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Abstract--Let  A be a (k - /, /)-generalized consistently ordered matrix with T and .£a its associated 
Jacobi and SOR matrices whose eigenvalues # and 2 satisfy the well-known relationship 
(2 + co - 1)k= c o k # k 2 k - t .  For a subclass of  the above matrices A we prove that the matrix analogue of  
the previous relationship holds. Exploiting the matrix relationship we show that the SOR method is 
equivalent to a certain monoparametric k-step iterative one when used for the solution of  the fixed-point 
problem x = T x  + c. 

1. I N T R O D U C T I O N  

Assume that A ~ C ~'~ is a matrix given by 

.4 = I - T ,  

with I being the n x n unit matrix and T being of  the form 

(1) 

0 
0 

0 
T t =  

T/+ 1,1 
0 

d 

0 . . .  0 Tl.k-t+l 0 . . .  0 
0 . . .  0 0 T2,k-t+2 . . .  0 
: " . .  

6 . . .  o o o . . .  

0 . . .  0 0 0 . . .  0 

T l + 2 ,  2 . . . 0 0 0 . . . 0 

0 ... Tk, k-i 0 0 ... 0 

(2) 

where all 0s indicate block nullmatrices and all diagonal blocks are square. Obviously A in (1) is 
a (block) cyclic matrix of  index k (cfi Varga [1] and belongs to the class of  (k - l,/)-generalized 
consistently ordered (GCO) ones (cfi [2-4]). The block Jacobi matrix associated with A relative 
to its partitioning, is T and writing 

T , = L  + U, (3) 

where L and U are strictly lower and strictly upper (block) triangular matrices, we have for the 
corresponding block successive overrelaxation (SOR) matrix 

-Wo,,=(I - -  09L) - l [ (1  - 09)1 + 09U], (4) 

with 09 ¢ C being the overrelaxation parameter (~j~ [1, 4, 5]). 
Let # be the eigenvalues of  T and 2 those of  Leo,. It is well known that the two sets are connected 

through the relationship 

(2 + CO -- 1) k = 09k/gk) *-t (5) 

(Cfi [1, pp 108-109, Exs l, 2; 2-4]. AS is known (5) for (k, l) = (2, l) is due to Young and for 
(k, l ) =  (k, 1), k 1> 3 to Varga [6]. 

t F o r  the academic years 198%88 and 1988-89: Department of  Computer Science, Purdue University, West Lafayette, 
IN 47907, U.S.A. 
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Our main objective in this paper is to show that the matrix analogue of (5), 

- 1 ) I )  =~o  T . ~ o  , (6) (La +( to  k k k k-t 

holds• It should be mentioned that a slight by different version of (6) for (k, l) = (2, 1) was first 
proved by Young and Kincaid [7], while the case (k, 1) = (k, 1), k/> 2 was proved by Galanis 
et al. [8]• The result (6) with all the necessary background material, will be given in Section 2, while 
in Section 3 it will be shown by using (6) that the SOR method applied for the solution of the 
fixed-point problem 

x = T x  + c, (7) 

x, c e C", det(I - T) ~ 0, is equivalent to a monoparametric k-step iterative method of the type 
studied in [9]. We mention that the latter problem for l = 1 was completely analyzed and solved 
in [8]. 

2. THE R E L A T I O N S H I P  (.~e,o + (a~ - -  1 ) 1 )  k = cokT.LPok k-I 

We begin with the statement of our main result• 

Theorem 

Let T, in (2)-(3), be the block Jacobi and ~ ,  in (4), be the block SOR matrices associated with 
the matrix A in (1). Then for any tO ~ C, T and Aao~ satisfy (6)• [] 

First we observe that (6) is trivially satisfied for tO = 0. Thus we restrict ourselves to tO e C\{0} 
and set 

T=coT,  ff,=tOL, U=tOU. (8) 

So (3), (4) and (6) will become 

and 

?..=E + 0, 

.~,o..=(I - [ ) - ' [ ( 1  - tO)I + U]  

(3') 

(4') 

(-~'co q- (tO -- 1)1) k = ~ , k ~ - t .  (6') 

