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Fluorescent proteins (FPs) are powerful tools to investigate intracellular dynamics and protein localiza-
tion. Cytoplasmic expression of FPs in fungal pathogens allows greater insight into invasion strategies
and the host-pathogen interaction. Detection of their fluorescent signal depends on the right combination
of microscopic setup and signal brightness. Slow rates of photo-bleaching are pivotal for in vivo observa-
tion of FPs over longer periods of time. Here, we test green-fluorescent proteins, including Aequorea
coerulescens GFP (AcGFP), enhanced GFP (eGFP) from Aequorea victoria and a novel Zymoseptoria tritici
codon-optimized eGFP (ZtGFP), for their usage in conventional and laser-enhanced epi-fluorescence,
and confocal laser-scanning microscopy. We show that eGFP, expressed cytoplasmically in Z. tritici, is sig-
nificantly brighter and more photo-stable than AcGFP. The codon-optimized ZtGFP performed even better
than eGFP, showing significantly slower bleaching and a 20–30% further increase in signal intensity.
Heterologous expression of all GFP variants did not affect pathogenicity of Z. tritici. Our data establish
ZtGFP as the GFP of choice to investigate intracellular protein dynamics in Z. tritici, but also infection
stages of this wheat pathogen inside host tissue.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Live cell imaging has greatly facilitated our understanding of
the invasion strategies and cell biology of pathogenic fungi. For
example, the establishment of fluorescent proteins in the rice blast
fungus Magnaporthe oryzae demonstrated that autophagy is pivotal
for infection (Kershaw and Talbot, 2009) and septins scaffold pen-
etration peg organization during early invasion of the host plant
(Dagdas et al., 2012). In the corn smut fungus Ustilago maydis,
green-fluorescent protein, fused to a putative receptor involved
in membrane fusions, revealed the existence of highly mobile
endosomes in fungi (Wedlich-Soldner et al., 2000). Interestingly,
in planta observation of these organelles and fluorescent effector
proteins revealed that endosome motility is crucial for effector
secretion and, consequently, for virulence in U. maydis (Bielska
et al., 2014). Thus, visualization of the dynamic behavior of fluores-
cent fusion proteins allows unique insight into the ways in which
pathogenic fungi invade their hosts.

A fluorescent protein for live cell imaging must meet certain
criteria. The protein needs to be bright enough to allow signal per-
ception over the auto-fluorescent background. It should also be
photo-stable to allow long-term observation. Finally, the protein
needs to be non-toxic when expressed in cells. The green fluores-
cent protein (GFP) meets these requirements. This FP was first
identified in the jellyfish Aequorea victoria, where it works in con-
cert with the calcium-binding blue fluorescent protein aequorin
(Shimomura et al., 1962). The gene encoding GFP was cloned in
1992 (Prasher et al., 1992), and the break-through for live cell
imaging of GFP came when the FP was stably expressed in prokary-
otic and eukaryotic cells, highlighting its potential as a reporter of
protein localization and expression (Chalfie et al., 1994; Inouye and
Tsuji, 1994). Since then, GFP has been used in numerous organisms
in a very wide range of applications, including the study of protein
localization and cellular dynamics, protein expression analysis,
protein–protein interactions studies and biosensors (e.g.
Garamszegi et al., 1997; Kahana and Silver, 2001; Voss et al.,
2013). In filamentous fungi, GFP from A. victoria was first used in
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the corn smut fungus U. maydis (Spellig et al., 1996) and
Aureobasidium pullulans (Vanden Wymelenberg et al., 1997) to
visualize these inside the plant. Subsequently, GFP was used in a
broad range of fungi (overview in Lorang et al., 2001); including
Mycosphaerella graminicola (=Zymoseptoria tritici, Rohel et al.,
2001). However, the GFP-variants used showed relatively low
brightness, due to low expression and slow protein folding, and
relatively poor photo-stability. These limitations were overcome
in two ways. Firstly, individual amino acid residues were mutated,
and secondly, the gene for gfp was codon-optimized to increase
expression levels. An example of such a synthetically optimized
protein is ‘‘enhanced’’ GFP (eGFP), which is improved in fluorescent
brightness due to two point mutations (S65T and F64L). In addi-
tion, the codon-optimized gene carries 190 silent mutations to
adapt for codon usage in humans, which increased mRNA transla-
tion rates (Haas et al., 1996; Yang et al., 1996). In fungi, codon-
optimized eGFP was used in Botrytis cinerea. Adapting the gene
for GFP to the codon usage in this fungus led to an increase in flu-
orescent brightness by �12-fold (Leroch et al., 2011). In this report,
we adapt the gene for eGFP to the codon usage in Z. tritici. We
express this ZtGFP, eGFP and a GFP from the jellyfish Aequorea
coerulescens (AcGFP), previously used to visualize hydrophobins
in Fusarium verticillioides (Fuchs et al., 2004), in yeast-like cells of
Z. tritici. We then compare photo-bleaching and the brightness of
the three GFPs in conventional and laser-based epi-fluorescence
and confocal laser scanning microscopy. Our results show that
ZtGFP, expressed from codon-optimized egfp, performs better than
either eGFP or AcGFP for analysis of Z. tritici.

