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Abstract

The purpose of this article is to describe a reduction of the slicing problem to the study of the param-
eter I1(K,Z◦

q(K)) = ∫
K ‖〈·, x〉‖Lq(K) dx. We show that an upper bound of the form I1(K,Z◦

q(K)) �
C1qs√nL2

K
, with 1/2 � s � 1, leads to the estimate

Ln � C2
4√n logn

q
1−s

2

,

where Ln := max{LK : K is an isotropic convex body in R
n}.

© 2011 Published by Elsevier Inc.
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1. Introduction

A convex body K in R
n is called isotropic if it has volume |K| = 1, it is centered, i.e. its center

of mass is at the origin, and if its inertia matrix is a multiple of the identity. The last property is
equivalent to the existence of a constant LK > 0 such that

* Corresponding author.
E-mail addresses: apgiannop@math.uoa.gr (A. Giannopoulos), grigoris_paouris@yahoo.co.uk (G. Paouris),

bevritsi@math.uoa.gr (B.-H. Vritsiou).
0022-1236/$ – see front matter © 2011 Published by Elsevier Inc.
doi:10.1016/j.jfa.2011.10.011

https://core.ac.uk/display/82048788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Giannopoulos et al. / Journal of Functional Analysis 262 (2012) 1062–1086 1063
∫
K

〈x, θ〉2 dx = L2
K (1.1)

for every θ in the Euclidean unit sphere Sn−1. It is not hard to see that for every convex body
K in R

n there exists an affine transformation T of R
n such that T (K) is isotropic. Moreover,

this isotropic image is unique up to orthogonal transformations; consequently, one may define
the isotropic constant LK as an invariant of the affine class of K .

The isotropic constant is closely related to the hyperplane conjecture (also known as the slic-
ing problem) which asks if there exists an absolute constant c > 0 such that maxθ∈Sn−1 |K ∩
θ⊥| � c for every convex body K of volume 1 in R

n with center of mass at the origin. This is
because, by Brunn’s principle, for any convex body K in R

n and any θ ∈ Sn−1, the function

t �→ |K ∩ (θ⊥ + tθ)| 1
n−1 is concave on its support, and this is enough to show that

∫
K

〈x, θ〉2 dx 
 ∣∣K ∩ θ⊥∣∣−2
. (1.2)

Using this relation one can check that an affirmative answer to the slicing problem is equivalent
to the following statement: “There exists an absolute constant C > 0 such that LK � C for every
convex body K”. We refer to the article [13] of Milman and Pajor for background information
about isotropic convex bodies.

It is known that LK � LBn
2

� c > 0 for every convex body K in R
n (we use the letters c, c1,C,

etc., to denote absolute constants). In the opposite direction, let us write Ln for the maximum of
all isotropic constants of convex bodies in R

n,

Ln := max
{
LK : K is isotropic in R

n
}
. (1.3)

Bourgain first proved in [4] that Ln � c 4
√

n logn and, a few years ago, Klartag [8] obtained the
estimate Ln � c 4

√
n (see also [9] for a second proof of this bound).

The purpose of this article is to describe a reduction of the slicing problem (or, equivalently,
the question whether Ln can be bounded by a quantity independent of the dimension n), to the
study of the parameter

I1
(
K,Z◦

q(K)
) =

∫
K

∥∥〈·, x〉∥∥
Lq(K)

dx (1.4)

for isotropic convex bodies K . Generally, if K is a centered convex body of volume 1 in R
n, then

for every symmetric convex body C in R
n and for every q ∈ (−n,∞), q �= 0, we define

Iq(K,C) :=
(∫

K

‖x‖q
C dx

)1/q

. (1.5)

The notation I1(K,Z◦
q(K)) is then justified by the fact that ‖〈·, x〉‖Lq(K) is the norm induced

on R
n by the polar body Z◦

q(K) of the Lq -centroid body of K (see the next section for back-
ground information on Lq -centroid bodies).
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Our reduction can be viewed as a continuation of Bourgain’s approach to the slicing problem
in [4]: the bound O( 4

√
n logn) followed from the inequality

nL2
K � I1

(
K,

(
T (K)

)◦)
, (1.6)

after obtaining an upper bound for the quantity I1(K, (T (K))◦), where T ∈ SL(n) is a symmet-
ric, positive definite matrix such that the mean width of T (K) satisfies the estimate w(T (K)) �
c
√

n logn (the existence of such a position for K is guaranteed by Pisier’s estimate on the norm
of the Rademacher projection; see [19]). In Section 4 we prove the following statement:

Theorem 1.1. There exists an absolute constant ρ ∈ (0,1) with the following property: given
κ, τ � 1, for every n � n0(τ ) and every isotropic convex body K in R

n which satisfies the fol-
lowing entropy estimate:

logN
(
K, tBn

2

)
� κn2 log2 n

t2
for all t � τ

√
n logn, (1.7)

we have that, if q � 2 satisfies

2 � q � ρ2n and I1
(
K,Z◦

q(K)
)
� ρnL2

K, (1.8)

then

L2
K � Cκ

√
n

q
log2 nmax

{
1,

I1(K,Z◦
q(K))

√
qnL2

K

}
. (1.9)

Theorem 1.1 can lead to an upper bound for Ln, provided that there exist (κ, τ )-regular
isotropic convex bodies in R

n, i.e. bodies which satisfy the entropy estimate (1.7) for a pair
of constants κ, τ , and at the same time have maximal isotropic constant, i.e. LK 
 Ln. The ex-
istence of such bodies is essentially established by [5, Theorem 5.7]. In Section 5 we give a
self-contained proof of this fact; see Theorem 5.1.

Observe that, for every isotropic convex body K in R
n, we have that both conditions in (1.8)

are satisfied with q = 2, since I1(K,Z◦
2(K)) � √

nL2
K . Therefore, Theorem 1.1 will give us that

L2
K � C1

√
n log2 n (1.10)

for any such body which is regular. Theorem 5.1 then guarantees that, for some absolute constants
κ, τ and δ > 0, there exists a (κ, τ )-regular isotropic convex body K in R

n with LK � δLn, and
hence (1.10) leads us to Bourgain’s bound again: Ln � C2

4
√

n logn.
However, the behavior of I1(K,Z◦

q(K)) may allow us to use much larger values of q . In Sec-
tion 3 we discuss upper and lower bounds for this quantity. For every isotropic convex body K

in R
n we have some simple general estimates:

(i) For every 2 � q � n,

c1 max
{√

nL2
K,

√
qn,R

(
Zq(K)

)
LK

}
� I1

(
K,Z◦

q(K)
)
� c2q

√
nL2

K.
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(ii) If 2 � q � √
n, then

c1 max
{√

nL2
K,

√
qnLK

}
� I1

(
K,Z◦

q(K)
)
� c2q

√
nL2

K.

Any improvement of the exponent of q in the upper bound I1(K,Z◦
q(K)) � cq

√
nL2

K would

lead to an estimate Ln � Cnα with α < 1
4 . It seems plausible that one could even have

I1(K,Z◦
q(K)) � c

√
qnL2

K , at least when q is small, say 2 � q � √
n. Some evidence is given

by the following facts:

(iii) If K is an unconditional isotropic convex body in R
n, then

c1
√

qn � I1
(
K,Z◦

q(K)
)
� c2

√
qn logn

for all 2 � q � n.
(iv) If K is an isotropic convex body in R

n then, for every 2 � q � √
n, there exists a set

Aq ⊆ O(n) with ν(Aq) � 1−e−q such that I1(K,Z◦
q(U(K))) � c3

√
qnL2

K for all U ∈ Aq .

The proofs of (i)–(iv) are given in Section 3.
We can make a final observation about the reduction of Theorem 1.1 on the basis that there ex-

ist (κ, τ )-regular isotropic convex bodies K in R
n with LK � δLn (where κ, τ, δ > 0 are absolute

constants) which, at the same time, have “small diameter”: they satisfy K ⊆ γ
√

nLK Bn
2 , where

γ > 0 is an absolute constant (see Theorem 5.9). In Section 6, we show that then it is enough to
study the parameter I1(K,Z◦

q(K)) within the class I Ksd of isotropic convex bodies which are
O(γ )-close to the Euclidean ball Dn of volume 1 and have uniformly bounded isotropic constant.
The precise statement which we prove is the following: if we have an isotropic symmetric convex
body K in R

n satisfying K ⊆ γ
√

nLK Bn
2 , then we can find an isotropic symmetric convex body

C such that LC � c1, c2Dn ⊆ C ⊆ c3γDn, and

I1(K,Z◦
q(K))

√
qnL2

K

� c4
I1(C,Z◦

q(C))√
qn

(1.11)

for all 1 � q � n, where c1, c2, c3, c4 > 0 are absolute constants.

