and of radius Z40: Denote by wBðð %x;%t Þ;ZÞ the characteristic function

of Bðð %x; %t Þ; ZÞ: Setting w ¼ wBðð %x;%t Þ;ZÞr in (3.15), we have

Z
Q

vðx; tÞwBðð %x;%t Þ;ZÞðx; tÞr dx dtp
Z

Q

g0ðx; t; ðTauÞðx; tÞ; wBðð %x;%t Þ;ZÞðx; tÞrÞ dx dt:
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This inequality can be equivalently written as

1

mðBðð %x; %t Þ; ZÞÞ

Z
Bðð %x;%t Þ;ZÞ

vðx; tÞr dx dt

p
1

mðBðð %x; %t Þ; ZÞÞ

Z
Bðð %x;%t Þ;ZÞ

g0ðx; t; ðTauÞðx; tÞ; rÞ dx dt;

where mðBðð %x; %t Þ; ZÞÞ denotes the measure of Bðð %x; %t Þ; ZÞ: Since the functions v and

g0ð�; �; ðTauÞð�; �Þ; rÞ belong to LqðQÞ; letting Z-0 in the previous inequality, we
arrive at

vð %x; %t Þrpg0ð %x; %t; ðTauÞð %x; %t Þ; rÞ; 8rAR:

The definition of the generalized gradient of Clarke gives

vð %x; %t ÞA@gð %x; %t; ðTauÞð %x; %t ÞÞ;

which completes the proof of assertion (iii).
Our aim is to pass to the weak limit as n-N in ðPen

Þ: First we show that

Aun ,Au in V�
0 as n-N: ð3:16Þ

To this end we shall use the pseudo-monotonicity of A : V0-V�
0 with respect to the

graph norm topology of DðLÞ: Let us show that

lim sup
n-N

/Aun; un � uSp0: ð3:17Þ

By (3.10) we have

@un

@t
; un � u

� �
¼ @ðun � uÞ

@t
; un � u

� �
þ @u

@t
; un � u

� �
X

@u

@t
; un � u

� �
:

This inequality combined with ðPen
Þ implies

@u

@t
; un � u

� �
þ/Aun; un � uSþ/Ge

aun; un � uSLqðQÞ;LpðQÞ

þ/ðlB � EÞun; un � uSp/h; un � uS:

Passing to the upper limit in the relation above and using properties (i)–(iii) as well as
the fact that lB � E : DðLÞCV0-V�

0 is completely continuous with respect to graph

norm, we arrive at (3.17).
The pseudo-monotonicity of A : V0-V�

0 with respect to the graph norm

opology of DðLÞ in conjunction with un,u in W0 (see (i)) and (3.17) imply (3.16)
(cf., e.g., [1]).
Passing to the weak limit in V�

0 as n-N in problem ðPen
Þ and making use of the

convergences (i), (3.16), (iii) as well as of the complete continuity of lB � E
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from DðLÞCW0 into V�
0 we conclude that u is a solution of the following

problem:

@u

@t
þ Au þ v þ lBu ¼ Eu þ h in V �

0 ;

vA@gð�; �; ðTauÞð�; �ÞÞ a:e: in Q:

8<
: ðP0Þ

Additionally, the operator L being closed, we have that its graph is closed and
convex, thus weakly closed. This leads to uADðLÞ: In the next step we show that the
solution u of problem ðP0Þ satisfies u0pup %u:

Step 4: Comparison u0pup %u: In order to prove u0pu we show that
ukpu; k ¼ 1; 2: Since ukAS it follows that for k ¼ 1; 2; ukAW0 and verifies (1.1),
thus

@uk

@t
þ Auk þ vk ¼ Fuk þ h in V�

0 ;

vkA@gð�; �; ukð�; �ÞÞ a:e: in Q:

8<
: ð3:18Þ

Substracting the equality in ðP0Þ from the one in (3.18) it results that

@ðuk � uÞ
@t

þ Auk � Au þ vk � v � lBu

¼ Fuk � F3T0u �
X2
i¼1

jF3Tiu � F3T0uj in V�
0 : ð3:19Þ

By (A4), for any fixed e40 there exists dðeÞAð0; eÞ such that

Z e

dðeÞ

1

oðrÞ dr ¼ 1:

We define the function ye :R-Rþ by

yeðsÞ ¼

0 if sodðeÞ;R s

dðeÞ
1

oðrÞ dr if dðeÞpspe;

1 if s4e:

8>>><
>>>:

It is clear that, for each e40; the function ye is continuous, piecewise differentiable
and the derivative is nonnegative and bounded. Therefore the function ye is Lipschitz
continuous and nondecreasing. In addition, it satisfies

ye-wfs40g as e-0; ð3:20Þ
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where wfs40g is the characteristic function of the set fs40g: Moreover, one has

y0eðsÞ ¼
1

oðsÞ if dðeÞosoe;

0 if se½dðeÞ; e:

8<
:

Taking in the weak formulation of (3.19) the test function yeðuk � uÞAV0-L
p
þðQÞ

it follows

@ðuk � uÞ
@t

; yeðuk � uÞ
� �

þ/Auk � Au; yeðuk � uÞS

þ
Z

Q

ðvk � vÞyeðuk � uÞ dx dt � l
Z

Q

ðBuÞyeðuk � uÞ dx dt

¼
Z

Q

Fuk � F3T0u �
X2
i¼1

jF3Tiu � F3T0uj
 !

yeðuk � uÞ dx dt: ð3:21Þ

Let Ye be the primitive of the function ye defined by

YeðsÞ ¼
Z s

0

yeðrÞ dr:

We obtain for the first term on the left-hand side of (3.21) (cf., e.g., [8]) that

@ðuk � uÞ
@t

; yeðuk � uÞ
� �

¼
Z
O
Yeðuk � uÞðx; tÞ dxX0: ð3:22Þ

Using (A4) and (A2), the second term on the left-hand side of (3.21) can be estimated
as follows:

/Auk � Au; yeðuk � uÞS

¼
XN

i¼1

Z
Q

ðaiðx; t; uk;rukÞ � aiðx; t; u;ruÞÞ @

@xi

yeðuk � uÞ dx dt

X

XN

i¼1

Z
Q

ðaiðx; t; uk;rukÞ � aiðx; t; uk;ruÞÞ @ðuk � uÞ
@xi

y0eðuk � uÞ dx dt

� N

Z
Q

ðk2 þ jukjp�1 þ jujp�1 þ jrujp�1Þoðjuk � ujÞy0eðuk � uÞjrðuk � uÞj dx dt

X� N

Z
fdðeÞouk�uoeg

gjrðuk � uÞj dx dt; ð3:23Þ
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where g ¼ k2 þ jukjp�1 þ jujp�1 þ jrujp�1ALqðQÞ: The term on the right-hand side of
(3.23) tends to zero as e-0:
By (3.20), the application of Lebesgue’s dominated convergence theorem implies

lim
e-0

Z
Q

vk � v � lBu � Fuk þ F3T0u þ
X2
i¼1

jF3Tiu � F3T0uj
 !

yeðuk � uÞ dx dt

¼
Z

Q

vk � v � lBu � Fuk þ F3T0u þ
X2
i¼1

jF3Tiu � F3T0uj
 !

wfuk4ug dx dt: ð3:24Þ

Using (3.22), (3.23) and passing to the limit as e-0 in (3.21), the convergence
in (3.24) and the definitions of the truncation operators T0; T1; T2 allow us to
deduce

� l
Z

Q

Buwfuk4ug dx dt

p
Z

Q

v � vk þ Fuk � F3T0u �
X2
i¼1

jF3Tiu � F3T0uj
 !

wfuk4ug dx dt

¼
Z
fuk4ug

v � vk þ Fuk � F3T0u �
X2
i¼1

jF3Tiu � F3T0uj
 !

dx dt

p
Z
fuk4ug

ðv � vkÞ dx dt: ð3:25Þ

If ðx; tÞ is such that uðx; tÞoukðx; tÞ; from the definition of Ta; we see that
%
uðx; tÞ �

apðTauÞðx; tÞoukðx; tÞp %uðx; tÞ þ a: Applying (H2)(ii) we derive

vðx; tÞ � vkðx; tÞpc1ðukðx; tÞ � ðTauÞðx; tÞÞp�1;

with v in (iii) and vk in (3.18). Combining the previous inequality with (3.25) and
making use of (3.4), (3.7) we obtain

l
Z
fuk4ug

ðu0 � uÞp�1
dx dt

¼ � l
Z
fuk4ug

Bu dx dt

pc1

Z
fuk4ug

ðuk � TauÞp�1
dx dt:

For ðx; tÞ such that uðx; tÞoukðx; tÞ; by the definition of Ta; we have ðuk �
TauÞðx; tÞpðu0 � uÞðx; tÞ; which ensures that

ðl� c1Þ
Z
fuk4ug

ðu0 � uÞp�1
dx dtp0:
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Since c1ol (see (H2)(ii)) and ðu0 � uÞðx; tÞ40 whenever ðuk � uÞðx; tÞ40; we infer
from the previous inequality that the Lebesgue measure of the set fuk4ug is equal
to 0: This implies that ukpu a.e. in Q; for k ¼ 1; 2; thus u0pu:
In order to prove up %u; we use Definition 2.2 and ðP0Þ to deduce

@ðu � %uÞ
@t

; yeðu � %uÞ
� �

þ/Au � A %u; yeðu � %uÞS

þ
Z

Q

ðv � %vÞyeðu � %uÞ dx dt þ l
Z

Q

ðBuÞyeðu � %uÞ dx dt

p�
Z

Q

F %u � F3T0u �
X2
i¼1

jF3Tiu � F3T0uj
 !

yeðu � %uÞ dx dt:

Using similar arguments as in proving (3.25), on the basis of (3.20) we obtain

l
Z

Q

Buwfu4 %ug dx dtp
Z
fu4 %ug

ð%v � vÞ dx dt:

If ðx; tÞ is such that uðx; tÞ4 %uðx; tÞ; we have that
%
uðx; tÞ �

ap %uðx; tÞoTauðx; tÞp %uðx; tÞ þ a: Applying (H2)(ii) we get

%vðx; tÞ � vðx; tÞpc1ðTauðx; tÞ � %uðx; tÞÞp�1;

with v in (iii) and %v in Definition 2.2, (ii). Consequently, in view of (3.4), (3.7) we
deduce that

l
Z
fu4 %ug

ðu � %uÞp�1
dx dtpc1

Z
fu4 %ug

ðTau � %uÞp�1
dx dt:

Since Tauðx; tÞpuðx; tÞ whenever uðx; tÞ4 %uðx; tÞ it follows

ðl� c1Þ
Z
fu4 %ug

ðu � %uÞp�1
dx dtp0:

In view of c1ol (see (H2)(ii)) we obtain that up %u a.e. in Q:
Step 5: Completion of the proof. By the previous step any solution u of problem

ðP0Þ satisfies u0pup %u: Thus Bu ¼ 0 and, since Tiu ¼ u for i ¼ 0; 1; 2; one has Eu ¼
Fu: In addition, we see that vðx; tÞA@gðx; t; uðx; tÞÞ a.e. ðx; tÞAQ because Tau ¼ u:
Hence u is a solution of problem (1.1) satisfying u0pup %u: The proof is
complete. &

Lemma 3.2. The solution set S is bounded in W0: Any sequence in S contains a

weakly convergent subsequence in W0 and its limit belongs to S:

Proof. Since SC½
%
u; %u; from (H2)(iii) we see that @g is bounded in LqðQÞ on ½

%
u; %u;

while (H3) implies that F is bounded in LqðQÞ on ½
%
u; %u:
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We claim that S is bounded in W0: The coerciveness condition (A3) for
A :V0-V �

0 yields

jjujjV0
pc0; 8uAS; ð3:26Þ

for some constant c040: Indeed, for any uAS one has

@u

@t
¼ �Au � v þ Fu þ h in V�

0 ; ð3:27Þ

with vðx; tÞA@gðx; t; uðx; tÞÞ a.e. ðx; tÞAQ: Then one obtains

@u

@t
; u

� �
þ/Au; uS ¼ /Fu � v; uSLqðQÞ;L pðQÞ þ/h; uS:

Using (3.10), the boundedness of F ; @g in LqðQÞ on ½
%
u; %u and (A3) we arrive at

MjjujjV0
X/Au; uS ¼

XN

i¼1

Z
Q

aiðx; t; u;ruÞ @u

@xi

dx dt

X njjrujjp
LpðQÞ � jjk1jjLpðQÞ ¼ njjujjpV0

� jjk1jjL pðQÞ;

for some constant M40; which proves (3.26). By (3.26) and the boundedness of
A :V0-V �

0 and of F ; @g in LqðQÞCV �
0 we deduce from (3.27) that

@u

@t

����
����

����
����
V�
0

pc00; 8uAS; ð3:28Þ

for some constant c0040: From (3.26) and (3.28) we obtain the boundedness of S in
W0; which is the first part in Lemma 3.2.
Let a sequence ðunÞ in S: By the reflexivity of W0 we find a subsequence of ðunÞ;

denoted again by ðunÞ; such that

un,u in W0; un-u in LpðQÞ and a:e: in Q as n-N; ð3:29Þ

for some uAW0; where the compactness of the embedding W0CLpðQÞ has been
used.
Since L is a closed linear operator, its graph is weakly closed, so un,u in W0

implies uADðLÞ:
From the fact that ðunÞCS we have that unAW0 and

@un

@t
þ Aun þ vn ¼ Fun þ h; ð3:30Þ

with vnA@gð�; �; unð�; �ÞÞ: Hypothesis (H2)(iii) ensures that ðvnÞ is bounded in LqðQÞ:
Then there exists a subsequence of ðvnÞ; denoted by ðvnÞ; such that

vn,v in LqðQÞ as n-N; ð3:31Þ

for some vALqðQÞ:
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Next we show that

vð�; �ÞA@gð�; �; uð�; �ÞÞ: ð3:32Þ

Using vn,v in LqðQÞ; vnA@gð�; �; unð�; �ÞÞ; (3.29), Fatou’s lemma and the

upper semicontinuity of g0ðx; t; �;wðx; tÞÞ :R-R; we deduce thatZ
Q

vðx; tÞwðx; tÞ dx dt ¼ lim
n-N

Z
Q

vnðx; tÞwðx; tÞ dx dt

p lim sup
n-N

Z
Q

g0ðx; t; unðx; tÞ;wðx; tÞÞ dx dt

p
Z

Q

lim sup
n-N

g0ðx; t; unðx; tÞ;wðx; tÞÞ dx dt

p
Z

Q

g0ðx; t; uðx; tÞ;wðx; tÞÞ dx dt:

In order to use Lebesgue’s point argument, fix rAR; ð %x; %t ÞAQ; Z40 and let w ¼
wBðð %x;%t Þ;ZÞr in the previous inequality, with wBðð %x;%t Þ;ZÞ the characteristic function of the

open ball Bðð %x; %t Þ; ZÞ: We obtain

1

mðBðð %x; %t Þ; ZÞÞ

Z
Bðð %x;%t Þ;ZÞ

vðx; tÞr dx dt

p
1

mðBðð %x; %t Þ; ZÞÞ

Z
Bðð %x;%t Þ;ZÞ

g0ðx; t; uðx; tÞ; rÞ dx dt;

where mðBðð %x; %t Þ; ZÞÞ is the measure of Bðð %x; %t Þ; ZÞ: Letting Z-0 in the previous
inequality we infer

vð %x; %t Þrpg0ð %x; %t; uð %x; %t Þ; rÞ; 8rAR:

Using the definition of the generalized gradient of Clarke, we deduce that (3.32) is
satisfied.
From (3.30) it results

@un

@t
; un � u

� �
þ/Aun; un � uS

¼ /Fun; un � uSLqðQÞ;LpðQÞ �/vn; un � uSLqðQÞ;LpðQÞ þ/h; un � uS: ð3:33Þ

By (3.10) we derive

@un

@t
; un � u

� �
¼ @ðun � uÞ

@t
; un � u

� �
þ @u

@t
; un � u

� �
X

@u

@t
; un � u

� �
:
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Using this inequality in (3.33) and passing to the upper limit as n-N; on the basis
of (3.29), (3.31) and the boundedness of FðunÞ (see (H3)), we arrive at

lim sup
n-N

/Aun; un � uSp0:

By the pseudo-monotonicity of A with respect to the graph norm topology of DðLÞ;
this inequality and un,u in W0 imply that Aun,Au in V �

0 (cf., e.g., [1]). This allows

us to pass to the limit as n-N in (3.30), obtaining

@u

@t
þ Au þ v ¼ Fu þ h in V �

0 :