2. Materials and methods

2.1. Bacterial and fungal strains and growth conditions

Escherichia coli strain DH5a was used for the maintenance of
plasmids. Agrobacterium tumefaciens strain EHA105 (Hood et al.,
1993) was used for maintenance of plasmids and subsequently
for A. tumefaciens-mediated transformation of Z. tritici. E. coli and
A. tumefaciens were grown in DYT media (tryptone, 16 g/l; yeast
extract, 10 g/l; NaCl, 5 g/l; with 20 g/l agar added for preparing
the plates) at 37 �C and 28 �C respectively. The fully sequenced Z.
tritici wild-type isolate IPO323 was used as recipient strain for
the genetic transformation experiments. Cells were maintained
as glycerol stocks (NSY glycerol; nutrient broth, 8 g/l; yeast extract,
1 g/l; sucrose, 5 g/l; glycerol, 700 ml/l), and cultures were grown
on YPD agar (yeast extract, 10 g/l; peptone, 20 g/l; glucose, 20 g/
l; agar, 20 g/l) at 18 �C for 4–5 days.

2.2. Molecular cloning

Plasmid pJ244-ZtGFP carries codon-optimized ztgfp gene and
was obtained from DNA 2.0 (Menlo Park, CA, USA). All other vec-
tors in this study were generated by in vivo recombination in the
yeast Saccharomyces cerevisiae DS94 (MATa, ura3-52, trp1-1, leu2-
3, his3-111, and lys2-801 (Tang et al., 1996) following published
procedures (Raymond et al., 1999; Kilaru and Steinberg, 2015).
For all the recombination events, the fragments were amplified
with 30 bp homologous sequences to the upstream and down-
stream of the fragments to be cloned (see Table 1 for primer
details). PCR reactions and other molecular techniques followed
standard protocols (Sambrook and Russell, 2001). The DNA frag-
ments of interest were excised from the agarose gel and purified
by using silica glass suspension as described previously (Boyle
and Lew, 1995). Plasmid DNA was isolated from the positive yeast
colonies as described previously (Hoffman and Winston, 1987). All
restriction enzymes and reagents were obtained from New
England Biolabs Inc (NEB, Herts, UK).
2.3. Construction of vectors pCAcGFP and pCZtGFP

Vector pCeGFP was described in Kilaru et al. (2015a). Vector
pCAcGFP contains acgfp under the control of Z. tritici tub2 promoter
for integration in to the sdi1 locus by using carboxin as selection
agent. A 12,704 bp fragment of pCeGFPTub2 (digested with ZraI;
Schuster et al., 2015), 1149 bp tub2 promoter (amplified with SK-
Sep-14 and SK-Sep-15; Table 1) and 720 bp acgfp (amplified with
SK-Sep-79 and SK-Sep-80; Table 1) were recombined in S. cere-
visiae to obtain the vector PCAcGFP (AcGFP was kindly provided
by Syngenta, Basel, Switzerland). Vector pCZtGFP contains ztgfp,
amplified from pJ244-ZtGFP (see above), under the control of Z.
tritici tub2 promoter for integration in to the sdi1 locus by using
carboxin as selection agent. A 12704 bp fragment of pCeGFP-
Tub2 (digested with ZraI), 1149 bp tub2 promoter (amplified
with SK-Sep-14 and SK-Sep-15; Table 1) 720 bp ztgfp (amplified
with SK-Sep-101 and SK-Sep-102; Table 1) were recombined in S.
cerevisiae to obtain the vector pCZtGFP. Further details on vector
construction and yeast recombination-based cloning are provided
in Kilaru and Steinberg (2015).

