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Abstract

We generalize a result of Daroczy and Katai, on the characterization of univoque numbers with
respectto a non-integer base (Publ. Math. Debrecen 46(3—4) (1995) 385) by relaxing the digit alphabet
to a generic set of real numbers. We apply the result to derive the construction of a Blichi automaton
accepting all and only the greedy sequences for a given base and digit set. In the appendix, we prove
a more general version of the fact that the expansion of an elemeril)(¢) is ultimately periodic,
if qis a Pisot number.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Given an integem > 1 and a real number > 1, by anexpansiorof a real numbexkin
baseq with digits in Z,, := {0, 1, ..., m}, we mean a sequence

C1,C2, ...
satisfying
ci € Z, foralli
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and

OOC,'

Z — = X.

i=19
Such expansions appear in many problems of number theory, real number computations,
dynamical systems and in the theory of finite autom@i&-10] There are several different
algorithms for the construction of such expansions, and they have interesting and surprising
properties for certain values afandq: see, e.g[1,5,6]the references therein.

The purpose of this paper is to extend some of these results to more general digit sets.
This leads to some new difficulties, requiring new algorithms. In the first part of the paper
we establish new theoretical results. They are illustrated by various examples in the second
half of the work.

In order to motivate the studies of the present paper let us first recall some classical results
of Parry concerning the so-called greedy expansions.

Given a non-negative real numbeilet us define a sequence

Cc1,€2, ...

by thegreedy algorithmif ¢; is already defined for all < n then letc, be the biggest
integer inZ,, satisfying
nooc

S < (1.1)
i;[ q'

One can prove that i > ¢ — 1 then

OOC,'

Z — =X
i=1q'
forall x € [0,m/(g — 1)]. This is called the greedy expansionxof
Let us denote byy, y,, ... the greedy expansion of= 1. If this sequence contains only
a finite number of non-zero digits then fgtbe the last non-zero element and let us denote
by 41, d2, ... thek-periodic sequence with periag, 75, ..., 74_1, 7% — 1.
Using this sequence, Parry obtained the following characterization of the greedy expan-
sions[8]:

Theorem 1.1. Assume thak > ¢ — 1. A sequencey, ¢z, . .. of numbers irZ,, corresponds
to the greedy expansion

OOC,'

Z—.ZX

i=1 ql
. m+1 . .
of a suitable numbet € [0, ——) if and only if
q
Cn+iCnt2 -+ < 0102... inthe lexicographic sense, for ail> 1.

In what follows we will consider a generic set of real numb&iastead of the sex,,;
such situations arise in many problems of representation of real numbers with missing
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digits. This requires a more general definition of greedy expansions. We shall generalize
various recent theorems obtained by different authors on this subject, and we shall illustrate
our results by many examples. In the last part of the paper we will also study the close
connection between greedy expansions and finite automata.

2. Quasi-greedy and greedy expansions

We study at the same time the greedy expansions and another related concept which
seems to be useful to investigate: the so-called quasi-greedy expansions.
Letus fix asetd = {aq, ..., a,} of real numbers such that

ayp<azx < --- < day.
Given a real numbey, let us define a sequence

S1, 82, ...

by thequasi-greedy algorithmif s; is already defined for all < n then lets,, be the biggest
element inA satisfying

ai
— — < X. (21)
l;[q i %—1 q'

In a similar way, let us define a sequence

S1, 82, ...

by the greedy algorithmif s; is already defined for all < n then lets, be the biggest
element inA satisfying
» 2y > Moy (2.2)
i=1 q i=n+1 q
Inthe sequel, we denote y;) the sequence;) in (2.1) i.e., when itis defined by the quasi-
greedy algorithm. We denote ly;) a generic sequence defined by the greedy algorithm.
The definition of the quasi-greedy expansions is meaningful if

al X ag

g-1 Zq"

X >

Let us observe that the sequen¢&s obtained in this way always contain infinitely many
elements, different from1. We will say for brevity that the sequences) areinfinite.
Note that the definition of the greedy expansions is meaningful if

X a1
_Z_

)C
q_l zlq

Under some natural assumptions we obtain an expansioimdeed:
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Proposition 2.1. If

am — ail
-1’
then for every € (a1/(q — 1), an /(g — 1)] we have

max_l(aj+1 — aj) < (23)

1<j<m

OOSl.