As v satisfies (3.32) it follows that u is a solution of (1.1).
Combining un-u a.e. in Q (see (3.29)) with unA½

%
u; %u leads to uA½

%
u; %u: Therefore

uAS and the proof is complete. &

Proof of Theorem 3.1. We show the existence of the greatest solution of (1.1). Since
W0 is separable we have that SCW0 is separable, so there exists a countable, dense
subset Z ¼ fzn: nANg of S: By Lemma 3.1, S is upward directed, so we can
construct an increasing sequence ðunÞCS as follows. Let u1 ¼ z1: Select unþ1AS
such that

maxfzn; ungpunþ1p %u:

The existence of unþ1 is due to Lemma 3.1. By Lemma 3.2 we find a subsequence
of ðunÞ; denoted again ðunÞ; and an element uAS such that un,u in W0; un-u

in LpðQÞ and unðx; tÞ-uðx; tÞ a.e. ðx; tÞAQ: This last property of ðunÞ combined
with its increasing monotonicity imply that u ¼ supn un: By construction, we see
that

maxfz1; z2;y; zngpunþ1pu; 8n;

thus ZC½
%
u; u: Since the interval ½

%
u; u is closed in W0; we infer

SC %ZC½
%
u; u ¼ ½

%
u; u;

which in conjunction with uAS ensures that u is the greatest solution of (1.1).
The existence of the least solution of (1.1) can be proved in a similar way using

Lemma 3.2 and a corresponding dual formulation of Lemma 3.1. This completes the
proof. &

Corollary 3.1. The solution set S is weakly compact in W0; and compact in V0:

Proof. The weak compactness in W0 is the contents of Lemma 3.2. We only need to
show that S is compact in V0: Let us be given any sequence ðunÞCS: Then we have
to prove that there is a subsequence of ðunÞ which is strongly convergent in V0 to
some uAS: The weak compactness of S in W0 implies the existence of a
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subsequence denoted by ðukÞ which is weakly convergent in W0 to some uAS:
Hypotheses (A1)–(A3) ensure that the operator A satisfies the ðSþÞ-property with
respect to the graph norm topology of L (see [6, Theorem E.3.2]), which means that
whenever ðukÞ is weakly convergent to u in W0 and satisfies lim supk-N

/Auk; uk �
uSp0; then ðukÞ is strongly convergent in V0 to u: Since lim supk-N

/Auk; uk �
uSp0 has already been shown in the proof of Lemma 3.2, the ðSþÞ-property of A

immediately implies that the weak limit uAS in W0 of the sequence ðukÞ is its strong
limit in V0; and thus the compactness of S in V0: &
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Appendix

Proof of Lemma 2.1. The proof of Lemma 2.1 follows the steps of the proof of
Lemma 3.1.

Step 1: Preliminaries.
We consider the following regularized truncated problem:

@u

@t
þ Au þ Ge

au þ lBu ¼ F3Tu þ h in Q;

uð�; 0Þ ¼ 0 in O;

u ¼ 0 on G;

8>>><
>>>:

ðP̃eÞ

where l is some constant satisfying l4c1: Here the operator Ge
a : L pðQÞ-LqðQÞ is

the one in (3.1) and verifies (3.2) for 0oeoa: The operator B : L pðQÞ-LqðQÞ is
defined analogously as in (3.7) for b : Q � R-R given by

bðx; t; sÞ ¼
ðs � %uðx; tÞÞp�1 if s4 %uðx; tÞ;
0 if

%
uðx; tÞpsp %uðx; tÞ;

�ð
%
uðx; tÞ � sÞp�1 if so

%
uðx; tÞ:

8><
>:

Then b is a Carathéodory function satisfying (3.5) and (3.6), while B is continuous
and bounded. The truncation operator T : V0-V0 is defined by

ðTuÞðx; tÞ ¼
%uðx; tÞ if uðx; tÞ4 %uðx; tÞ;
uðx; tÞ if

%
uðx; tÞpuðx; tÞp %uðx; tÞ;