2.4. Z. tritici transformation and molecular analysis of transformants

The vectors pCAcGFP, pCeGFP and pCZtGFP were transformed
into A. tumefaciens strain EHA105 by heat shock method
(Holsters et al., 1978) and A. tumefaciens-mediated transformation
of Z. tritici was performed as described previously by Zwiers and De
Waard (2001) with the slight modifications. Further details on this
method are provided in Kilaru et al. (2015a). To confirm the
integration of vector in to the sdi1 locus and also to determine
the copy number, Southern blot hybridizations were performed
by using standard procedures (Sambrook and Russell, 2001).
Approximately 3 lg of genomic DNA of IPO323 and transformants
obtained with vectors pCAcGFP, pCeGFP and pCZtGFP were
digested with BglII and separated on a 1.0% agarose gel and capil-
lary transferred to a Hybond-N+ membrane (GE healthcare, Little
Chalfont, United Kingdom). 1014 bp sdi1 probe (30 end of the sdi1
gene and sdi1 terminator) was generated by using DIG labeling
PCR mix (Life Science Technologies, Paisley, UK) with primers SK-
Sep-10 and SK-Sep-13 (Table 1). Hybridizations were performed
at 62 �C for overnight autoradiographs were developed after an
appropriate time period.

2.5. Fungal infection of plants

Attached wheat leaf infections were performed, as described
previously (Rudd et al., 2008) with few modifications. Wheat cul-
tivar Galaxie (Fenaco, Bern, Switzerland) was used for all the
plant infections and further details are provided in Kilaru et al.
(2015a).

2.6. Epi-fluorescent microscopy

Fluorescence microscopy was performed, as described previ-
ously (Kilaru et al., 2015b). In brief, the fungal cells were grown
in YG media at 18 �C with 200 rpm for 24 h and placed onto a 2%
agar cushion and directly observed using a motorized inverted
microscope (IX81; Olympus, Hamburg, Germany), equipped with
a PlanApo 100x/1.45 Oil TIRF (Olympus, Hamburg, Germany) and
a eGFP ET filter-set (470/40 Et Bandpass filter, Beamsplitter T
495 LPXR and 525/50 ET Bandpass filter (Chroma Technology
GmbH, Olching, Germany)). The fluorescent tags were excited
using a standard mercury burner or a VS-LMS4 Laser Merge
System with a 488 nm solid-state laser (75 mW; Visitron
Systems, Puchheim, Germany) and imaged in the stream acquisi-
tion mode. Average intensity and bleaching behavior of the



Table 1
Primers used in this study.

Primer name Direction Sequence (50 to 30)a

SK-Sep-10 Sense TGGCAGGATATATTGTGGTGTAAACAAATTGACCTTCCACATCTACCGATGG
SK-Sep-13 Antisense CTTCCGTCGATTTCGAGACAGC
SK-Sep-14 Sense CATTTGCGGCTGTCTCGAAATCGACGGAAGGCAGTCGACGCCAGATGATGG
SK-Sep-15 Antisense GGTGAACAGCTCCTCGCCCTTGCTCACCATGGCGATGGTGGTATGCGGATG
SK-Sep-79 Sense CATCACTCACATCCGCATACCACCATCGCCATGGTGAGCAAGGGCGCCGAG
SK-Sep-80 Antisense CCACAAGATCCTGTCCTCGTCCGTCGTCGCTCACTTGTACAGCTCATCCATGC
SK-Sep-101 Sense CATCACTCACATCCGCATACCACCATCGCCATGGTCTCCAAGGGCGAGGAG
SK-Sep-102 Antisense CCACAAGATCCTGTCCTCGTCCGTCGTCGCTTACTTGTAGAGCTCGTCCATGC

a Italics indicate part of the primer that is complementary with another DNA fragment, to be ligated by homologous recombination in S. cerevisiae.
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different green tags were analyzed in movies containing 200
planes captured with 150 ms exposure time and binning 1 using
a CoolSNAP HQ2 camera (Photometrics/Roper Scientific, Tucson,
USA). All parts of the system were under the control of the soft-
ware package MetaMorph (Molecular Devices, Wokingham, UK).
All statistical analysis was performed using Prism 5.03 (GraphPad
Software, La Jolla, USA).

