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a b s t r a c t

Fractional order differentiation is generally considered as the basis of fractional calculus,
but the real basis is in fact fractional order integration and particularly the fractional
integrator, because definition and properties of fractional differentiation and of fractional
differential systems rely essentially on fractional integration. We present the frequency
distributed model of the fractional integrator and its finite dimension approximation. The
simulation of FDSs, based on fractional integrators, leads to the definition of FDS internal
state variables,which are the state variables of the fractional integrators, as a generalization
of the integer order case.

The initial condition problem has been an open problem for a long time in fractional
calculus. We demonstrate that the frequency distributedmodel of the fractional integrator
provides a solution to this problem through the knowledge of its internal state. Beyond
the solution of this fundamental problem, mastery of the integrator internal state allows
the analysis and prediction of fractional differential system transients. Moreover, the finite
dimension approximation of the fractional integrator provides an efficient technique for
practical simulation of FDSs and analysis of their transients, with a particular insight into
the interpretation of initial conditions, as illustrated by numerical simulations.

Laplace transform equations and initial conditions of the Caputo and the Rie-
mann–Liouville derivatives are used to formulate the free responses of FDEs. Because usual
equations are wrong, the corresponding free responses do not fit with real transients. We
demonstrate that revised equations, including the initial state vector of the fractional in-
tegrator (used to perform differentiation) provide corrected free responses which match
with real transients, as exhibited by numerical simulations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Though fractional calculus has received convincing applications in the past decades, such as robust control [1–4],
fractional order PIDs [5,6], modeling and identification [7–10] of diffusive interfaces etc., the theoretical modeling of
Fractional Differential Equations (FDEs) and Systems (FDSs) has not reached the same achievement as their integer order
counterparts. For example, though fundamental in automatic control for its implications in controllability or observability,
Lyapunov stability and optimal control, the state variable concept remains controversial and the initial condition problem
is still open [11,12]. Fortunately, two main approaches have received attention. Lorenzo and Hartley have introduced the
history function and the initialization function concepts which provide the framework of a global method for the analysis
of the initial conditions of both fractional derivatives [13,14] and FDEs [15–18]. Recently [19], this technique has been used
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to initialize the model of a real diffusive experiment. Trigeassou has introduced the concept of the frequency distributed
fractional integrator [20]which has been used for the definition of state variables [21] and to solve initial condition problems
dealing with fractional derivatives [22] and FDEs [23]. Sabatier has introduced an equivalent technique [24,25], which
provides a distributedmodel of the global system. Thismodel emphasizes the infinite dimension of the state space variables;
it has been applied to define observability [26] and to perform pseudo-state estimation [27]. The initial condition problem
has also been addressed by several authors, mainly from the point of view of history and initialization functions concepts,
see for example [28,29] and particularly [30].

The analysis of system transients or free responses, though essential in dynamical systems, is practically unexplored
in the fractional domain. Indeed, this situation is easily explained by the difficulties encountered in the mastery of state
variables and initial conditions.

On the other hand, well established results reveal to be questionable. Particularly, the popular initial conditions deduced
from the Laplace transform of the Caputo derivative lead to ambiguous results, in contradiction with new state variable
concepts, as it has been mentioned in some recent publications [13,14,25,22].

During the last decade, the fractional integrator technique [20] has been developed through different papers dealing
with the design of the integrator and mostly its applications in simulation [31] and identification of FDEs [32–35,10]. More
recently, this technique has been used to propose a Lyapunov approach to the stability of FDEs [36], and to solve initialization
problems arising in FDEs [23] and fractional derivatives [37,38]. So, this paper is intended to present a synthesis of previous
works on the fractional integrator and fractional differential equations and systems, mainly from the point of view of the
initial condition problems and transient behaviors. The transients of the fractional integrator and of the fractional derivatives
have been addressed in [39], where transients are illustrated by numerical simulations.

Though fractional order differentiation is generally considered as the basis of fractional calculus, we demonstrate that
the real basis is in fact fractional order integration and particularly the fractional integrator, mainly because definition and
properties of fractional differentiation and of FDSs rely essentially on fractional integration.

The initial condition problem has been an open problem for a long time in fractional calculus. We demonstrate that the
frequency distributed model of the fractional integrator provides a solution to this problem through the knowledge of its
infinite dimension internal state. Beyond the solution of this fundamental problem, mastery of the integrator internal state
allows the analysis and prediction of fractional differential system transients. Moreover, the finite dimension approximation
of the fractional integrator provides an efficient technique for practical simulation of FDSs and analysis of their transients,
with a particular insight into the interpretation of initial conditions.

Laplace transform equations and initial conditions of the Caputo and the Riemann–Liouville derivatives are used to
formulate the free responses of FDEs. Because usual equations are wrong [13,22,40], the corresponding free responses
do not fit with real transients. We demonstrate that revised equations, including the initial state vector of the fractional
integrator (used to perform differentiation) provide corrected free responses whichmatch with real transients, as exhibited
by numerical simulations.

The paper is composed of six sections. The first one is the introduction. The second section is a reminder of fractional
integration and differentiation definitions. The third section is devoted to fractional integration with the frequency
distributed integrator. In the fourth section, we present the simulation of FDSs with fractional integrators and their free and
forced responses. Mastery of transients thanks to FDS infinite dimension state vector is illustrated by numerical simulations
in the fifth section. The last section deals with free responses derived from the revised Laplace transform equations of the
Caputo and Riemann–Liouville derivatives.