In the sequel only the case 1 ~< k - l will be examined. The case l t> k - l can be examined in 
the same way with the roles of L and U being interchanged. Furthermore and without loss of 
generality we may assume that the greatest common divisor of k and 1 [g,c.d. (k, 1)] is one. 
For if g.c.d.(k, l) = d > 1 and (k', l') = (k /d ,  l /d )  then ~ will also be a GCO (k' - 1',/ ')-matrix 
of the form (2). So, if the theorem holds when g .c .d . (k ' , l ' )=  1, the validity of 
(~o-Jr-(tO - 1)I) k'= ~ k ' ~ k ~ - t w i l l  imply that of (6') because 

~ k  Q~k - l __ ~ k ' ( d -  l ) ~ , k ' ~ k "  - f _ ~ ( k '  - r ) ( d -  1) 

= ~ k ' ( d -  I)( ~ooj .~. (CO - -  -l)])k'~Q~'(k'--r)(d-,--, - - c o  l) 

= ?k'~d-0 LaCk'-t')<d-I)(.~, ° + (tO -- 1)I)/' = ' ' "  

• . . ~ k ' ( d - 2 )  c p ( k ' - l ' ) ( d - 2 ) ( _ C ~  + (tO _ 1)i)2k' 

. . . .  ( ~  + (tO - 1)I) k'd = ( . ~  + (co -- 1)I) k. 

The analysis for the proof of the theorem will be based on elementary graph theory (ef. Varga 
[1] and, for more details, Harary [10]). Thus assume we are given a k x k block matrix Xpartitioned 
in accordance with T in (2). Let K,={1,2 . . . . .  k} and let P~, i e K  be k distinct points (nodes) 
arranged in a row in increasing order. We shall draw the directed arc (edge) p-]aj, i, j e K, joining 
the node i with the node j iff X U is not a nullmatrix. The graph of X, denoted by G ( X ) ,  is then 
the set of all edges associated with X. For the sake of simplicity we may write i instead of P~ and 
(i, j )  instead of PTPj. 
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I 2 i-~ i k 
I : "'' k ~ / 2  "'' 

Fig. 1 
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From the discussion so far it is clear that in G(T) and for a given (K~) i (>l )  we will have 

i f i > l a s i n  Fig. 1 and 

k 

U (i, j )  = (i, i - 1), (9) 
j = l  

0 (i, j )  = (i, i + k - l) (10) 
j= l  

if i ~< l as in Fig. 2. In the case of  a type II edge we shall say that we have a "folding" (edge). 
Obviously edges of  type I are associated with the matrix /~, while those of  type II with 0. 
Consequently 

G ( L ) =  0 ( i , i - l ) ,  G ( 0 ) =  0 ( i , i + k - l ) ,  G ( T ) = G ( f f ~ ) u G ( O ) .  (11) 
i = 1 + 1  i = 1  

Let us denote the members of  (6') by B and C, that is 

B ' = ( . ~ o ,  + (co 1)I) k, ~k k-t --  C , = T  Sf,o , (12) 

and let us consider the expansions of  B and C in terms of  products of  £ s  and 0s.  For this (4') 
must be used along with 

Ago, = (I +/7,  + E 2 + . - .  +/_S') ((1 -- co)I + 0 ) ,  

or equivalently 

Aao, = (1 - co)(l + /~  +/7, 2 + . . .  +/~,p) + (I +/7, +/~,2 + . . .  +/~,P)O, (13) 

where p = [(k - 1)/1], that is the largest integer not exceeding (k - 1)/1, and with 

La, o + (co - 1)I = (1 - co)(/_", +/7,2 + . . .  + I7/) + (I + E +/.~2 + . . .  + Ep)O. (14) 

Next, let us consider together with each nonidenticaUy zero matrix (term) in the expansions of  B 
and C all possible paths associated with the original graph of  the factors involved in the matrix 
(term) in question. For example if(k, l) = (3, 1) then ~3 = (E + 0 )  3 = /~20  +/7, U/7, + 0/~ 2. So, with 
the first t e rm/~20 = Lff,0 the path Pa--~P2, P2-'~;, P~-~3 of  length 3 will be considered and not the 
resulting one P3P3 of length zero. With the second term the path P-~P~, Pt-'fia, P3-~P2 will be considered 
and not P-~P2 etc. Thus, in this sense, G ( ~  3) = (1, 1)w(2, 2)u(3 ,  3) where each path is of  length 
3. Then we can prove the following statement: 

Lemma 1 

G ( ~  k) consists of  exactly one closed path from a node / e K to itself (cycle) of  length k. This 
cycle contains precisely ! foldings no two of which can be consecutive edges of  it. 