2.7. Confocal microscopy of liquid cultures and infected plant tissue

Confocal microscopy of GFPs was done using a Leica SP8 laser
scanning confocal microscope (Leica, Wetzlar, Germany), equipped
with a HC PL APO CS2 63x/1.40 OIL objective (Leica, Wetzlar,
Germany), at 50% argon laser intensity. Acquisition of 200 planes
in the stream acquisition mode, using a scan field of 256 � 256 pix-
els, a scan speed of 700 Hz, a zoom of 1.28 and a resolution of
12 bits, was done in the counting mode of the HyD detector, rang-
ing from 500 nm to 600 nm. Leica LAS AF software was used to
analyze the average intensity and bleaching behavior.

For imaging of fungal material in wheat tissue, samples were
collected at 14 dpi. Fluorescence was imaged using a Leica SP8
laser scanning confocal microscope (Leica, Wetzlar, Germany)
equipped with a HC PL APO CS2 63x/1.40 oil objective (Leica,
Wetzlar, Germany) or a HC PL APO CS2 40x/1.30 oil objective
(Leica, Wetzlar, Germany). 0.5 cm region was taken from the
infected leaf and briefly dipped into Flutec PP11 (F2 Chemicals
Ltd., Lea Town, UK) and placed on Carolina observation Gel
(Carolina Biological Supply Company, Burlington, USA). To mea-
sure the average intensity and bleaching behavior in planta, sam-
ples were exited using the argon laser at 50% and the counting
mode of the HyD detector in a range of 501–530 nm. Images
sequences of 150 planes in a scan field of 256 � 256 pixels were
acquired, using a scan speed of 600 Hz, zoom 2 and an image bit
depth of 12 bit.

Imaging sample represented in Fig. 3C was done using the argon
laser at 25% and the emission for the green tags was detected in a
range of 497–516 nm with the photon integration mode of the HyD
detector with a gain of 133, a scan field of 1024 � 1024 pixels, a
scan speed of 400 Hz, a zoom of 2, a line average of 2 and a resolu-
tion of 12 bit. Auto-fluorescence of the chloroplasts and plant cell
wall was detected using a second HyD detector in a range of
641–678 nm in the photon integration mode with a gain of 10.

2.8. Data analysis

The average intensity of the different tags expressed in the fun-
gal cytoplasm was analyzed in the first plane of the generated
movies by creating one region of interest (ROI) per cell, covering
only a part of the cytoplasm, but excluding the nucleus or vacuoles.
A copy of the same ROI was placed next to the cell to analyze the
average intensity of the neighboring background. The values of
both ROI‘s were transferred to Excel (Microsoft, Redmond, WA,
USA) and the values of the neighboring background were sub-
tracted from the values of the cell. All corrected values were copied
to Prism 5.03 (GraphPad Software, La Jolla, CA, USA) to perform
intensity comparisons.

The bleaching curves were generated by analyzing the average
intensity of each plain of the movie as described above. This was
done for numerous cells and the mean ± standard deviation of
the corrected intensities for each plane was calculated. Curves
were drawn in the program Prism 5.03 (GraphPad Software, La
Jolla, CA, USA).

To compare the bleaching rate of the various green tags, the
measured fluorescent intensity values with time were fitted to a
one phase decay model. Decay curves were compared using F test-
ing the best fitting decay rates between individual data sets. Fitting
and F testing are performed in the software Prism 5.03 (GraphPad
Software, La Jolla, CA, USA).

3. Results and discussion

3.1. ZtGFP, encoded by a codon-optimized eGFP

As a first step toward designing ZtGFP, we received the codon-
usage for Z. tritici. These data were obtained from the Codon Usage
Database (Nakamura et al., 2000). The information was based on
21,315 codons from 34cDNAs in Z. tritici. This information was con-
firmed by analyzing the codon usage from the annotated genome
of Z. tritici (Goodwin et al. 2011). This analysis revealed that the
codons such as GGG (Val), GTA (Val), AGG (Arg), AGA (Arg), AGT
(Ser), ATA (Ile), TGT (Cys), TAT (Tyr), TTA (Leu), TCA (Ser), CGG
(Arg), CAT (His) and CTA (Leu) were found less frequently in the
coding sequences of Z. tritici. The amino acid sequence of eGFP
was reverse-translated to produce a Z. tritici codon-optimized
eGFP encoding gene, using the software Sequence Manipulation
Suite (Stothard, 2000). The obtained Z. tritici codon-optimized
eGFP nucleotide sequence contains 54 silent substitutions across
the whole length of the sequence (Fig. 1A). We used this informa-
tion to synthesize commercially the ZtGFP coding-DNA.