2. Fractional order integration and differentiation

2.1. Riemann–Liouville integration

The nth fractional order Riemann–Liouville integral (n real positive) of a function f (t) is defined by the relation [41–44]:

In (f (t)) =
1

Γ (n)

 t

0
(t − τ)n−1 f (τ )dτ , (1)

where Γ (n) is the gamma function

Γ (n) =


∞

0
xn−1e−xdx. (2)

In (f (t)) is the convolution of the function f (t) with the impulse response:

hn(t) =
tn−1

Γ (n)
(3)

of the fractional integration operator whose Laplace transform is:

In(s) = L { hn(t) } =
1
sn

. (4)
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Notice that in the integer order case (n = 1), the integral is characterized by h1(t) = H(t) (unit step function or Heaviside
function) and

I1(s) = L { h1(t) } =
1
s
. (5)

2.2. Implicit fractional differentiation

Fractional differentiation is the dual operation of the fractional integration.
Consider the fractional integration operator In(s) whose input and output are respectively x(t) and y(t).
Then:

y(t) = In (x(t)) or Y (s) =
1
sn

X(s). (6)

Reciprocally, x(t) is the nth order fractional derivative of y(t) defined as:

x(t) = Dn (y(t)) or X(s) = snY (s), (7)

where Dn(s) = sn represents the Laplace transform of the fractional differentiation operator (for initial conditions equal to
zero).

This fractional derivative definition is based on the operator In(s), without analytical formulation of Dn (y(t)): it is the
implicit definition of the fractional derivative. However, this implicit derivative exists only inside a closed loop, like in the
simulation of fractional differential equations (Section 4).

2.3. Explicit formulations of the fractional derivative [45]

Assume that the fractional order n is included between the two integer numbers N − 1 and N:

N − 1 < n ≤ N. (8)

We can write

Dn(s) = sn =
1
sN

sn sN =
1

sN−n
sN , (9)

where 1
sN−n represents the fractional integration IN−n( ) and sN the integer order differentiation dN ( )

dtN
.

Then

L {Dn(f ) } = Dn(s) F(s) =
1

sN−n
sN F(s) (10)

(with zero initial conditions) and using the inverse Laplace transform, we get two expressions of Dn(f ):

Dn(f ) = L−1


1
sN−n

(sN F(s))


(11)

Dn(f ) = L−1

sN


1

sN−n
F(s)

 
. (12)

The first expression (11) corresponds to:

Dn(f ) = hN−n(t)∗
dN f (t)
dtN

(13)

and the second one (12) to:

Dn(f ) =
dN

dtN
(hN−n(t)∗f (t)). (14)

This first expression is known as the Caputo derivative [7,44]

Dn(f (t)) =

 t

0

(t − τ)N−n−1

Γ (N − n)
dN f (τ )

dtN
dτ (15)

while the second one is the Riemann–Liouville derivative [44]:

Dn(f (t)) =
dN

dtN

 t

0

(t − τ)N−n−1

Γ (N − n)
f (τ ) dτ


. (16)
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3. The fractional order integrator

3.1. Introduction

Because the Riemann–Liouville integral of a function f (t) is the result of a convolution between f (t) and the impulse
response hn(t), this integral is obtained at the output of a linear system (characterized by its impulse response hn(t)), excited
by the input f (t). This linear system is called the fractional order integrator; for convenience, itwill be denoted by the Laplace
transform In(s).

This fractional integrator is the key element for FDE/FDS simulation. However, the realization of In(s), either in analog
or numerical form, is not a simple task, as in the integer order case. The reader will refer to [20,46] for a more detailed
presentation.

3.2. The frequency distributed model

The fractional integrator is a linear frequency distributed system, with input v(t) and output x(t). Its frequency dis-
tributed state z(ω, t) verifies the differential equation (for the elementary frequency ω) (see Appendix A for a presentation
of the distributed model):

∂ z(ω, t)
∂t

= −ω z(ω, t) + v(t) (17)

and the output x(t) of the fractional integrator is the weighted integral (with weight µn(ω)) of all the contributions z(ω, t)
ranging from 0 to ∞:

x(t) =


∞

0
µn(ω) z(ω, t) dω

µn(ω) =
sin nπ

π
ω− n 0 < n < 1.

(18)

The relations (17) and (18) define the frequency distributedmodel of the fractional integrator; it is also known as its diffusive
model [47–49]. It has also been used by several authors, without explicit reference to a frequency distributedmodel [50–53].

Implicitly, the state of the fractional integrator (and consequently of FDEs and FDSs) is commonly defined as its output
x(t). In fact, because of its definition (18), x(t) is only the weighted sum of the variables z(ω, t), thus it is only a pseudo state
variable and z(ω, t) is an infinite dimension distributed state variable.

Remark. Consider the integer order integrator

I1(s) =
1
s

and µ1(ω) = δ(ω) (19)

x(t) =


∞

0
δ(ω) z(ω, t) dω = z(0, t). (20)

This result means that x(t) and z(0, t) are the same variables and that the output of the integrator characterizes completely
its state in the integer order case.

3.3. Transients of the fractional integrator

Let z(ω, t0) be the initial state of the distributed differential equation at the instant t0.
Then, the free response of this system is

z(ω, t) = z(ω, t0) e−ω(t−t0) (21)

and its forced response to an input v(t) is the convolution of this input with the impulse response e−ω t .
So, the global response of the elementary system is:

z(ω, t) = z(ω, t0) e−ω(t−t0) +

 t

t0
e−ω(t−τ) v(τ) dτ . (22)

Consequently, the response of the fractional integrator is composed of a free response term caused by the distributed initial
condition z(ω, t0), (ω ranging from ω = 0 to ∞) and of a forced response term caused by the input v(t), like all linear
systems [54].

The distributed initial condition z(ω, t0) can be interpreted as an initialization function summarizing all the past behavior
for t < t0.
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The response of the fractional integrator can also expressed with the Laplace transform; this expression will be useful in
the next sections.

Consider the Laplace transform of the distributed equation (17):

L


∂z(ω, t)
∂t


= s Z(ω, s) − z(ω, 0) = −ω Z(ω, s) + V (s), (23)

where z(ω, 0) is the initial condition of the fractional integrator.
So

Z(ω, s) =
V (s) + z(ω, 0)

s + ω
(24)

and

X(s) =


∞

0

µn(ω) z(ω, 0)
s + ω

dω +


∞

0

µn(ω)

s + ω
dω V (s). (25)

Notice that:
∞

0

µn(ω)

s + ω
dω =

1
sn

. (26)

Remark. The transients of the fractional integrator are analyzed and compared to those of the integer order integrator with
the help of numerical simulations in [39].