> ok

i=1 ql

if the sequenceés;) is defined by the quasi-greedy or by the greedy algorithm.
Moreover, ifx = a1/(g — 1), we have that the constant sequerieg is the sequence
given by the greedy algorithm.

In the greedy case, we can even replace condi2dd) (ith

max )<am_al
ajy1 —aj
1<jsm-1 7% g -1

(2.4)

and for allx € [a1/(q — 1), an/(g — 1)], it is possible to obtain an expansion by
applying the greedy algorithm.

Proof. If x = q‘L_"l, then both the quasi-greedy and the greedy algorithm proyidea,,
for all n, and the desired equality follows.

Assume next that there are infinitely many indicesich thak,, < a,,. Writing s, = a;,
for any sucm, by the construction of the sequengg we have

n S; o0 al
(Z —ll) 1 X )<«
i=14 i=n+19

(we can eventually have equality only in the case of greedy expansions) but, in both cases,

- Si % +1 — 4j, S @
(Z_i)—i_—n_'— P B2
i=14 q i=n+149

it follows that

S a1 - Si_ G+l — djy S m
X mSx - Y SST—— Y
i=n+19 i=14 q i=n+14

Lettingn — oo we obtain

again.
We complete the proof by showing that only the above two cases may occur. Suppose on
the contrary that there existssuch that, = a;, < a,, ands; = a,, for alli > n. Then

no g N a o0 a
(Z2)+( = 2)+( £ %)<
i=149 i=n+1 9 i=N+149
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for all N >n, note that equality can eventually occur in the greedy case; and by the con-
struction of(s;),

L Si aj,+1 — 4j, X ap
(Z_i)+—n+ 2 )
i=149 q i=n+19

otherwise we could have chosgn= a; with somek > j,; note that this time equality can
eventually occur in the quasi-greedy case.
Letting N — oo in the first inequality we obtain that

noos; x  a,
Xl X s~
i=19 i=n+1 94

Combining this with the second inequality we conclude that

1 Si S am 1 Si ai)1+1 _aill S ai
2—.)+ y dn <<2—_)+—+ y )
(i:l q' iz q ) \iEq q" i=n+19"'

which is equivalent to

am — ail
q _ l gajn""l - ajn'

However this contradicts our assumptién3). [

In order to characterize the quasi-greedy expansions, let us introduce the quasi-greedy
expansions of the differences

Ajzaj+1—aj, j=l,...,m—1
with respect to the translated digit set
A :={a} =aj—a1: j=1...,m}
instead ofA:
5/ (Sj
dj=2+ 24, forj=1...m-1
q q

For the rest of the proof let us denote @5{) the greedy expansion aof; with respect to
the setd’. . .
If the sequencey{) is infinite, then it coincides witlﬁé{). On the other hand, we have

Lemma 2.2. If (ylj) is finite for some j and its last non-zero elemer’;x,{i& ap —azy, letus
consider the sequence

yl’ if i <k,
g =\ap-1—a1 ifi=k,
5ip—k if i >k

then(a;) coincides witk(éf).
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Proof. Indeed,(é{) is an infinite expansion ofl ;, and it is the largest such expansion
therefore any other infinite expansiog) of 4; must satisfy

) < (),

so let us show thaty;) < (a;). .
Since(y{) is finite, (1) and(y{) cannot be equal, so that

;) < (y{) =y{...y200...

as 0 is the smallest digit we have that necessarily
ey <71 Th

and
7]1---’7h<3’1---?h_ =01...0p,

where ify] = a, 11 we denote by  the digita,.
If we have strict inequality then

;) < (0i).

On the other hand if we have equality, thgn 177, . . . is an infinite expansion ofl ,_,
and then

—1¢p-1
Mhstlpgo--- <O0p 05 ~...

by definition of(é‘}’_l). Hence, we have that for all infinite expansiog) of 4;
(n)<o1...0400 1051

so that(g;) is the largest infinite expansion df; and therefore coincides Wi(hﬁl.j). O

Theorem 2.3. Assume again that conditiq®.3) is satisfied

max ( i
aiy1—a;) < .
1<j<m-1 T g

Then the map +— (s;), where(s;) denotes the quasi-greedy expansion ¢iesp. greedy
expansion of  is a strictly increasing bijection between the intervad /(¢ — 1), a,, /(¢ —
1)] and the set of infinite sequences ifrésp. the set of sequences i) gatisfying

/ / Jn S
Spi1Spyn--- <0705 .. (2.5)
wheneves, = g;, < a,, where we use the notatiaf:= s; — a1 (or where we have
Shi1Snyn--- <0705 ..., (2.6)

respectively.
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Proof. The strict monotonicity of the map +— (s;) follows from the definition of the
quasi-greedy and greedy expansion.