2. Notation and preliminaries

We work in R
n, which is equipped with a Euclidean structure 〈·,·〉. We denote the corre-

sponding Euclidean norm by ‖ · ‖2, and write Bn
2 for the Euclidean unit ball, and Sn−1 for the

unit sphere. Volume is denoted by | · |. We write ωn for the volume of Bn
2 and σ for the rotation-

ally invariant probability measure on Sn−1. We also denote the Haar measure on O(n) by ν. The
Grassmann manifold Gn,k of k-dimensional subspaces of R

n is equipped with the Haar proba-
bility measure μn,k . Let k � n and F ∈ Gn,k . We will denote the orthogonal projection from R

n

onto F by PF . We also define BF := Bn
2 ∩ F and SF := Sn−1 ∩ F .

The letters c, c′, c1, c2, etc., denote absolute positive constants whose value may change from
line to line. Whenever we write a 
 b, we mean that there exist absolute constants c1, c2 > 0
such that c1a � b � c2a. Also if K,L ⊆ R

n we will write K 
 L if there exist absolute constants
c1, c2 > 0 such that c1K ⊆ L ⊆ c2K .
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A convex body in R
n is a compact convex subset C of R

n with nonempty interior. We say that
C is symmetric if x ∈ C implies that −x ∈ C. We say that C is centered if it has center of mass
at the origin, i.e.

∫
C
〈x, θ〉dx = 0 for every θ ∈ Sn−1. The support function of a convex body C

is defined by

hC(y) := max
{〈x, y〉: x ∈ C

}
, (2.1)

and the mean width of C is

w(C) :=
∫

Sn−1

hC(θ)σ (dθ). (2.2)

For each −∞ < q < ∞, q �= 0, we define the q-mean width of C by

wq(C) :=
( ∫

Sn−1

h
q
C(θ)σ (dθ)

)1/q

. (2.3)

The radius of C is the quantity R(C) := max{‖x‖2: x ∈ C}. Also, if the origin is an interior point
of C, the polar body C◦ of C is defined as follows:

C◦ := {
y ∈ R

n: 〈x, y〉 � 1 for all x ∈ C
}
. (2.4)

Finally, we write C for the homothetic image of volume 1 of a convex body C ⊆ R
n, i.e.

C := C

|C|1/n .

Recall that if A and B are nonempty sets in R
n, then the covering number N(A,B) of A by B

is defined to be the smallest number of translates of B whose union covers A. In this paper, B will
usually be a multiple of the Euclidean ball: in those cases we also require that the centers of the
translates of B are taken from the set A; one can easily check that this additional requirement
does not crucially affect our entropy estimates.

2.1. Lq -centroid bodies

Let K be a convex body of volume 1 in R
n. For every q � 1 and every y ∈ R

n we set

hZq(K)(y) :=
(∫

K

∣∣〈x, y〉∣∣q dx

)1/q

. (2.5)

The Lq -centroid body Zq(K) of K is the centrally symmetric convex body with support function
hZq(K). Note that K is isotropic if and only if it is centered and Z2(K) = LKBn

2 . Also, if T ∈
GL(n) with detT = ±1, then Zp(T (K)) = T (Zp(K)). From Hölder’s inequality it follows that
Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) for all 1 � p � q � ∞, where Z∞(K) = conv{K,−K}.
Using Borell’s lemma (see [15, Appendix III]), one can check that inverse inclusions also hold:

Zq(K) ⊆ β1qZ1(K), (2.6)
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and more generally,

Zq(K) ⊆ β2
q

p
Zp(K) (2.7)

for all 1 � p < q . In particular, if K is isotropic, then R(Zq(K)) � β1qLK . One can also check
that if K is centered, then Zq(K) ⊇ β3K for all q � n (see [16]). All the constants βi,βj that
appear in this section are absolute positive constants which may be used again in the arguments
of the next sections.

Let C be a symmetric convex body in R
n and let ‖ · ‖C denote the norm induced on R

n by C.
The parameter k∗(C) is the largest positive integer k � n with the property that the measure of
F ∈ Gn,k for which we have 1

2w(C)BF ⊆ PF (C) ⊆ 2w(C)BF is greater than n
n+k

. It is known
that

β4n
w(C)2

R(C)2
� k∗(C) � β5n

w(C)2

R(C)2
. (2.8)

The q-mean width wq(C) is equivalent to w(C) as long as q � k∗(C). Litvak, Milman and
Schechtman proved in [11] that, for every symmetric convex body C in R

n:

(i) If 1 � q � k∗(C) then w(C) � wq(C) � β6w(C).
(ii) If k∗(C) � q � n then β7

√
q/nR(C) � wq(C) � β8

√
q/nR(C).