3.4. Finite dimension approximation of the distributed model

The frequency distributed model of the fractional integrator is not directly usable. A practical model is obtained by
frequency discretization of µn(ω), where the function µn(ω) is replaced by a multiple steps function with K steps. For
an elementary step, the height is µn(ωk), and the width is ∆ωk. Let ckbe the weight of the kth element:

ck = µn(ωk)∆ωk. (27)

Then, the continuous distributed model becomes a conventional state model with dimension equal to K .

d zk(t)
dt

= −ωk zk(t) + v(t) | k = 1 · · · K

x(t) =

K
k=1

µn(ωk) zk(t) ∆ωk

=

K
k=1

ck zk(t).

(28)

Remark. Practically, this model of In(s) is not satisfactory because the equivalent gain of the operator is equal to
K

1 ck
while the static gain of the theoretical fractional integrator is infinite at ω = 0. The drawback of this finite static gain is that
it generates static errors in the simulation of FDEs [48].

An other approach to the discretization of the fractional integrator is provided by the frequency approach [20].
It has been demonstrated that an approximation of In(s) is:

Ĩn(s) =
Gn

s

J
j=1

1 +
s
ω′
j

1 +
s
ωj

. (29)

The coefficient Gn is a normalizing factor, such as In(s) and Ĩn(s) are identical on a frequency interval [ωb; ωh].
Oustaloup [43] has demonstrated the following relations:

ωj = αω′

j with α > 1

ω′

j+1 = η ωj with η > 1 (30)

and

n′
=

log(α)

log(α η)
. (31)
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It is easy to transform the model of Ĩn(s) into a modal form because the ωj are known a priori [46]. This transformation is
based on the following definition:

Ĩn(s) =
c0
s

+

J
j=1

cj
s + ωj

, (32)

where c0 and cj coefficients are linked to Gn, ωj and ω′

j by the relations:

c0 = Gn

cj =
Gn(ωj − ω′

j)

ω′

j

J
i=1
i≠j

1 −
ωj
ω′
i

1 −
ωj
ωi

.
(33)

This definition of Ĩn(s) corresponds to amodal statemodelwhichwill be the finite dimension approximation of the frequency
distributed model, used in this paper:

ZT (t) = [ z0 . . . zj . . . zJ ] (34)

d Z(t)
dt

= AZ(t) + Bv(t)

x(t) = CTX(t)
(35)

with:

A =


0 0

−ω1
. . .

0 −ωJ

 ; B =


1
1
...
1

 (36)

CT
=


c0 c1 · · · cJ


.

Remark. In the direct approximation used in [48], the gain is finite, whereas with the frequency approach (Eqs. (29) and
(32)), because of the integer order integrator, the gain of model (35) is infinite. So, there is no static error when the fractional
integrator is used to perform simulation of FDEs (Section 4).

An other advantage ofmodel (35) is the finite number ofmodesωj.With the direct approximation, if we use an arithmetic
distribution, a quasi infinite number of modes is necessary to cover the [ωb ωh] frequency range. On the contrary, with the
frequency approach, thanks to the geometric distribution (30) proposed by Oustaloup, only a finite number of modes is
required to cover the [ωb ωh] interval.

So, model (35) provides an optimal compromise between precision, number of modes, and consequently reduction of
computation time.

A numerical algorithm is proposed in Appendix B.

4. Simulation and state variables of fractional differential systems

4.1. FDS simulation

4.1.1. Simulation of a one derivative FDE
Consider the elementary system:

Dn(x(t)) + a x(t) = u(t). (37)

We can write:

Dn(x(t)) = v(t) = u(t) − a x(t), (38)

where v(t) is the input of the fractional integration operator In(s) =
1
sn , and x(t) is its output.

The simulation of this FDE can be interpreted as a closed loop system, corresponding to Fig. 1.
Consequently, v(t) is the implicit derivative of x(t), as defined in 2.2.
The same technique is used in the integer order case to simulate ODEs. It has been originally formulated by Lord Kelvin

in 1876 [55,54] and applied by Vannever Bush [56] in the differential analyzer with a mechanical integrator, and later in
analog computers [57] with electronic integrators. The same principle is used in numerical algorithms like Runge Kutta 4,
but the numerical integrator is implicit in this case.
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Fig. 1. Simulation of a one derivative FDE.

The conclusion is that the simulation of an ODE or of an FDE requires an integer or a fractional integrator, at the exclusion
of derivatives.

Simulation is performed using the equations:

∂z(ω, t)
∂t

= −ω z(ω, t) + v(t)

x(t) =


∞

0
µn(ω) z(ω, t) dω,

(39)

where the input v(t) is defined by the feedback equation:

v(t) = u(t) − a x(t). (40)

It is fundamental to notice that the true state variable of the FDE is the internal state variable z(ω, t) of the integrator while
its output x(t) is the pseudo state variable of the FDE.

Practically, a numerical algorithm is used to perform simulation, where the state variables z(ω, t) have been frequency
discretized into zj(t):

dzj(t)
dt

= −ωj zj(t) + v(t) for j = 0 to J

x(t) =

J
j=0

cj zj(t)

v(t) = u(t) − a x(t).

(41)

For instance, using the Euler technique, the complete numerical algorithm is:

vk = uk − a xk t = k Te
zj,k+1 = αj zj, k + βj vk

xk+1 =

J
j=0

cj zj, k+1,

(42)

where αj, βj and cj are defined in the Appendix B.

4.1.2. Simulation of a two derivative FDE
Consider the two derivative FDE:

Dm2(x(t)) + a1Dm1(x(t)) + a0 x(t) = u(t), (43)

wherem1 andm2 are fractional orders verifyingm1 < m2.
Let us define:

n1 = m1, n2 = m2 − m1 (44)

which are the respective orders of the two integrators In1(s) and In2(s) (0 < ni ≤ 1) required for the simulation of the FDE.
Let us define

x1(t) = x(t)
x2(t) = Dn1(x1(t)).

(45)

Then:

Dn2(x2(t)) = −a0 x1(t) − a1 x2(t) + u(t) (46)

which corresponds to the closed loop simulation system of Fig. 2:
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Fig. 2. Simulation of the two derivative FDE.