3.2. Three vectors for targeted ectopic integration of GFP-encoding
constructs

To compare the fluorescent brightness and photo-bleaching
behavior of AcGFP, eGFP and ZtGFP, we generated three vectors
pCAcGFP, pCeGFP and pCZtGFP that allow expression of the GFPs
under the Z. tritici a-tubulin (tub2) promoter (see Schuster et al.,
2015) for further details on tub2; pCeGFP is described in Kilaru
et al., (2015a). We designed all vectors for targeted integration into
the genomic sdi1 locus of Z. tritici, by using a mutated downstream
stretch of the sdi1 sequence, carrying a carboxin resistance confer-
ring point mutation (H267L; Fig. 1B, left flank), and a sequence
stretch downstream of sdi1 (Fig. 1B, right flank of sdi1).
Incorporation by homologous recombination mutates the sdi1 gene



Fig. 1. A codon-optimized gene, encoding ZtGFP for use in Z. tritici. (A) Nucleotide Fungal Genet. Biol. of the open reading frame of enhanced GFP and a modified GFP, codon-
optimized for use in Z. tritici (ZtGFP). Nucleotide exchanges are highlighted in blue. Note that these alterations do not modify the translated amino acid sequence. (B) Vector
for integration of enhanced GFP from A. victoria (eGFP), A. coerulescens GFP (AcGFP) and codon-optimized enhanced GFP from A. victoria (ZtGFP) into the sdi1 locus. After
integration into the sdi1 locus, the vector confers carboxin resistance due to a point mutation in the succinate dehydrogenase gene sdi1, which changes a histidine to a leucine
(H267L). For more details of this integration into the ‘‘succinate dehydrogenase locus’’ see Kilaru et al. (2015a). Left and right border enable Agrobacterium tumefaciens-based
transformation of Z. tritici. (C) Diagram showing the organization of the sdi1 locus before and after integration of the GFP-encoding vectors. Note that integration of the point
mutated sdi1 left flank (see Fig. 1B; point mutation indicated by asterisk) replaces a part of the sdi1 open reading frame (sdi1 ORF) and confers carboxin resistance (sdi1R ORF).
Successful integration of the vector increases the size of a DNA fragment after digestion with the restriction enzyme BglII and subsequent detection with a labeled DNA probe
(blue bar). (D) Southern blot, showing integration of vectors into the sdi1 locus. After digestion of the genomic DNA with BglII and subsequent hybridization with a labeled
DNA probe a shift in the DNA fragment from 2.3 kb to �5.3 kb is detected. The size markers in the corresponding agarose gel are shown to the left.
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and integrates the GFP constructs into the sdi1 locus (for details
Kilaru et al., 2015a). This yields comparable gene expression levels
due to an identical background genomic environment and single
integration of each construct, essential for quantitative analysis
of fluorescent intensities. All three vectors were built in the
Agrobacterium binary vector pCAMBIA0380 (CAMBIA, Canberra,
Australia) and comprise a ‘‘yeast recombination cassette’’, consist-
ing of URA3 and 2l ori which enables yeast recombination-based
cloning (for more details Kilaru and Steinberg, 2015).

We next transformed all three vectors into Z. tritici strain
IPO323 (Kema and van Silfhout, 1997) using A. tumefaciens-
mediated transformation protocol (Zwiers and De Waard, 2001).
In order to confirm the single copy integration into the sdi1 locus,
we purified genomic DNA from the transformants and wild-type
isolate IPO323, digested all with BglII and hybridized these to an
sdi1 probe. Indeed, we found a single band at the expected size
of �5.3 kb in all cases (wild-type locus: �2.3 kb; Fig. 1C and D).
This confirmed that the GFP constructs were integrated into the
sdi1 locus as single copies resulting in strains IPO323_CAcGFP,
IPO323_CeGFP and IPO323_CZtGFP, respectively. In a parallel
study, we confirmed that expression of either GFP in the cytoplasm
of Z. tritici cells did not affect pathogenicity (see Kilaru et al.,
2015a). Thus, we have generated three Z. tritici strains, expressing
non-toxic AcGFP, eGFP and ZtGFP from the same locus and under
the same tub2 promoter. This opened the possibility of comparing
their fluorescent brightness and photo-bleaching behaviors.
3.3. Fluorescent behavior of AcGFP, eGFP and ZtGFP in epi-fluorescence
microscopy of Z. tritici