Next, we prove that ifs;) is the quasi-greedy or the greedy expansion of spntieen
we have

/ / Jn sJn
Spa1Spyn--- <0705 ..

for all nsuch thak, = a;, < a;.
Indeed, ifs, = aj, < a,, for somen, then it follows from the definition ofs,) that

n—1 5 a; 00 g n—1 S aj, 11 x a1
I R N TR
i=149 q i=n+149 i=149 q i=n+19

Note that equality holds only the cagg) quasi-greedy.
Hence, by canceling the first term on both sides, we have

- SiTa1_ 4,41~ dj,
i Y n
i=n+1 q q

that is

X S
'217<ajn+1 — aj,. (27)
i=

On the other hand, by definitio(n/{“) is the lexicographically largest sequer(eg) in A’
satisfying

o0 O-i

Z —~ = aj,+1 — aj, . (2.8)

i=19
This expansionis eventually infinite, and in case it coincides with the quasi-greedy expansion
of Ajn .

Comparing EqualitiesX;7) and @.8), we finally have

(54 ) <O,
Moreover, in the case of the greedy expansion this inequality is strict because the two
sequences are different: indeed, 217 we have strict inequality, while ir2(8) we have
equality by the definition of".
The sequenc@;{") can be finite or infinite where the quasi-greedy expansﬁéﬁs are

infinite. In the infinite cases we are done.
Second steplt remains to establish this last inequality in the greedy case when the

sequencey{”) is finite. Then(é{"’) < (yl.'”).
In order to prove the inequality
(5140 < (8]

we define a strictly increasing sequence of integers k1 < k2 < ...and acorresponding
sequenceo, r1, 12, . . . of integers belonging to the sgt, ..., m — 1} as follows.
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Since(y{") is finite, there exists & such thab/,{" > 0, and that for ali > k we have
'})jn = 0
; .
Then the inequality
($p40) < ")
implies that
Sha1Sma - Spar < V1 -V
Sinced]" = y/ , it follows that
Shi1Snan - Suyp <01 ... O (2.9)

wheneves,, < a,.
Observe that because d.9) we have only two possibilities: either we have a strict
inequality

/ / / jn jn
Sp415n+2 - - Sptk < 51 te 51{
or
/ / r_ Sn Jn
Spa1Spa2- - Spqx = 07" ... 0% ands,ix < am,

since in the second case we know that the last considered digit of the quasi-greedy expansion
is strictly smaller than the last digit of the finite greedy expansion:

s =0 =30 <9l <d,
This means that, x = a, < a,, and from the first step above, we have that
S;l+k+1s;1+k+2"' < V{Vg
As before we have two cases depending upon the fact the greedy exp@ﬁs}ibninfinite
or not.
In the first case we have done, because we will have that
Jn SJn Jn PSP
Spb1Snt2 - - SntkSu k1S ka2 - - < 0703 ... 0110705 ...
In the second case we have to apply the same reasoning as above:rge-setand we
know that
p.pP P
SqohASn k42 Snthky < V102 -+ Vit
wherey,fl is the last non-zero digit of the (finite) greedy expansiod gf
By diminishing the last digit of the greedy expansion we obtain
PP P~ _ SPSP 14
Sptk 15k 2 - Sntkiky STLV2 -+ Vlg = 0107 - Oy

and by applying the same argument to the last digit (S”l, again we have; < a; < ap,
and by hypothesis we have that the greedy developmeyf,as (y7).
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By iterating the previous reasoning we obtain the two sequénces, ... andrg, r1, . . .,
such that

’ / Jn o Jn 10, 70 O~
Spp1Snq2--- SV V2 - Vko AR Vi

and in particular the sequence
W3-y VOIS
is the quasi-greedy expansion.f, .
Now we prove that this inequality is strict. Indeed suppose that we have equality; this
means that
S,/l+1sl/1+2.. .= 51”5%” e

from which we obtain

o0 S+ ') 5jn +a1 00 5jn 00 ar 00 a1
LUt =L St = L =4
i=1 i=1 4 i=1 i=1 i=19
In this case we would have
=y toyiy y 2
— = —+
= l th tn+1q
n_ g 00 it n A 1 ai
= —Z l "—Z— to L
:1q i=1 i=19"' q" q” i=1
“lg s, +4 S oar s Isi sf X a
Sy d T, y BN ALE L s 4
i=1 q q" 1—n+1q i=194" q i=n+19

But this is an expansion ofwhich is lexicographically greater thasy), contradicting the
hypothesis thats;) is greedy.