Simulation is performed by the following equations:

∂z1(ω, t)
∂t

= −ω z1(ω, t) + v1(t)

x1(t) =


∞

0
µn1(ω) z1(ω, t) dω

v1(t) = x2(t)

(47)

∂z2(ω, t)
∂t

= −ω z2(ω, t) + v2(t)

x2(t) =


∞

0
µn2(ω) z2(ω, t) dω

v2(t) = −a0 x1(t) − a1 x2(t) + u(t).

(48)

The true state variables are z1(ω, t) and z2(ω, t) while x1(t) and x2(t) are the pseudo state variables.
Practically, we have to use the same numerical algorithm as previously (41) and (42).

4.1.3. Simulation of an FDS
The previous two derivative FDE corresponds to:

Dn1(x1(t))
Dn2(x2(t))


=


0 1

−a0 −a1

 
x1(t)
x2(t)


+


0
1


u(t) (49)

which is the pseudo state space model of an FDS.
In the general case, we have to define:

nT
= [n1 . . . ni . . . nN ] (50)

XT
= [x1 . . . xi . . . xN ] (51)

with dim X = dim n = N, 0 < ni ≤ 1.

Remark 1. If ni is greater than one, it has to be decomposed into an integer part and a fractional one: a distributed state
variable z(ω, t) is associated to the fractional part and one (or several) classical state variable x(t) is associated to the integer
one.

Let us define

Dn (X(t))T =

Dn1(x1(t)) . . . Dni(xi(t)) . . . DnN (xN(t))


. (52)

The corresponding pseudo state space model of the FDS is:

Dn(X(t)) = A X(t) + B u(t). (53)

A fractional integrator Ini(s) =
1
sni is associated to each pseudo state variable xi(t):

∂zi(ω, t)
∂t

= −ω zi(ω, t) + vi(t)

xi(t) =


∞

0
µni(ω) zi(ω, t) dω

vi(t) = Dni(xi(t)).

(54)
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The true state vector is Z(ω, t)

ZT (ω, t) = [z1(ω, t) . . . zi(ω, t) . . . zN(ω, t)] . (55)

Remark 2. All FDEs can be transformed into FDSs using the generalization of the technique (44) described in [21,23].
Moreover, the output y(t) of the FDE is obtained with the classical equation:

y(t) = CT X(t) + D u(t). (56)

Remark 3. Fundamentally, this simulation technique and its associated differential model are exact, because they are based
on fractional integrators which are exactly modeled by infinite dimension frequency distributed systems. Consequently,
the fractional integrator approach transforms the fractional differential system into an exactly equivalent integer order
differential system, with infinite dimension for each fractional state variable.

This approach provides also a rigorous definition of the state of a fractional system, replacing xi(t) by zi(ω, t): so this
integrator approach allows the generalization of integer order system theory to fractional order systems.

Finally, notice that this technique applies either to commensurate or noncommensurate order fractional systems.

4.2. Response of an FDS

4.2.1. Response of a one derivative FDS
Though elementary, the response of a one derivative FDS plays an important role in the analysis of Caputo and

Riemann–Liouville initial conditions (Section 6).
So we consider again:

Dn(x(t)) + a x(t) = u(t). (57)

The Laplace transform applied to the fractional integrator In(s) gives:

L


∂z(ω, t)
∂t


= s Z(ω, s) − z(ω, 0) = −ω Z(ω, s) + V (s), (58)

where z(ω, 0) is the initial condition of the fractional integrator.
So

Z(ω, s) =
V (s) + z(ω, 0)

s + ω
. (59)

Because

V (s) = U(s) − a X(s) (60)

and

X(s) =


∞

0
µn(ω) Z(ω, s) dω (61)

we get

X(s) =
sn

ss + a


∞

0

µn(ω) z(ω, 0)
s + ω

dω +
1

sn + a
U(s). (62)

The first term represents the free response of the FDS, caused by the initial condition z(ω, 0), while the second term
represents the forced response.

4.2.2. General case
Consider:

Dn(X(t)) = A X(t) + B u(t). (63)

The Laplace transform applied to the fractional integrator Ini(s) gives:

Zi(ω, s) =
zi(ω, 0) + Vi(s)

s + ω
(64)

and for the state vector Z(ω, s):

Z(ω, s) =
z(ω, 0)
s + ω

+
V (s)
s + ω

. (65)
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Let us define:

X(s) =

 :
∞

0
µni(ω) Zi(ω, s)dω

:

 (66)

1
sn

=


1
sn1

0
1
sni

0
1
snN

 (67)

and

sn =


1
sn

−1

=

sn1 0
sni

0 snN


(68)

because

Dn(X(s)) = V (s) = A X(s) + B U(s) (69)

we can write:

X(s) =

 :
∞

0

µni(ω) zi(ω, 0)
s + ω

dω

:

 +


1
sn


(A X(s) + B U(s) ). (70)

Left multiplication by sn gives:

sn X(s) − A X(s) = sn

 :
∞

0

µni(ω) zi(ω, 0)
s + ω

dω

:

 + B U(s) (71)

and finally:

X(s) =

sn − A

 −1
sn

 :
∞

0

µni(ω) zi(ω, 0)
s + ω

dω

:

 +

sn − A

 −1
B U(s). (72)

Indeed, this equation generalizes the previous response of the one derivative FDS.
The global free response of the FDS is caused by the free response of each fractional integrator (25).

4.3. Initial conditions

The initial conditions correspond to z(ω, 0). Let us consider some specific situations, with the help of the one derivative
FDS.