In a first set of experiments, we investigated one day old liquid
cultures of IPO323 and AcGFP, eGFP and ZtGFP expressing strains
(IPO323_CAcGFP; IPO323_CeGFP; IPO323_CZtGFP) of Z. tritici in
conventional epi-fluorescence microscopy, using a HBO mercury
short-arc lamp for excitation and identical acquisition settings
for all experiments (150 ms exposure time and binning 1). Under
these conditions, untransformed IPO323 showed almost negligible
fluorescent (Fig. 2A), whereas the GFP-expressing strains showed
strong cytoplasmic and nuclear fluorescence (Fig. 2A). That was
brightest in ZtGFP-expressing strains, extending eGFP by �35%
(Fig. 2A and B; significant difference at P < 0.0001 is indicated by
triple asterisk). We further increased the signal intensity by
�33% using a 488 nm solid state laser (75 mW) as excitation source
and identical acquisition settings for all experiments (150 ms
exposure time and binning 1). Again, under these conditions, the
brightness of ZtGFP exceeded that of eGFP significantly (Fig. 2B).
However, it is worth noting that the measured intensity of ZtGFP
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Fig. 2. Signal intensity and bleaching behavior of GFP proteins in epi-fluorescence microscopy. (A) Images showing cytoplasmic expression of A. coerulescens GFP (AcGFP),
enhanced GFP from A. victoria (eGFP) and codon-optimized enhanced GFP from A. victoria (ZtGFP). Note that Z. tritici shows virtually no auto fluorescence (inset shows
extreme image processing, showing very low cytoplasmic background). All images were acquired using 150 ms exposure time and binning 1 and identically processed. Bar
represents 10 lm. (B) Bar chart showing average intensity of cytoplasmic fluorescence of various GFPs. Autofluor.: background fluorescence without expressing a GFP; AcGFP:
cells expressing A. coerulescens GFP; eGFP; cells expressing enhanced GFP from A. victoria; ZtGFP; cells expressing Z. tritici codon-optimized enhanced GFP from A. victoria.
Mean ± standard error of the mean is shown, sample size n is indicated. Triple asterisk indicates significant difference at P < 0.0001, Student t-test. (C) Graph showing decay of
fluorescent signals due to photo-bleaching. AcGFP: cells expressing A. coerulescens GFP; eGFP; cells expressing enhanced GFP from A. victoria; ZtGFP; cells expressing Z. tritici
codon-optimized enhanced GFP from A. victoria. Each data point is given as mean ± standard error of the mean, sample size n is indicated. Note that little variation is found
between experiments and that the standard error of the mean is very small.
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differed significantly between experiments. In contrast, AcGFP was
relatively faint under all conditions tested (Fig. 2A and B).

We next investigated photo-bleaching behavior in conventional
and laser-based epi-fluorescence microscopy. We illuminated sin-
gle cells, recorded 200 images at 150 ms exposure time using the
stream acquisition mode, and measured the average intensity of
the cytoplasmic signal in the cell by creating one region of interest
(ROI) per cell covering an area of the cytoplasm, but excluding the
nucleus and vacuoles. The intensity value of the cell was corrected
by the intensity value of the neighboring background. The average
fluorescence intensity of all GFPs decreased with time, indicating
that all fluorescent proteins undergo photo-bleaching and followed
a one-way decay curve (Fig. 2C). In a first set of experiments, we
investigated the fluorescent decay with time when a mercury
short-arc lamp was used for illumination (HBO lamp). Fitting
one-way decay curves and subsequent F-testing revealed that
AcGFP and eGFP bleached significantly faster than ZtGFP
(P = 0.0037 and P < 0.0001, respectively). Photo-bleaching was
much reduced when a 488 nm laser was used for excitation
(Fig. 2C, 488 nm laser). Under these conditions, no obvious differ-
ence was found for all three GFPs (all P-values > 0. 1162). In
summary, our analysis revealed that ZtGFP is brighter than eGFP
and AcGFP and, at least under HBO illumination, is more photo-
stable. Thus, we conclude that the codon-optimized GFP is optimal
for fluorescence-based live cell imaging in epi-fluorescence
microscopy.