Third step Now, we prove the other direction in the statement of the theorerty; )dbe
a sequence satisfying the conditions of the theorem.

We shall prove that if(s;) is infinite and it satisfies the conditio2.§) then it is the
guasi-greedy expansion of

alternatively, if(s;) satisfies condition2.6) then it is the greedy expansionxf

Sincea; <s; <ay, for alli then clearlyx belongs tdai/(¢ — 1), a, /(¢ — 1)], moreover
if (s;) is infinite then not alk;’s are equal ta;, and sox cannot bei1 /(g — 1). It remains
to be shown that if, = a,, < a,, for somen, then

n—=1 . a
Si 4pp+1
=g 5 Aok,

i=n+149 q" i=n+1 q'

note that in case of greedy expansion we prove that even the strict inequality holds.
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By definition,
x5 n—1 S; ap x
X = Z — = Z —+ =+ Z —,
i=1 ! i=1 ql qn i=n+1 ql

so that the previous inequality is equivalent to

a X a a s
pntl Z 1 Dn Z
q" i Z i’

i=nt1 49" 9" i=a114
orto
& S_l/ < aPn+1 apn
i n
i=n+19 q
In order to prove this inequality, we define a strictly increasing sequence of integers
k1 < k2 < ... and a corresponding sequence of integersy, r2 in {1,...,m — 1} as
follows.

First, setkg = n andrg = p,. Then
(s71.1) < (8"

by assumption. If this inequality is strict, then there exists a firstintegen +1 = ko + 1
such that

/ Pn __ §Pn
Sty =< 5i—n - 5[—/(0'

Thens,’(l = ay, — a1 for some K r1 < m. Thus we have

(Sl/<1+i) < (5?1)
by assumption. If this inequality is strict then there exists a first integertk; + 1 satisfying

sl/{z < 5;£k1;
thens,’(2 = ar, — a1 for some Krp2 < m.

Iterating this argument, either we obtain two infinite sequeritgsand(r;), or after a
finite number of steps we obtain thgt ,, = o foralli >1.

In the first case, we have

o g/ 00 kjy1 ¢/

L L
DN DY D D
i=n+19 j=0 l:kj-’rlq

v
kj+1-1 5ij—kj s,’cj+l

00

; i i kj+1
Jj=0 \i=k;+1 q q

s o

ks "j / _ s

io: j+1 5l—kj n skj+l 5kj+l—kj

j=0 i:kj+l ql qijrl
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Since

s, =a,.,—a1<a — a1 <)
kjy1r — “Tj+1 1 ri+i+1 1% kjy1—k;’

it follows that

ri ri rj
ki ../ / _ 57 ki .I _
o) Jtl 5[—/(]' skj+1 5kj+1—kj < io: Jtl 51—/(]' arj+1 arj+1+1
. . < . A
j=0 \i=k;+1 4’ gkint j=0 \i=k;+1 4’ gkint
Finally, since the sequenceégl), e ((Sﬁ”*l) are all infinite by hypothesis of the theorem,
we obtain that
.
. J
§ k'7+1 51'71(.,' ar_i+1 - arj+1+l
. 2
j=o\i=k;+1 ¢’ g+t
o] x 5?71{ ar; —dar; 1+1
< Z J Jj+1 Tj+1
. e
j=0 \i=k;+1 4" g+t
. ioz (arj+l — dr; n Arjg — arj+1+l>
j=0 qkj qk'j+1
_ 9p+1—4p
= 7
In the second case, we obtain in a similar way that
oo g N=1/[ kjv1 ¢ oo §'N
1 1 1
il N DDl LD DRl
i=n+149 j=0 \i=k;+19 i=kn+1 4
N-1 [kj+1-1 5;’_kj St o §N
— L
= D i i svedl LD Dl s
j=0 \i=k;+1 94 q i=ky+1 4
ri ri
_ k; i [ N
N-1 Jj+1 5l—kj Skj+l 5kj+l_kj 00 ;
= T ki1 + 2 i
j=0 \i=k;+1 94 q i=ky+1 4
-
_ ki S/ N
< Nb (R 0Ty g —anan + % o;
j=0 \i=k;+1 4' ghivt i=ky+1 4'
N-1 Arj+1 — dr; Arji1 = Qrjpg+1 & 5;1\/
<Y — 4 — + -
j=0 q qt i=ky+1 4
r
_ Gptl—dp | Ary —ary+l x "
qn qu i=ky+1 ql
_Ap+1—4ap
qn