4.3.1. System at steady state
We consider the forced response of

Dn(x(t)) + a x(t) = u(t) (73)

to a step input u(t) = U H(t), with no initial condition (z(ω, 0) = 0∀ ω).
Then

X(s) =
1

sn + a
U
s
. (74)

Because

v(t) = Dn(x(t)) and Z(ω, s) =
1

s + ω
V (s). (75)

We get:

Z(ω, s) =
sn

sn + ω

1
s + ω

U
s
. (76)
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So we can calculate z(ω, ∞):

z(ω, ∞) =
lim

s → 0 s Z(ω, s) =
lim

s → 0
sn

sn + a
U

s + ω
. (77)

Thus:

z(ω, ∞) = 0 ∀ ω ≠ 0 (78)

and

z(0, ∞) =
lim

s → 0
sn

sn + a
U
s

= ∞ (79)

then z(0, ∞) is not defined.
Nevertheless, x(∞) is perfectly defined because

x(∞) =
U
a

. (80)

So, z(0, ∞) is indirectly defined by the integral equation:
∞

0
µn(ω) z(0, ∞) dω =

U
a

. (81)

Remark. With the frequency discretized model

x(t) =

J
j=0

cj zj(t) (82)

and: zj(∞) = 0 ∀j > 1

z0(∞) =
U/a
c0

.
(83)

4.3.2. System at rest
Now we consider the free response caused by z(ω, 0) ≠ 0.
Then

X(s) =
sn

ss + a


∞

0

µn(ω) z(ω, 0)
s + ω

dω (84)

which represents the contribution of all the individual z(ω, 0) frequency components.
So

Z(ω, s) =
sn

ss + a
z(ω, 0)
s + ω

. (85)

Indeed, the system is at rest for t → ∞ and:

z(ω, ∞) =
lim

s → 0 s Z(ω, s) =
lim

s → 0
s sn

sn + a
z(ω, 0)
s + ω

= 0 (86)

so we get

z(ω, ∞) = 0 ∀ω. (87)

4.3.3. Specification of initial conditions
The two previous results allow the definition of rest and steady state for an FDS.

– a system is completely at rest if

zi(ω, 0) = 0 ∀ω and ∀i (88)

consequently,

xi(0) = 0 ∀i. (89)

Notice that reciprocally xi(0) = 0 does not imply that zi(ω, 0) = 0∀ ω!
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– the component zi(ω, 0) is in steady state if it verifies the condition:zi(ω, 0) = 0 ∀ω ≠ 0
∞

0
µni(ω) zi(0, 0) dω = xi(0).

(90)

Let us consider now the ordinary initial condition of the component i:
∞

0
µni(ω) zi(ω, 0) dω = xi(0). (91)

The specification of xi(0) is not sufficient: it is necessary to specify the frequency distribution at each frequency ω and xi(0)
is only the consequence of this distribution.

5. Transients of fractional differential systems

5.1. Introduction

With the help of numerical simulations, we intend to fulfill the following objectives:

– To validate the simulation technique based on the fractional integrator
– To analyze transients (or free responses) and to validate the initialization technique based on z(ω, t0)
– To interpret the role played by the internal state variables z(ω, t).

5.2. Simulation of a one derivative FDS

Again we consider:

Dn(x(t)) + a x(t) = u(t) (92)

with a = 1 n = 0.5.
The objective is to compare the simulated output x(t) to a reference one, calculated with theMittag-Leffler function [44].
Thus, we consider the following input:

u(t) = U for 0 < t < T
u(t) = −U for T < t < 3 T with U = 1 T = 5 s. (93)

The reference output is:

xmit(t) = U H(t)

1 − En,1(−a tn)


0 < t < T

xmit(t) = U H(t)

1 − En,1(−a tn)


− 2U H(t − T )


1 − En,1(−a(t − T )n)


T < t < 3 T (94)

with En, 1(−atn): Mittag-Leffler function [44].
The system has been simulated with the following parameters:

ωb = 0.001 rd/s ωh = 1000 rd/s J = 20 Te = 5 ms. (95)

The reference and simulated outputs are displayed on Fig. 3: the two curves fit exactly.
In order to appreciate simulation accuracy, we have computed the simulation error, which is defined as:

ε(t) = xmit(t) − x(t). (96)

This simulation error is represented Fig. 4: the relative error is inferior to 10−3, which is acceptable. Indeed, it can be reduced
using lower values of Te, enlarging the interval {ωb, ωh} and increasing J, the number of cells.

Remark. Many techniques are available for the simulation of fractional order equations and systems (see for example
[6,58]). Accuracy of numerical algorithms has been particularly addressed by Diethelm [50,51,40]. The Grünwald
technique [59,46] is certainly the more simple approach to the simulation of FDEs. Its main drawback is the number of
states (xi,k−1 values) that have to be stored at each iteration (theoretically an infinite number) because the xi,k−1 values
correspond to an arithmetic distribution. On the contrary, the integrator approach reduces the number of states, thanks to
the geometric distribution of modes (see remark of 3.4).

In [60], the authors propose a comparison of different techniques, particularly Diethelm, Grünwald and fractional
integrator. Diethelm techniques are the more accurate, but they require large computation time. Grünwald approach
performs a good compromise between precision and computation time. The integrator approach is the faster one, with
mediumprecision. However, notice that the [ ωb ωh ]interval and thenumber of cells have not been optimized by the authors.
Moreover, they have not included an integer order integrator for 1 < n < 2 (see Remark 1 of 4.1.3).
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Fig. 3. Comparison of Mittag-Leffler and simulated responses.

Fig. 4. Simulation error.

5.3. Initialization at t = t1

On the graph of Fig. 3, we notice that xmit(t) (and x(t)) are equal to 0 at the instant t1 = 5.25 s.
So, we propose to initialize the system at t = t1 by imposing u(t) = 0 for t > t1.
So, we have modified the computation of xmit(t) for t > t1, according to:

xmit(t) = U H(t)

1 − En, 1(−a tn)


− 2U H(t − T )


1 − En, 1(−a(t − T )n)


+U H(t − t1)


1 − En, 1(−a(t − t1)n)


t1 < t < 3 T (97)

which corresponds to the equivalent input:u(t) = U for 0 < t < T
u(t) = −U for T < t < t1
u(t) = 0 for t1 < t < 3 T

(98)

because u(t) = 0 for t > t1, the reference xmit(t) represents the free response of the system for t > t1, starting from
x(t1) = 0. So, we have created a reference free response which is represented Fig. 5.

On the other hand, at t = t1, we have measured the state z(ω, t1) of the fractional integrator.
So, it has been possible to initialize the system, with z(ω, t1) and u(t) = 0 for t > t1.
The initialized response has been plotted on Fig. 5: we can notice that the two responses fit perfectly.
The conclusions are:

– the initial state z(ω, t1) summarizes perfectly the past behavior for t < t1, so the initialized response fits perfectly the
reference free response for t > t1.