Proof. For any i e K there exists exactly one edge with / a starting node (see Figs 1 and 2). Let 
j be the ending node of  a path starting from / whose length is k and which has r foldings. If  to 
each edge (s , t )  we assign the number t - s  then for the path in question we have 
i + r(k - 1) + (k - r)(l)  = j  or i - j  = (l - r)k showing that j = i and r = 1 because [i - j  I < k. 

If: 

lit 

Fig. 2 
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That  two foldings can not be consecutive edges of  this path follows directly from the fact that 
i ~< k - l. Finally, because of  the special cyclic nature of  G(T  k) and the fact that g.c.d.(k,/) = 1 
the above cycle passes precisely once through each of the k nodes. []  

From Lemma 1 (L1) many properties of  the terms of the expansion of ~k = ( [  + 0)k and their 
associated graphs can be obtained. Thus we have: 

Lemma 2 
A nonidentically zero term of  the expansion of ~k = (/~ + 0)k is of the general form 

L q' UL q2U.., f_,q'O[ q' +', (I 5) 

where the q:s, j = l(1)l + I, can be determined uniquely for a given i e K. Moreover, if the given 
i takes cyclically all values along its associated closed path (cycle) then all other terms of ~k are 
produced in the same cyclic way by simply transferring each time in (15) only one factor, out of 
the k ones, from the front (left) to the back (right). []  

Let us now examine how G(.~a,o) is derived assuming that co :~ 1 because for co = 1 the proof  
of the theorem is simplified. First we observe that for a given i ~ K the number of  edges of  G(-~o,), 
with i as starting node, is q + 2, where q = [ill]. q + 1 of  these edges are of  type I, coming from 
the first q + 1 terms (1 - co)/S s, s = 0(l)q (/S ° = I) of  the first sum in the RHS of (13) while the 
(q + 2)nd one is a folding (edge of  type II), coming from the term/~q0 of  the second sum in (13). 
The set of  these edges is illustrated in Fig. 3. Next we notice that, in view of  (14) the set of  edges 
of  G(L#o + (co - 1)I), whose origin is the previous node i, is exactly the same as before except for 
the edge (i, i). Hence 

G(.W,, + (co - I)I) = G(.~¢,,) \ 0 (i, i). (16) 
\ i=1 

Now we are able to go on with the proof  our theorem. 

Proof of the theorem 
For this we have to prove that if in G(B) there exists a path from i t o j  with ! + m foldings then 

there exists an identical path in G(C) and vice versa. Moreover the path in question is associated 
with terms of  the expansions of  B and C whose leading coefficients are the same and equal to 
N(1 - co) k-j-re. For  this we note that because of  the factor ~k in C there exists in G(C) a unique 
path of  length k from i to i with I foldings (L1). So the other m foldings of  this path must come 
from the factor . ~ - t  and more specifically from the presence of  m Us in the term associated with 
this path. Thus 0 ~< m ~< k - I. On the other hand, it is implied that k - l - m terms of  the first 
sum in (13) are factors in the term in question, which gives as a coefficient of  this term 
Nc(1 -co)k-~-m. Furthermore, every nonidentically zero term of  B will have its first k factors the 
same as those of  a nonidentically zero term of  ~k hence its associated path will have at least l 
foldings. So, if in G(B) i is connected wi thj  via a path with m" foldings, 0 ~< m'  - l ~< k - I. Because 
of  (16) this path consists of  the cycle of length k with I foldings connecting i with i followed by 
a path with m'  - l = m foldings connecting i withj .  The entire path is identical with that in G(C) 
considered previously, comes from a term of  the expansion of  B which has l + m 0 factors and 
therefore, in view of  (14), k - I - m (1 - co)/_~ factors. So, the coefficient of  the term in question 
is NB(1 --co) k-~-m. Conversely, the proof  follows the same reasoning and is therefore omitted. It 
remains to be proved that Ns = Nc. Evidently Ns and Nc are equal to the number of  all different 
paths in G(B) and G(C) connecting i with j with l + m foldings. Let t be the number of  all 