This completes the proof of the theorem[
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3. Unigue expansions

Given an alphabet = {ay, ..., a,} let us introduce the quasi-greedy expansion of the
differences
541' 5]
A~:a~+1—a~:—1+—2+...
J J J q C]2

for j =1,...m —1anin Theoren2.3 .
Furthermore let us also introduce the quasi-greedy expan&igﬁhsf the differences
_ 8 5]

Aj:aj_,_l—aj:?-i-—z-i—.-.

with respect to thelual alphabetd = {a1, . .., @,} given by

aj=a1+ay —aps1—j, j=1...,m.

Now, let us denote byl, the set of numberswhose greedy expansion (with respect to
the original alphabed) is the unique possible expansion.

We have the following characterization of this set, which generalizes a result given
in [6]:

Theorem 3.1. Assume again that conditiq®.3) is satisfied

am — ai

max 1(aj+1 —aj) <

1<j<m— q—l ’

Thenthe map — (¢;), where(c;) denotes the greedy expansion g6 strictly increasing
bijection between the set, and the set of sequences insatisfying
(cnti —a1) < (3))

whenever, = a; < a,, and

(dm — Cnsi) < ()

whenever, = ayy,—; > a1.

Proof. Let (¢;) be the greedy expansion »f If this expansion is not unique, then there
exists another expansidd;) < (c;) of x. Then by definition we have

(d;) > ()
and both are expansions(@f +a,,) /(¢ — 1) — x, so that(c;) cannot be the greedy expansion
of (a1 +am)/(g — 1) — x.
On the other hand, ifc;) is the unique expansion &f the (¢;) is the unique expansion

of (a1 +am)/(q — 1) — x.
Hence,(c;) is the greedy expansion &f1 + a,;)/(¢ — 1) —x. O
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4. Examples

Let us introduce the following notation for periodic expansigng with a period of
lengthT starting aty:

(ci)=c1...ck—1(ck ... cipr—1.

Example 4.1. If we fix g = # and we consideA = {0, 1, 3}, then we have
¢ the alphabetl’ is equal toA (as Oc A), gaps inA are

A1=1 and 4, =2;

e as stated in Propositiaa 1, for everyx € [0, 3/(g — 1)] (where 3(¢q — 1) ~ 4.8541)
there exists an expansion in bapand alphabe;

e the greedy expansion of 1 is the sequenc@®f°?,

e the greedy expansion of 2 is the sequence 8001,

e the greedy expansion of2is the sequence

11(01001010100100100000

which has development

1 1 q20(1 1+1+1+1+1)
q qz q20_1 614 q7 q9 qll q14 q17 :

This expression is also equal to

3
q 3 6 8 10 13 (29 + 1) (319 + 199

l :l
q20—1< +q +q +q9 +q " +¢q ) + 6765 + 4180

1+

the last equality has been obtained by the fact that is the Fibonacci sequence
Fo=0F=1 Fu1=F+F1
then every poweg” can be obtained by considering the following equivalence:
q" = Fuq + Fy-1.
The same argument is then used to further simplify the expression

(29 +1)(31% +198 _ 198+ 715 + 638 | 185% +836
676% + 4180 676% +4180 6765 + 4180

1+

and

6765 + 4180= 5(1353 + 836).
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e In order to apply Theorerd.3, we need the quasi-greedy expansion fgr= 1 and
Ay = 2in A’ and we obtain
o A1 =1+ (n}) = 1(0DH> and
o A =2+ (%) = 300001,
now, we check the content of the theorem on the greedy expansio? a$ lested before
it is the sequence

11(01001010100100100080.
As it begins with the digit 1 we have to check that its subsequence
1(01001010100100100000
is lexicographically smaller than the quasi-greedy expansiofpcf 2, so
1(01001010100100100008 < 300(01)>
and it is the case for the first digit, again we have to check that
(0100101010010010000 < 300(01)>°

and again itis right, the next digit is 0 so this time we have to test the subsequence starting
at the 4th digit against the quasi-greedy expansiaiof 1, so

10010101001001000001001010100100100008 < 1(0D)°.