– this initial state z(ω, t1) corresponds to x(t1) = 0: so, we verify that the only knowledge of the pseudo state variable
does not allow the prediction of the fractional system free response, it is necessary to refer to its internal state z(ω, t1).
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Fig. 5. Comparison of reference and initialized responses.

Fig. 6. Initialization at different instants.

5.4. Initialization at different instants

Finally, we have considered the following modified input:u(t) = U for 0 < t < T
u(t) = −U for T < t < 2 T
u(t) = U for 2 T < t < 3 T .

(99)

The corresponding response x(t) has been plotted Fig. 6 We notice that
x(t) = 0 for t0 = 0, t1 = 5.25 s, t2 = 10.2 s. (100)

Fig. 7 displays the frequency distribution of z(ω, ti) for these three instants (the index of ω is equal to that of the discretized
frequency ωj, j varying from 0 to J).

Though the output has the same value, the three distributions are completely different.
So the system initialization at each of these instants has been represented Fig. 6: because the internal variables are

different, the free responses are indeed completely different.
We can conclude that the output x(t) of a fractional integrator is unable to characterize its state, the knowledge of its

internal state z(ω, ti) is necessary to predict the future behavior.

Remark 1. Indeed, these three initializations starting at x(ti) = 0 are counter examples to the usual belief that the behavior
of a fractional system can be characterized by x(ti), according to Caputo derivative definition.

Remark 2. x(t) is not the state of the system; the true state is z(ω, t), according to:

x(t) =


∞

0
µn(ω) z(ω, t) dω. (101)

The consequence is fundamental for the definition of a Lyapunov function.
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Fig. 7. Comparison of state vectors.

Fig. 8. Comparison of Lyapunov functions.

Consider an autonomous one derivative fractional system. As a generalization of the integer order case, it seems
straightforward [61,62] to define:

V (x) = x2(t). (102)

But, because of (101),

V (x) =


∞

0
µn(ω) z(ω, t) dω

2

. (103)

So, V (x) is only a semi definite positive function.
On the contrary, if we define [36]:

V (z) =


∞

0
µn(ω) z2(ω, t) dω. (104)

V (z) is really a definite positive function.
We have represented Fig. 8 V (x) and V (z) with the previous example. The free response for t ≥ t1 = 5.25 s corresponds

to that of an autonomous system. Because x(t1) = 0, it is obvious that V (x) is a semi definite positive function, whereas
V (z) is a positive definite function. So V (z) is really a decreasing Lyapunov function, able to characterize the energy of the
system.

5.5. Simulation of a two derivative FDS

We have considered the two derivative system:

H(s) =
1

a0 + a1 sn1 + sn1+n2
(105)
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Fig. 9. Step response of the two derivative FDS.

Fig. 10. Evolution of z1(ω, t).

corresponding to the FDS:
Dn1(x1(t))
Dn2(x2(t))


=


0 1

−a0 −a1

 
x1(t)
x2(t)


+


0
1


u(t) (106)

with

n1 = 0.6, n2 = 0.4, a0 = 1, a1 = −1.2. (107)

The parameters of the two fractional integrators are the same as in 5.2.
First, we have considered the step response of this system u(t) = U H(t)U = 1, starting from rest (z1(ω, 0) = 0,

z2(ω, 0) = 0). The two variables x1(t) and x2(t) are displayed on Fig. 9.
With a0 = 1, a1 = −1.2, we verify that there is an oscillatory dominant mode.
Elementary analysis shows that x1(∞) = 1 and x2(∞) = 0: at t = 20 s these values are not reached.
Because x1(∞) corresponds to steady state and x2(∞) corresponds to rest, we have represented z1(ω, t)and z2(ω, t) on

Figs. 10 and 11, at the different instants t = 0.5 s, t = 5 s, t = 25 s, t = 250 s.
We notice that z1(ω, t) evolves toward steady statewith z1(0, t) increasingwhile the othermodes go to zero. For z2(ω, t),

the evolution is toward rest: we notice that all the modes go to zero.
Nevertheless, it is important to notice that this evolution is very slow (though t = 250 s is a large value, it is far from

infinity!) according to the long range memory phenomenon.
Moreover, we notice that the visualization of the state vectors zi(ω, t) is a good indicator of the system evolution, better

than the value of the outputs xi(t).
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Fig. 11. Evolution of z2(ω, t).

6. Initialization of fractional differential systems with Caputo and Riemann–Liouville derivatives

6.1. Introduction

We have demonstrated in the previous sections that the internal state variables of fractional integrators provide an
efficient technique for the initialization of FDSs, which is in fact the generalization of the integer order case.

Many authors prefer to consider Caputo or Riemann–Liouville derivatives, claiming that Caputo is preferable because of
its physical interpretation. In fact, the usual Laplace transform equations of these derivatives arewrong and these arguments
fail.

Nevertheless, we want to demonstrate that the revised Laplace transform equations allow correct initialization, either
with Caputo or Riemann–Liouville derivative.

Remark. Lorenzo and Hartley [13,18] and Trigeassou [22] have proved with different approaches that usual Laplace
transform equations of fractional derivatives are wrong: they have to include either an initialization term (depending on
the history function) or a free response term, corresponding to the associated I1−n(s) integrator.

Notice that an interpretation of fractional differentiation [63] is provided in these two complementary approaches
[18,22].

6.2. Laplace transform equations

We have previously demonstrated [22,39] that the revised Laplace transform equations have to include a supplementary
term, corresponding to the internal state of a specific fractional integrator.

We consider only the case 0 < n ≤ 1 corresponding to FDSs.

– Caputo derivative
Remind that

DC
n (x(t)) = I1−n


dx(t)
dt


, (108)

where I1−n ( ) represents the fractional integration of dx(t)
dt , with order 1 − n.