%
uðx; tÞ if uðx; tÞo

%
uðx; tÞ

8><
>:

and is continuous and bounded.
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Step 2: Existence of solution of ð *PeÞ ð0oeoaÞ: For a fixed e with 0oeoa; problem
ð *PeÞ can be reformulated

uADðLÞ; ðL þ A þ Ge
a þ lB � F3TÞu ¼ h in V �

0 ;

where L ¼ @
@t
is as in the proof of Lemma 3.1. The same arguments as the ones in the

proof of Lemma 3.1 ensure that A þ Ge
a þ lB � F3T is continuous, bounded,

pseudo-monotone with respect to the graph norm of DðLÞ; and coercive, while L is
maximal monotone (see [12]). Thus L þ A þ Ge

a þ lB � F3T : DðLÞ-V�
0 is surjec-

tive, so problem ð *PeÞ has at least a solution.

Step 3: Convergence of solutions of ð *Pen
Þ: Let a sequence ðenÞ satisfying enAð0; aÞ

and en-0 as n-N: For each n let un be a solution of problem *Pen
given by the

previous step.

Using that un is a solution of ð *Pen
Þ; (3.10) and (3.9) we obtain that ðunÞ is bounded

in V0: This combined with ð *Pen
Þ implies that ð@un

@t
Þ is bounded in V�

0 : Hence the

sequence ðunÞ is bounded in W0:
In the same way as in the proof of Lemma 3.1 we can show that the following

properties hold:

(i) un ,u in W0; i.e. un,u in V0 and
@un

@t
, @u

@t
in V�

0 as n-N;

(ii) un-u in LpðQÞ as n-N;
(iii) Gen

a un,v in LqðQÞ as n-N; where vðx; tÞA@gðx; t; ðTauÞðx; tÞÞ for a.e. ðx; tÞAQ:

On the basis of ð *Pen
Þ and (3.10) we have

@u

@t
; un � u

� �
þ/Aun; un � uSþ/Ge

aun; un � uSLqðQÞ;LpðQÞ

þ /ðlB � F3TÞun; un � uSp/h; un � uS:

Passing here to the upper limit as n-N in ð *Pen
Þ and using properties (i)–(iii) as well

as the fact that lB � F3T : DðLÞCV0-V�
0 is completely continuous with respect to

graph norm topology, we obtain

lim sup
n-N

/Aun; un � uSp0:

Taking into account that un,u in W0; the pseudo-monotonicity of A: V0-V �
0 with

respect to the graph norm of DðLÞ yields

Aun,Au in V �
0 as n-N;

(see [1]). Letting now n-N in problem ð *Pen
Þ and making use of the above

convergence as well as (i), (iii) and the complete continuity of lB � F3T
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from DðLÞCW0 into V �
0 we conclude that u is a solution of the problem

@u

@t
þ Au þ v þ lBu ¼ F3Tu þ h in V �

0 ;

vA@gð�; �; ðTauÞð�; �ÞÞ a:e: in Q:

8<
: ðP̃0Þ

In addition, the closedness of L yields uADðLÞ:
Step 4: Comparison

%
upup %u: Let us first check that

%
upu: Using the definition of

the lower solution and the fact that u is a solution of problem ð *P0Þ it results that

@ð
%
u � uÞ
@t

; yeð
%
u � uÞ

� �
þ/A

%
u � Au; yeð

%
u � uÞS

þ
Z

Q

ð
%
v � vÞyeð

%
u � uÞ dx dt � l

Z
Q

ðBuÞyeð
%
u � uÞ dx dt

p
Z

Q

ðF
%
u � F3TuÞyeð

%
u � uÞ dx dt;

with ye as in Step 4 of Lemma 3.1. Proceeding in the same way as in proving (3.25),
on the basis of the previous inequality and (3.20) we obtain

�l
Z

Q

Buwf
%
u4ug dx dtp

Z
Q

ðv �
%
v þ F

%
u � F3TuÞwf

%
u4ug dx dt

¼
Z
f
%
u4ug

ðv �
%
v þ F

%
u � F3TuÞ dx dt

p
Z
f
%
u4ug

ðv �
%
vÞ dx dt: ð4:1Þ

If ðx; tÞ is such that uðx; tÞo
%
uðx; tÞ; we see that

%
uðx; tÞ �

apTauðx; tÞo
%
uðx; tÞp %uðx; tÞ þ a: Hypothesis (H2)(ii) implies

vðx; tÞ �
%
vðx; tÞpc1ð

%
uðx; tÞ � Tauðx; tÞÞp�1;

with v in (iii) and
%
vA@gð�; �;