In this case we have to look until to the third digit in order to verify the theorem, and
as this digit is zero the next step of the verification has to be performed again between
10101001001000301001010100100100008 and the expansion afy, i.e. 1(01)*°.

The verification is then continued on the whole digit sequence; as we shall see in the next
section, if the quasi-greedy expansions of the gapsdre representable by finite automata
(in the Bichi sense), we will find that any greedy expansiof isirepresentable by finite
automata.

Example 4.2. Let ¢ ~ 1.3247 be the first Pisot number (let us recall that a Pisot number
is an algebraic integer > 1 if all algebraic conjugates af different ofq lie in the open
disc|z| < 1 of the complex plane). It is the only solution of modutusl of the equation
x3 = x + 1, and consider the sdt= {0, 1, 3} as the alphabet.

The setA has deleted elements, in order to illustrate our result, we compute the greedy
and quasi-greedy expansions of the gap&.in

We haved; = 1 and4; = 2; their greedy expansions are:

e
q q
and
TS
q q q q
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The quasi-greedy expansions of the gaps are then

1 121 1 1/ 1
gty
g qiz19¥ q q\¢°-1

In fact, by the equatiop® = ¢ + 1, we have
3+}< 1 )=q5—1+1= q*
g q\¢°-1) q@-1 ¢°-1
?+q 9’ +q _a*+a _

3+ ¢* -1 (@+D+q¢?-1 ¢*+q
On the other hand, we have

1
—2+

1 _q+1_q3
2 ¢ q 3

_ -1
3 ¢

and by adding it to the previous expansion we get

5 <1+1)+1+1< 1 ) 1+1+1+1< 1 )
@ ) q q9\¢®*-1) q ¢ ¢* q\¢°-1)

Example 4.3. We fix the alphabed = {1, 3,4, 5, 7} and the base ~ 3.61645, solution
of the equatio* — 3% — 29 — 3 = 0; note thafjis a Perron number (let us recall that a
Perron number is an algebraic integet 1, if all algebraic conjugates afdifferent from
glieinthe opendis¢z| < |¢| of the complex plane). As stated in Propositibt, for every
x€[l/(g—1),7/(g — D] (where ¥(g — 1) ~ 0.382197 and (¢ — 1) ~ 2.67538) there
exists an expansion in bagand alphabeA. The first step in order to apply the theorem is
to find quasi-greedy expansions for gapsiim the alphabeft’ = {0, 2, 3, 4, 6}. The gaps
ared; = A4 = 2 and4; = A3 = 1. We have the following greedy expansions:
o A1 =44=2 () = (y}) = 64060)>,
o Mp=A3=1r () = (7}) = 32030);
furthermore, their quasi-greedy expansions are:
o A1=A2=2r (1) = () = (6404,
o dp=A3=1r (1) = (n}) = (3202%.
Let us test the theorem on the greedy expansion ofAL In this case it is infinite (and so
it coincides with the quasi-greedy expansion):

1 (¢;) = 314(114D°°.

This implies thatc;) = 203(0030), and the theorem can be easily verified in this case.

5. Correspondence with automata

In this section, we apply the characterization in Theo®in order to build out an
automaton accepting all and only the greedy sequences for a given set oAdigagiven
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baseg. The construction is based on the automata associated to the quasi-greedy expansions
of gaps4; in A’, if they exist.

Afirstremark is that this construction is effective and allows us to build a finite automaton
only if we can build the Blichi automata corresponding to the quasi-greedy expansions of
each4;’s. This means that we have to suppose the regularity of quasi-greedy expansions.
This is the case if the quasi-greedy expansion of evgris periodic. For example, this is
satisfied ifq is a Pisot number and = {0, 1, ..., [¢]}, by a result in the appendix to the
present paper.

A second remark is the following: the automaton associated with the quasi-greedy ex-
pansion(é{) of 4; is defined as the Blichi automaton accepting the translated sequence
6!y whered!" = 5/ + ay. This is related to the fact that conditio.§) in Theorem2.3
could have been equivalently stated in the following way:

A
Cnt1Cnt2 ... < 51” 55” . (5.1)

whenevek, = a;, < am.
Let us give the construction of the automaton:

Definition 1. For every periodic expansion i
i) =ng- My (g - M)

the Bilchi automatonl associated withid;) is an automaton on the alphal#etvith set of
states

S = {50, ... Sn+k}

. n; . n, . _—
and transitions; -5 s;1 forevery 0<i < n—+k ands,x -5 5,41, Whereso is the initial
state andj,” = n; + a1.