Let zC (ω, t) be the internal state of this integrator I1−n(s). Then, we get:

L

DC
n (x(t))


= sn X(s) − sn−1 x(0) +


∞

0

µ1−n(ω) zC (ω, 0)
s + ω

dω. (109)

Thus, the initial conditions of the Caputo derivative are x(0) and zC (ω, 0).
– Riemann–Liouville derivative

Remind that

DRL
n (x(t)) =

d
dt

[ I1−n(x(t)) ]. (110)
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Fig. 12. Analysis of the Caputo supplementary term.

zRL(ω, t) is the internal state of the fractional integrator I1−n(s). Then, we get:

L

DRL
n (x(t))


= sn X(s) − {I1−n(x(t))}0 + s


∞

0

µ1−n(ω) zRL(ω, 0)
s + ω

dω. (111)

Thus, the complete initial conditions of the Riemann–Liouville derivative are {I1−n(x(t))}0 and zRL(ω, 0).

Notice that the usual Laplace transform equations do not take into account the internal states of the fractional integrators.
The main interest of these equations [44,6] is to formulate the free response of an FDS, according to the considered

derivative initial conditions. So, we use them to express the free response of the one derivative FDS.

6.3. Free response with Caputo derivative

Consider:

Dn(x(t)) + a x(t) = u(t) (112)

with

Dn(x(t)) = DC
n (x(t)). (113)

Thus

L

DC
n (x(t))


+ a X(s) = 0, (114)

where L

DC
n (x(t))


is given by (109).

So we get:

X(s) =
sn−1 x(0)
sn + a

−
1

sn + a


∞

0

µ1−n(ω) zC (ω, 0)
s + ω

dω. (115)

Let us define:

XCap(s) =
sn−1 x(0)
sn + a

(116)

and

Xz, Cap(s) =
1

sn + a


∞

0

µ1−n(ω) zC (ω, 0)
s + ω

dω. (117)

Then

xCap(t) = L−1 
XCap(s)


= x(0) En, 1 (−a tn). (118)

This term is usually considered as the free response of the system, initialized by x(0).
Indeed, this solution does not work because there is a transient, even if x(0) = 0!
So, it is necessary to analyze the supplementary term:

xz, Cap(t) = L−1 
Xz, Cap(s)


. (119)

∞

0
µ1−n(ω) zC (ω,0)

s+ω
dω is the free response of the I1−n(s) integrator (25), with the initial condition zC (ω, 0), and xz, Cap(t) is the

response of 1
sn+a to this free response, according to Fig. 12.

Finally

x(t) = xCap(t) − xz, Cap(t). (120)
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Fig. 13. Simulation of Caputo derivative initialization.

6.4. Simulation of Caputo derivative initialization

The input of the system is:
u(t) = 1 0 < t < t0
u(t) = 0 t > t0

with t0 = 10 s. (121)

The system internal state is equal to 0 at t = 0.
Then, at t = t0, this internal state is zI (ω, t0).
Because u(t) = 0 for t > t0, we observe the free response of the system, initialized by zI (ω, t0): the response x(t) is

displayed on Fig. 13.
We compute

dx(t)
dt

and DC
n (x(t)) = I1−n


dx(t)
dt


for 0 < t < t0. (122)

At t = t0, we get

x(t0) and zC (ω, t0) (state of I1−n(s)). (123)

According to the procedure described in the previous section, we compute xCap(t) and xz, Cap(t) for t > t0.
These two signals have been plotted on Fig. 13.
Indeed, xCap(t) is different from x(t), though they share the same starting point x(t0).
Finally, if we add −xz, Cap(t) to xCap(t), we obtain exactly x(t).
So, it is possible to initialize correctly the FDS with the Caputo derivative, but the procedure is more complex than the

direct one, based on zI (ω, t0)!

6.5. Free response with Riemann–Liouville derivative

Consider:

Dn(x(t)) + a x(t) = u(t) (124)

with

Dn(x(t)) = DRL
n (x(t)). (125)

Thus

L

DRL
n (x(t))


+ a X(s) = 0. (126)

Using Eq. (111), we get:

X(s) =
{I1−n(x(t))}0

sn + a
−

s
sn + a


∞

0

µ1−n(ω) zRL(ω, 0)
s + ω

dω. (127)
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Fig. 14. Analysis of the Riemann–Liouville supplementary term.

Let us define:

XRL(s) =
{I1−n(x(t))}0

sn + a
(128)

and

Xz, RL(s) =
s

sn + a


∞

0

µ1−n(ω) zRL(ω, 0)
s + ω

dω. (129)

Then

xRL(t) = L −1
{XRL(s)} = {I1−n(x(t))}0

1
tn−1

En, n (−a tn). (130)

This term is called the Riemann–Liouville free response.
Indeed, it cannot fit the true free response because


xRL(t) → ∞

t → 0 .So, it is necessary to analyze the supplementary term:

xz, RL(t) = L−1 
Xz, RL(s)


. (131)

∞

0
µ1−n(ω) zRL(ω,0)

s+ ω
dω is the free response of the I1−n(s) integrator (25), with the initial condition zRL(ω, 0), and xz, RL(t) is the

integer derivative of the response of 1
sn+a to this free response, according to Fig. 14.

Notice that

xz, RL(t) → ∞

t → 0 because of the integer derivative action.
Finally,

x(t) = xRL(t) − xz, RL(t). (132)

6.6. Simulation of Riemann–Liouville derivative initialization

We use the same procedure as previously.
First, we have to compute I1−n(x(t)) and to differentiate this integral to get DRL

n (x(t)) =
d
dt [ I1−n(x(t)) ] for 0 < t < t0.

At t = t0, we get

{I1−n(x(t))}0 and zRL(ω, t0) (state of I1−n(s)). (133)

According to the procedure described in the previous section, we compute xRL(t) and xz, RL(t) for t > t0.
These two signals have been plotted on Fig. 15 with x(t).
First, we notice an important change in the amplitude scale in comparison with Fig. 13: because of the integer derivative

action, the signals xRL(t) and xz, RL(t) are larger than x(t), particularly for t → t+0 . Nevertheless, when we add: −xz, RL(t) to
xRL(t), we obtain exactly x(t).

So it has been possible to initialize the FDS with Riemann–Liouville derivative, with a similar procedure to the Caputo
derivative.