Let K be a centered convex body of volume 1 in R
n. Recall that, for every symmetric convex

body C in R
n and for every q ∈ (−n,∞), q �= 0, we define

Iq(K,C) :=
(∫

K

‖x‖q
C dx

)1/q

. (2.9)

When C = Bn
2 , we write Iq(K) := Iq(K,Bn

2 ) for simplicity. In [17] and [18] it is proved that for
every 1 � q � n/2,

Iq(K) 
 √
n/qwq

(
Zq(K)

)
and I−q(K) 
 √

n/qw−q

(
Zq(K)

)
. (2.10)

The parameter q∗(K) is also defined by

q∗(K) := max
{
q � n: k∗

(
Zq(K)

)
� q

}
. (2.11)

Then, the main result of [18] states that, for every centered convex body K of volume 1 in R
n,

one has I−q(K) 
 Iq(K) for every 1 � q � q∗(K). In particular, for all q � q∗(K) one has
Iq(K) � β9I2(K). If K is isotropic, one can check that q∗(K) � c

√
n, where c > 0 is an absolute

constant (for a proof, see [17]). Therefore,

Iq(K) � β10
√

nLK for every q �
√

n. (2.12)

In particular, from (2.10) and (2.12) we see that w(Zq(K)) 
 wq(Zq(K)) 
 √
qLK for all

q � √
n.
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2.2. The bodies Bq(K,F )

Another family of convex bodies associated with a centered convex body K ⊂ R
n was intro-

duced by Ball in [1] (see also [13]): to define them, let us consider a k-dimensional subspace F

of R
n and its orthogonal subspace E. For every φ ∈ F \ {0} we denote by E+(φ) the halfspace

{x ∈ span{E,φ}: 〈x,φ〉 � 0}. Ball proved that, for every q � 0, the function

φ �→ ‖φ‖1+ q
q+1

2

( ∫
K∩E+(φ)

〈x,φ〉q dx

)− 1
q+1

(2.13)

is the gauge function of a convex body Bq(K,F ) on F . Several properties of these bodies can
be found in [1,13] and also in [17,18]. In Section 5, we will make use of only two of those:

(i) Let K ⊂ R
n be isotropic, let 1 � k < n and let F ∈ Gn,k . Then the body Bk+1(K,F ) is

almost isotropic, namely it has (by definition) volume 1, and we can write Bk+1(K,F ) 

T (Bk+1(K,F )) where T (Bk+1(K,F )) is an isotropic (in the regular sense) linear image of
Bk+1(K,F ). In addition,

∣∣K ∩ F⊥∣∣1/k 
 LBk+1(K,F )

LK

. (2.14)

(ii) Let K,F and k < n be as above and consider any p ∈ [1, k]. Then

Zp

(
Bk+1(K,F )

) 
 ∣∣K ∩ F⊥∣∣1/k
PF

(
Zp(K)

)
. (2.15)

2.3. Two related lemmas

We close this section with two lemmas that will be used in the sequel; they reveal some
properties of the support function of the Lq -centroid bodies of a convex body with respect to
subsets or certain integrals of maxima.

Lemma 2.1. Let K be a convex body of volume 1 in R
n, and consider any points z1, z2, . . . ,

zN ∈ R
n. If q � 1 and p � max{logN,q}, then

(∫
K

max
1�i�N

∣∣〈x, zi〉
∣∣q dx

)1/q

� β1 max
1�i�N

hZp(K)(zi), (2.16)

where β1 > 0 is an absolute constant.

Proof. Let p � max{logN,q} and θ ∈ Sn−1. Markov’s inequality shows that

∣∣{x ∈ K:
∣∣〈x, θ〉∣∣ � e3hZp(K)(θ)

}∣∣ � e−3p. (2.17)
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Since x �→ |〈x, θ〉| is a seminorm, from Borell’s lemma (see [15, Appendix III]) we get that

∣∣{x ∈ K:
∣∣〈x, θ〉∣∣ � e3thZp(K)(θ)

}∣∣ �
(
1 − e−3p

)( e−3p

1 − e−3p

) t+1
2

� e−pt (2.18)

for every t � 1. We set S := e3 max1�i�N hZp(K)(zi). Then, for every t � 1 we have that

∣∣∣{x ∈ K: max
1�i�N

∣∣〈x, zi〉
∣∣ � St

}∣∣∣ �
N∑

i=1

∣∣{x ∈ K:
∣∣〈x, zi〉

∣∣ � e3thZp(K)(zi)
}∣∣

� Ne−pt .