Example 5.1. Letus consider the quasi-greedy expansionin Examﬁleéil) = (6404 °°,
the associated automaton recognizing the sequ(eiftf:)e: (7515 is

Construction 1 (Greedy automatgn For every gapd; in the alphabet A we consider its
quasi-greedy expansion in the alphab€tand the associated automatoty, with states

S/ = {sij} and set of transitiong/ = {s - s'}.
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A greedy automatonl recognizing every greedy sequence in base g and digit set A can
be obtained by merging all the automatg in the following way:

e we consider as set of states S4the direct union of states in all;'s, plus a new state
S0-

m.
S={so}U P S,
j=1
e we consider the direct union of the transition setsAgfs, for 1< j < m:
m .
T'=@T.
j=1
Define
aj g am
Ty := {so— spla; < am} U {so— so}
and for every state # so € S and transitions % s e T'witha; > ay, consider
aj ]
Ty = {s = splar<a; < a;}.

Then the set of transitions T fot is

T:T/UTYOUUTV;

seS
e finally, the set of initial states is = {so} and the set of final states is
m—1 .
F={so}U U {sé}.
j=1

Example 5.2. Let us apply the above construction to Example In this case it is easy to
build the automaton corresponding4e = 1 and4, = 2 becaused = {0, 1, 3}.

TR

1

|
Azr300°1

Then we merge the two automata, and for any statgh a transition labeled; # a; and
for everya; < a; we add a transition with label from sto the initial state of4;.
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Here, we obtain the following automaton:

The reader may check that the greedy expansions in Exafnplare accepted by this
automaton.

Example 5.3. Let us considey ~ 3.61645 as in Examplé.3, but with the new alphabet

A = {0, 1, 3, 4, 6}. We have two possible gapty = 43 = 1 and4; = 44 = 2, the
admissible interval is € [0, 2.29318 and the corresponding quasi-greedy expansions in
A’ = A are given by

A=Az =1 (1)) = () = 3141(141D)>,
Ay = A4 =2 (?) = () = 64114314141D)>°.

The associated automata are the following:
A1 =Asz:

éa)i@%@i

1

Ar = Ay :

6010101000 -0 G0 -0 0
1
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Fig. 1. The greedy automaton far= {0, 1, 3, 4, 6} (with repeated gaps).

The above construction is redundant in this case, because there are repeated
gaps. We should merge twice the identical automaton recognizing the quasi-
greedy expansions forl; and Az (and analogously ford, and A44). Since the
repeated automaton behave in the same way we do not repeat twice the same
automaton. We consider just one copy, thereby obtaining the automaton
in Fig. 1.

Example 5.4. Let us consider the santgas in the previous example, but this time with
the alphabetA = {1,3,4,5,7} as in Example4.3, which does not contain the
element 0.

Inthiscased’ = {0, 2, 3, 4, 6} # A and the quasi-greedy sequences have to be translated
in order to build the greedy automata.

We haved; = 44 = 2 — (64049 andd, = 43 = 1 — (3202, the as-
sociated automata have to recognize the translated sequencas (Ir615*> and
(4313°.
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The greedy automaton recognizing all greedy expansions is then represented 2n Fig.

Appendix A. a note on periodic expansions

It is well-known that the decimal fractiofx} of a real numbekxk is eventually periodic if
and only ifxis a rational number. This property is known to remain valid for the expansion
in non-integer bases if the base is a Pisot numbel/5&8,2] We give here a new proof of
this fact by adapting an approach used by Bogmér et §B]irForx € R, let[x] be the
integer part ok.

For the definition of Pisot numbers, see Examjl2 for example, all rational integers
g =2 are Pisot numbers, and the golden sectioa %(1 + +/5) is also a Pisot number

because its other conjugaéel — /5) has modulus< 1.
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In order to state our result precisely, let usfix= {a1 < a2 < --- < a,}andg > 1 as
in Section2 and let us consider the expansidiag) of the numbers € [ﬁ qa—i"J
defined recursively by the following formula:

c1:= f(gx),
= cni=f (q”x —yrt ciq”_i>

with a given functionf : R — A.