Fig. 3 

... i+~-(~ 
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intermediate nodes in G(B) which are endpoints of  edges of  type I in one of  these paths. In a path 
with l + m foldings the endpoints of  all edges of  type I are k - l - m, so 

Nn,. = t Nn = ( k - l - m ) "  if the last edge is of  type II; 
(17) 

( t - -  1 ) if the last edge is of  type I. 
Ns' k l - m  - 1 ' 

But, because of  the presence of  ~k in C there exists a unique path from i to i with I foldings. Hence 
Nc will be the number of different paths from i to j with m foldings. The number of  endpoints of  
edges of  type I in this last part in one of  these paths is t - k + / ,  that is the same t as that in G(B) 
minus the k - l edges of  the cycle from i to i. We distinguish two cases: 

(a) The last edge ofthepath is of type 11. Let thenp  (0 ~<p ~< k - l - m) be the number of  edges 
with ending node one of  the previously mentioned t - k + 1 points corresponding to a factor 
(1 - c o )  r of  the associated term. This number is obviously (,-k+l~ But because of  the factor x p / "  

(1 - o~) k - t - "  in the associated product of /~s  and Us it is concluded, from (13), that the factor 
(1 - o ~ )  k - t - " - p  must come from the presence of k - l  - m  - p  times of  the matrix (1 - c o ) L  This 
implies that in the path under consideration there exist k - l - m - p  edges connecting a node to 
itself. These edges must be associated with the above p nodes, with the ending nodes of  the m 
folding and with i itself. That  is with p + m + 1 nodes all together. But the "distribution" of  
k -  l -  m - p  edges to p + m + 1 nodes is the number of  combinations with repetitions of  
p + m + 1 chosen k - l  - m  - p ,  namely 

( ( p + m + l ) + ( k - l - m - p ) - l )  ( k - l )  
k - l - m  - p  k - l - m  - p  

So, we have that the total number of  different paths is 

k - ~ - m ( t - - k + l ) (  k - l  ) 
Nc = Nc,, = 

p=o \ P k - l - m - p  

P~+P2~-'-"( t - k  ~ (  ~ = (  ~ = (  ) = + k -  t - k + l + k -  t 
pt.p2~o \ Pl P2 Pl +P2 k - l - m  ' 

and Nct~ = Nn,, follows from (17). 
(b ) The last edge of the path is of type L The analysis is the same with the obvious differences: 

(i) p takes values such that 0 ~< p ~< t - k + l - 1. (ii) For  a given p the number of  different paths 
is ( t -k~-~)  and (iii) The edges which may connect a node to itself must be associated with the 
previous p + m + 1 nodes and also with the node j, that is with p + m + 2 nodes all together. 
Consequently 

k - ~ - m ( t - k + l - l ) ( k - l  ) 
Nc = Nct = 

p=0 \ P k - l - m - l - p  

= ~ = 
pl,P2~>0 Pt P2 k - l - m - 1 " 

Hence, from (17), Nq = Nnt which concludes the proof  of the theorem. []  

Note. If  any one of  the k blocks T~j, of T, in (2), is a zero matrix, (6) is valid and the proofs 
of  the various statements so far still hold provided one assumes that there exists a fictitious edge 
connecting i withj.  Of  course, then T k as well as both members of  (6) are nullmatrices and a much 
simpler proof  can be given. []  

3. A P P L I C A T I O N S  TO M O N O P A R A M E T R I C  k - S T E P  I T E R A T I V E  M E T H O D S  

In [8] and [11] two classes of  monoparametric k-step iterative methods were studied in connection 
with the SOR method. They were extensions and generalizations of  the 2- and 4-step methods 
treated in [12-14] and [9]. In general the monoparametric k-step iterative methods constitute 
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subclasses of  the methods analyzed in [9], where the latter are subclasses of  the k - p a r t  splitting 
methods introduced in [15]. 