6.7. Conclusion

We have demonstrated that usual free responses predicted by Caputo or Riemann–Liouville initial conditions are wrong:
they have to be corrected by a specific term including the transients of the fractional integrator.

Though it was important to verify the validity of the revised Laplace transform equations of the two derivatives, this is
not a realistic approach to the initialization of an FDS.

The efficient approach is the one that generalizes the integer order technique with the appropriate state vector.
It has been demonstrated in the two previous sections that the internal states zI(ω, t0) of the fractional integrators

summarize the past history of the system for t < t0: so this state provides the essential information which is necessary
to predict the future evolution for t > t0.
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Fig. 15. Simulation of Riemann–Liouville derivative initialization.

In the fractional case, there has been a confusion between the implicit derivative (which is inherent to fractional
integration) and the techniques used to compute fractional derivatives (Caputo or Riemann–Liouville): like in the integer
order case, the true state of the fractional integrator is also the state of the FDS and it is the natural approach to analyze and
predict transients.

On the contrary, Caputo and Riemann–Liouville derivatives are the necessary tools for the differentiation of signals
operating in open loop, when the implicit derivative is not available [39].

7. Conclusion

The fractional integrator is essential to compute efficiently the Riemann–Liouville integral and particularly to perform
simulation of fractional differential equations and systems. Because this integrator is a frequency distributed system,
mastery of its infinite dimensional state is also essential for the mastery of FDE and FDS transients.

A fundamental result of this paper is the generalization of the integer order integrator approach for the simulation of
Ordinary Differential Equations to FDEs and FDSs. Consequently, the internal state variables of fractional integrators are the
components of the fractional system state vector. A specific feature of fractional systems is that each state vector component
is infinite dimensional. Knowledge of this state vector allows analysis and prediction of transients. So, the initial condition
problem can be solved in the same way as in the integer order case. Indeed, the main difficulty is the infinite dimension
of the state vector which is an obstacle for practical applications. Some investigations with FDEs and fractional derivatives
have shown that approximate finite dimension solutions can be derived using an observer based technique [23,38].

An other important result is that the usual Caputo derivative approach to FDEs is unable to derive realistic free responses.
The fundamental reason of this failure is that the usual Laplace transform equations of fractional derivatives do not include
the internal state of their fractional integrator. It has been shown that prediction of transients is possiblewith revised Laplace
transform equations. Nevertheless, the Caputo and the Riemann–Liouville approach to FDSs transients is unsuited and too
much complex, compared to the implicit derivative approach proposed in the paper.

Some important problems remain. Practical initialization based on state estimation by observers has to be investigated
and generalized. The finite dimension approximation of the fractional integrator is an efficient technique to predict
numerically FDSs transients. Nevertheless, there is a need for analytical solutions, and particularly for the transition matrix
of FDSs, which is the key to derive theoretical results on controllability, observability, and optimal control of fractional
systems.

Appendix A. Distributed model of the fractional integrator

The impulse response of the fractional integrator is calculated with the inverse Laplace transform

hn(t) =
1

2jπ

 γ+j∞

γ−j∞
H(s) estds (134)

using a Bromwich contour [48,2,44].
BecauseH(s) =

1
sn 0 < n < 1 is amultiform function, a cut is necessary in the complex plane which leads to the contour

C of Fig. 16.
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Fig. 16. Bromwich contour C .

Thus we can write:

1
2jπ


C

1
sn

estds =
1

2jπ


AB

+


BDE

+


EH

+


HJK

+


KL

+


LNA


. (135)

Referring to Cauchy’s theorem:

1
2jπ


C

= 0. (136)

Because

1
2jπ


BDE

+
1

2jπ


LNA

= 0 and
1

2jπ


HJK

= 0 (137)

then:

1
2jπ


AB

= h(t) = lim (R → ∞, ε → 0) −
1

2jπ


EH

+


KL


. (138)

Finally, we get

h(t) =


∞

0

sin nπ

π
x−n e−x tdx. (139)

Physical considerations indicate that x corresponds to a frequency ω, so let us define ω = x.
Notice that e−ω t is the impulse response (z(ω, t) = e−ω t) of the elementary system 1

s+ω
when its input is v(t) = δ(t).

Finally, Eq. (139) means that hn(t) is the weighted contribution of all these elementary systems, with ω ranging from
ω = 0 to ∞, where the frequency weight is:

µn(ω) =
sin nπ

π
ω−n. (140)

So:

hn(t) =


∞

0
µn(ω) e−ω tdω. (141)

From a more general point of view, the response z(ω, t) of the elementary system to an input v(t) verifies the differential
equation (for the elementary frequency ω):

∂ z(ω, t)
∂t

= −ω z(ω, t) + v(t) (142)

and the output x(t) of the fractional integrator is the weighted integral (with weight µn(ω)) of all the contributions z(ω, t)
with ω ranging from 0 to ∞:

x(t) =


∞

0
µn(ω) z(ω, t) dω

µn(ω) =
sin nπ

π
ω− n 0 < n < 1.

(143)
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Appendix B. Fractional integrator — numerical algorithm

The user has to define the frequency range: [ωb; ωh] where ωb is the lower frequency and ωh is the higher one.
Then:

α =


ωh

ωb

 1−n
J

η =


ωh

ωb

 n
J

ω′

1 = ωb
√

η ωJ =
ωh

√
η Gn

Gn = 10 (1−n) log ωb .

(144)

The intermediary frequencies verify:

ωj = α ω′

j, ω′

j+1 = η ωj. (145)

The coefficients cj are provided by:

c0 = Gn

cj =
Gn(ωj − ω′

j)

ω′

j

J
i=1
i≠j

1 −
ωj
ω′
i

1 −
ωj
ωi

.
(146)

The modal differential equation

d zj(t)
dt

= −ωj zj(t) + v(t) (147)

is discretized in the time domain

k =

t
Te


using the Z transform:

zj,k = αj zj,k−1 + βj vk−1 (148)

with:

α0 = 1 β0 = Te

αj = e−ωj Te βj =
1 − αj

ωj

(149)

and finally:

xk =

J
j=0

cj zj,k. (150)
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