3.4. Fluorescent behavior of AcGFP, eGFP and ZtGFP in confocal laser
scanning microscopy

Investigation of Z. tritici infection stages in wheat tissue
requires confocal laser scanning microscopy. We therefore tested
signal intensities and photo-bleaching behavior of AcGFP, eGFP
and ZtGFP in liquid culture and in planta using a Leica TCS SP8L
confocal microscope. In liquid culture, ZtGFP shows the strongest
cytoplasmic fluorescence, which exceeded that of eGFP by �60%
(Fig. 3A and B). Again, auto-fluorescence of IPO323 was very minor
and AcGFP showed weak fluorescence (Fig. 3B). A similar situation
was found in planta, 14 days after infection. Again, ZtGFP
expression was clearly visible in fungal hyphae (Fig. 3C) and quan-
titative image analysis revealed that the average signal intensity
exceeded that of eGFP significantly (Fig. 3B). No difference in
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Fig. 3. Signal intensity and bleaching behavior of GFP proteins in confocal laser-scanning microscopy. (A) Confocal image of Z. tritici cells, grown in liquid culture and
expressing ZtGFP. Bar represents 10 lm. (B) Bar chart showing average intensity of cytoplasmic fluorescence of various GFPs, observed with a confocal laser scanning
microscope in liquid culture and in infected wheat tissue. Autofluor.: background fluorescence without expressing a GFP; AcGFP: cells expressing A. coerulescens GFP; eGFP:
cells expressing enhanced GFP from A. victoria; ZtGFP: cells expressing codon-optimized enhanced GFP from A. victoria. Mean ± standard error of the mean is shown, sample
size n is indicated. Triple asterisk indicates significant difference at P < 0.0001, Student t-test. (C) Images of infected wheat tissue at 14 dpi. Hyphal cells express A. coerulescens
GFP (AcGFP), enhanced GFP from A. victoria (eGFP) and codon-optimized enhanced GFP from A. victoria (ZtGFP). Auto fluorescence of plant chloroplasts is shown in red. Bar
represents 10 lm. (D) Graph showing decay of fluorescent signals due to photo-bleaching in confocal laser scanning microscopy. AcGFP: cells expressing A. coerulescens GFP;
eGFP: cells expressing enhanced GFP from A. victoria; ZtGFP; cells expressing codon-optimized enhanced GFP from A. victoria. Each data point is given as mean ± standard
error of the mean, sample size n is indicated.

130 S. Kilaru et al. / Fungal Genetics and Biology 79 (2015) 125–131
photo-bleaching behavior was observed between the ZtGFP and
eGFP (Fig. 3D, P = 0.1503; F-test after fitting one-way decay curves)
when cells were grown in liquid culture. However, eGFP fluores-
cence decayed significantly faster than ZtGFP when cells were
observed in planta (Fig. 3D, P < 0.0001; F-test after fitting one-
way decay curves). These results confirm the previous outcome
for HBP illumination and show that the ZtGFP is also optimal for
confocal laser scanning microscopy of Z. tritici, both in liquid cul-
ture and in infected plant tissue.

4. Conclusion

In this study, we generated a codon-optimized GFP for use in Z.
tritici (ZtGFP). We introduced 54 silent mutations into the eGFP
sequence in order to optimize its codons for expression in Z. tritici
and compared fluorescent intensity and photo-bleaching behavior
of cytoplasmic ZtGFP to eGFP and AcGFP in several microscopic
systems. Overall, AcGFP performed very poorly and is not recom-
mended for use in Z. tritici. eGFP and ZtGFP provide bright signals
and can be used to observe the fungus inside infected plant tissue.
However, ZtGFP is superior, as it is significantly brighter and signif-
icantly more photo-stable when expressed in the cytoplasm of Z.
tritici. The difference was most obvious in confocal laser scanning
microscopy, which is the method of choice for analyzing host-
pathogen interaction. We conclude that ZtGFP is the fluorescent
protein of choice to investigate cellular protein dynamics or host-
pathogen interaction in the wheat pathogen Z. tritici.
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