For  the solution of  (7), (6) suggests that a monoparametric k-step iterative method equivalent 
to the SOR one: 

x<m)=.geo, x ( " - ~ ) + c o ( I - c o L ) - ] c ,  m = - k  + 2 ,  - k  + 3 ,  - k  + 4  . . . . .  (18) 

can be constructed. The way of  generating the new method is analogous to that in [8] for 
1 = 1. More specifically let x ~m-k) be the (m - k) th iteration of  (18) with m = 1, 2, 3 . . . .  From (6) 
we have 

(.~co-~'(o)-- l ) I )kx  (m-k) = o ~  k k-Ix(m-k), 

or equivalently 

k/k\ 
- 1 ) . ~ , o  x =co TAa,o x . (19) 

:=ok J /  

From (18) it can be obtained 

(Yo)( . ~ x  (m-k) = x (m-k+j)  - co . ~  I - o ) L ) c .  

Substituting into (19) we take 

Based on a statement analogous to Lemma 2 in [8], the last term in the RHS above can be simplified 
provided 1 is not an eigenvalue of  T k. Thus we get 

x(m) = o )kTkx tm_O _ k (co - 1)ix cm-j) + co k ~ .  Tic ,  m = 1, 2, 3 . . . . .  (20) 
j - i  J j=o 

where x ° ~  C n, j = 0 ( - 1 ) -  k + 1, can be taken arbitrary, and are partitioned relative to the 
partitioning of  T. Equation (20) is a monoparametric k-step iteration method and constitutes a 
generalization of  the one in [8]. Let us set 

k - I  

j = 0  

partitioned in the same way as the xO~s previously. Then (20) is split into the following k simpler 
and of  smaller dimensions k-step iterative methods: 

xl = o k ,x - -2 . .  (co -- 1)Jxt + 

(21) 

j = l  

where ~ , j  = l(l)k,  are cyclic products of  the k nonzero submatrices of  T in (2). Apart from the 
number zero and multiplicities, the coefficient matrices in (21) and T k have the same eigenvalues. 
So, the asymptotic convergence rates of  (20) and of  each one of  (21) are that of  the SOIl method 
(18). Therefore by applying any one of  (21), say the first one, we can obtain x~ and from (7) and 
(2) the other vector components o fx .  As was mentioned before g.e.d(k, l) = 1. I f  g.c.d.(k, l) ffi d > 1 
then k"  = k / d  and l '  = I / d  replace k and I. 
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Example.  In (2) let k = 3 and l = 2. Then the 3-step methods (21) will be 

1)Jx~rn-J).~- ~l ; 1 - - t ~  a l ,  2 a  2, 3 a  3, 1.~, 1 - -  
j = l  m ~ j j  

Working only with the first one, provided convergence is guaranteed, x~ is obtained. Then from (7) 
T T T T  and (2) we have x3 = T3.1xj + c3, x2 = T2,3x3 + c2 and x = [x lx2x3]  • 

Before we close this section we point out that the study of  the (optimal) convergence of  (21) can 
be made by means of  the (optimal) convergence of  (18) and vice versa. For example in [8], l = 1, 
the optimal convergence of  (18) was obtained via the (optimal) convergence of  (21). Based on this 
observation we note that if the k th  powers of  the eigenvalues of  T in (1) are nonnegative, with 
p ( T )  < 1 and g.c.d.(k, l) = 1 with l > 1, then the optimum SOR method (18) for the solution of(7)  
corresponds to co = 1 (cf. [3]). In such a case the optimum methods (20) and (21) are simplified 
to  

x (") = T k x  ( " - °  + d (20')  

and 

x)  '') = ~ x  ( " - °  + ~j, j = l(l)k, (21') 

respectively. The problem of  (optimal) convergence in more general cases is being investigated. 

Acknowledgement--The authors wish to thank Professor Theodore Bolis of the University of Ioannina for helpful 
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