(A1)

Remark A.1. This situation describes the case of a generic sequence where the choice of
the next digit is deterministically taken starting from the previous steps, and this is the case
for greedy, quasi-greedy and lazy sequences:

(a) the greedy expansion is obtained if

. ai
= max <y — ;
fe () ma {a|a y q—l}

(b) the quasi-greedy expansion is obtained if

ai
= max - :
fo) may {a|a<y q—l}

(c) the lazy expansion is obtained if

. am
= min >y — )
L) mir {a|a y q—l}

Another classical expansion, tffeexpansion of Rény[9] can be defined in the same way
by using the functiory(y) = [y].

In fact, if we consider the greedy case, and we defindtthessty; of a given expansion
(c;) of xas

then we have

ax
c1 = fc(gxo) = MaX¥eca {ala <gx — 1} )

q—
ai
cn = fo(xn) = max{a|a <Xy — } : (A-2)
acA q — 1

Note that

n—1 ¢
Xn = 61" (x - Z _z)

i=19

and so

" n7171 ci ® qaq
cn = fo(xn) = max{ala<q x—q" ) <=2 —i};
acA i=149"  i=194
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this shows that we choose the biggasatisfying

n=1 .. a X ay
Yo+ Y <y,
i=149 q i=n+19

that is, we apply the greedy algorithm.

Theorem A.1. If x has an eventually periodic expansjahen x belongs to the field(g).
If g is a Pisot numberthen the converse also holds true

Remark A.2. (a) In the special case where= {0, 1, ..., [¢]}, the theorem reduces to an
earlier result if7,10,2] By using theS-expansions they established the converse part if
is a Pisot number then thizexpansion of every € Q(g) is eventually periodic.

(b) Our proof will be based on a different approach of Bogmér gB8al.Moreover, we
will show that the converse part can be established by an arbitrary type of expansion defined
by some deterministic rule of similar type, for exampleasi-greedyexpansions i.e., the
lexicographically largest infinite expansion (see g§4)1]) or alternativelylazy expansion
i.e., the lexicographically smallest expansions (see ppand agairi1]).

Proof. If the expansion of € R has a period of lengtti, then reasoning as in the classical

case wherg is a rational integer, we obtain thgtx — x = %. Thenx = ﬁ with
g —

aandb(g¢ — 1) belonging toZ(g).
Now assume thaj is a Pisot number and consider a numbet % € [Ll a_mJ
q9—41 49—
witha, b € Z(g).
Then all numbers
Ck+1 = Ck+2

Y=+ ——+—F+..., k=12...
q q

satisfy

ai < < am '
q—-1 q—-1
Due to the ruleA.1), it is sufficient to show that there exist two indices< m such that
Xn = xp: then(c;) is possibly periodic with a period of lengti — n.
By generalizing an argument of Bogni8t, we will prove that the sequence;) takes
only finitely many different values.
Equivalently we will show that the sequen¢g,) = (bx;) takes only finitely many
values.
Since

k=1 ,
Yk =qka—b Zciqk_’, k=12,...,
i=1
the numbergy belongs taZ(g).
Itis sufficientto prove that the numbersand all their conjugates belong to some bounded
set. Indeed, then they will be the zeros of a set of polynomials with integer coefficients whose
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orders and coefficients are bounded by some number independgseef e.g[11]). Since
there are only a finite number of such polynomials, this will imply that the set of values
is finite.

As in [3], we recall from[11] that if g has the conjugateg = ¢, andgy, ..., ¢s, then
there exissmonomorphisms; : Q(g) — C,withi = 1, ..., s such that is the identity,
and

° gi(q) =¢qi,i=1....s,
e if y € Q(g), thenai(y), ..., a;(y) contain all conjugates gf (possibly with multiplic-

ity).
Sinceq is a Pisot number, there exists a numbex0 < 1 such thatlg;| < o for
i=2,...,8.

Setting

My := max{|o1(ye). - - -, [as (Vi) l},

we have to show that the sequeride, Mo, ... is bounded.
Let us first observe that

|bla

o1(ye)| = |ka|<qT1
for all k with

a =maX|a;| :a; € A}.
Next we note that

Vi1 = q(k — ber),
whence

0i (Yk+1) = qi(0i(yk) — 0i(b)ck),
so thatfori =2, ..., s we have

loi (Vk+1)| < O(My + ala; (b)]).
Setting

B :=a max{|o2(b)|, ..., |os(b)|}
we conclude that

My+1<0(My + B)
fork=1,2,...

It follows by induction thatM; 1 < KMy + (5" +8 4 0)B. Therefore

0
My <M1+ ——
A

for all k, so that the sequenc@/;) is bounded indeed. [J
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