%
uð�; �ÞÞ: Using (3.4), (3.7), the previous inequality and

(4.1) we deduce

l
Z
f
%
u4ug

ð
%
u � uÞp�1

dx dt ¼ �l
Z
f
%
u4ug

Bu dx dtpc1

Z
f
%
u4ug

ð
%
u � TauÞp�1

dx dt:

For ðx; tÞ such that uðx; tÞo
%
uðx; tÞ; by the definition of Ta; we have

uðx; tÞpðTauÞðx; tÞ; thus

ðl� c1Þ
Z
f
%
u4ug

ð
%
u � uÞp�1

dx dtp0:

Since c1ol (see (H2)(ii)) it results that the Lebesgue measure of the set f
%
u4ug is

equal to 0. This implies that
%
upu a.e. in Q:

S. Carl, D. Motreanu / J. Differential Equations 191 (2003) 206–233 231



In order to prove up %u; we use Definition 2.2 and ð *P0Þ to deduce

@ðu � %uÞ
@t

; yeðu � %uÞ
� �

þ/Au � A %u; yeðu � %uÞS

þ
Z

Q

ðv � %vÞyeðu � %uÞ dx dt þ l
Z

Q

ðBuÞyeðu � %uÞ dx dt

p
Z

Q

ðF3Tu � F %uÞyeðu � %uÞ dx dt:

Similar arguments as in proving (3.25) based on (3.20) yield

l
Z

Q

Buwfu4 %ug dx dtp
Z
fu4 %ug

ð%v � v þ F3Tu � F %uÞ dx dtp
Z
fu4 %ug

ð%v � vÞ dx dt:

If ðx; tÞ is such that uðx; tÞ4 %uðx; tÞ; we have that
%
uðx; tÞ �

ap %uðx; tÞoTauðx; tÞp %uðx; tÞ þ a: Applying (H2)(ii) we get

%vðx; tÞ � vðx; tÞpc1ðTauðx; tÞ � %uðx; tÞÞp�1;

with v in (iii) and %v in Definition 2.2, (ii). Thus in view of (3.4), (3.7) we obtain

l
Z
fu4 %ug

ðu � %uÞp�1
dx dtpc1

Z
fu4 %ug

ðTau � %uÞp�1
dx dt:

Since Tauðx; tÞpuðx; tÞ whenever uðx; tÞ4 %uðx; tÞ it results that

ðl� c1Þ
Z
fu4 %ug

ðu � %uÞp�1
dx dtp0:

In view of c1ol (see (H2)(ii)) it follows that up %u a.e. in Q:
Step 5: Completion of the proof. From the previous step any solution u of problem

ð *P0Þ satisfies
%
upup %u: It follows that Bu ¼ 0 and Tu ¼ u: In addition, one has that

vðx; tÞA@gðx; t; uðx; tÞÞ a.e. ðx; tÞAQ since Tau ¼ u: We conclude that u is a solution
of problem (1.1) satisfying

%
upup %u: The proof of Lemma 2.1 is complete. &
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[6] S. Carl, S. Heikkilä, Nonlinear Differential Equations in Ordered Spaces, Chapman & Hall/CRC,

Boca Raton, 2001.

[7] S. Carl, D. Motreanu, Extremal solutions of quasilinear parabolic subdifferential inclusions,

Differential Integral Equations 16 (2003) 241–255.

[8] M. Chipot, J.F. Rodrigues, Comparison and stability of solutions to a class of quasilinear parabolic

problems, Proc. Royal Soc. Edinburgh 110 A (1988) 275–285.

[9] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

[10] Z. Naniewicz, P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and

Applications, Marcel Dekker, New York, 1995.

[11] P.D. Panagiotopoulos, Hemivariational Inequalities and Applications in Mechanics and Engineering,

Springer, New York, 1993.

[12] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vols. II A/B, Springer, Berlin, 1990.

S. Carl, D. Motreanu / J. Differential Equations 191 (2003) 206–233 233


	Extremal solutions of quasilinear parabolic inclusions with generalized Clarke’s gradient
	Introduction
	Hypotheses
	Main result
	Acknowledgements
	Appendix
	References