It follows that

∫
K

max
1�i�N

∣∣〈x, zi〉
∣∣q dx = q

∞∫
0

sq−1
∣∣∣{x ∈ K: max

1�i�N

∣∣〈x, zi〉
∣∣ � s

}∣∣∣ds

� Sq + q

∞∫
S

sq−1
∣∣∣{x ∈ K: max

1�i�N

∣∣〈x, zi〉
∣∣ � s

}∣∣∣ds

= Sq

(
1 + q

∞∫
1

tq−1
∣∣∣{x ∈ K: max

1�i�N

∣∣〈x, zi〉
∣∣ � St

}∣∣∣dt

)

� Sq

(
1 + qN

∞∫
1

tq−1e−pt dt

)

= Sq

(
1 + qN

pq

∞∫
p

tq−1e−t dt

)

� Sq

(
1 + qN

pq
e−ppq

)

� (3S)q,

where we have also used the fact that, for every p � q � 1,

∞∫
p

tq−1e−t dt � e−ppq. (2.19)

This finishes the proof (with β1 = 3e3). �
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Remark 2.2. It is a well-known fact (see e.g. [6, Proposition 2.5.1]) that

∫
K

max
1�i�N

∣∣〈x, zi〉
∣∣dx � C1 logN max

1�i�N
hZ1(K)(zi). (2.20)

Through a variant of the argument in [6], and using (2.19) as well, one can also show that for
q � logN ,

(∫
K

max
1�i�N

∣∣〈x, zi〉
∣∣q dx

)1/q

� C2 logN max
1�i�N

hZ1(K)(zi). (2.21)

Now, both inequalities can be directly deduced from Lemma 2.1 combined with (2.6), however
the lemma provides additional information on how well the quantities

(∫
K

max
1�i�N

∣∣〈x, zi〉
∣∣q dx

)1/q

and max
1�i�N

(∫
K

∣∣〈x, zi〉
∣∣q dx

)1/q

≡ max
1�i�N

hZq(K)(zi)

can be compared: for q � logN , using also (2.7), we have that

(∫
K

max
1�i�N

∣∣〈x, zi〉
∣∣q dx

)1/q

� β1 max
1�i�N

hZlogN(K)(zi)

� C
logN

q
max

1�i�N
hZq(K)(zi), (2.22)

whereas for q > logN ,

(∫
K

max
1�i�N

∣∣〈x, zi〉
∣∣q dx

)1/q


 max
1�i�N

(∫
K

∣∣〈x, zi〉
∣∣q dx

)1/q

. (2.23)

We now turn our attention to the Lq -centroid bodies of subsets of K .

Lemma 2.3. Let K be a convex body of volume 1 in R
n and let 1 � q , r � n. There exists an

absolute constant β2 > 0 such that if A is a subset of K with |A| � 1 − e−β2q , then

Zp(K) ⊆ 2Zp(A) (2.24)

for all 1 � p � q . Also, for the opposite inclusion, it suffices to have |A| � 2− r
2 to conclude that

Zp(A) ⊆ 2Zp(K) (2.25)

for all r � p � n.
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Proof. Let θ ∈ Sn−1. Note that

hZp(A)(θ) =
(∫

A

∣∣〈x, θ〉∣∣p dx

)1/p

= 1

|A| 1
p

+ 1
n

(∫
A

∣∣〈x, θ〉∣∣p dx

)1/p

. (2.26)

We first prove (2.25): since A ⊆ K and assuming that |A| � 2− r
2 , we have

hZp(K)(θ) =
(∫

K

∣∣〈x, θ〉∣∣p dx

)1/p

�
(∫

A

∣∣〈x, θ〉∣∣p dx

)1/p

� 2− r
2p

− r
2n

(∫
A

∣∣〈x, θ〉∣∣p dx

)1/p

� 1

2
hZp(A)(θ)

for all r � p � n. On the other hand, assuming that |A| � 1 − e−β2q and using the fact that
‖〈·, θ〉‖2p � 2β2‖〈·, θ〉‖p , we have

∫
K

∣∣〈x, θ〉∣∣p dx =
∫
A

∣∣〈x, θ〉∣∣p dx +
∫

K\A

∣∣〈x, θ〉∣∣p dx

� |A|1+ p
n

∫
A

∣∣〈x, θ〉∣∣p dx + |K \ A|1/2
(∫

K

∣∣〈x, θ〉∣∣2p
dx

)1/2

�
∫
A

∣∣〈x, θ〉∣∣p dx + e−β2q/2(2β2)
p

∫
K

∣∣〈x, θ〉∣∣p dx

�
∫
A

∣∣〈x, θ〉∣∣p dx + 1

2

∫
K

∣∣〈x, θ〉∣∣p dx

for every p � q , if β2 > 0 is chosen large enough. This proves (2.24). �
3. Simple estimates for I1(K,Z◦

q(K))

In this section we give some upper and lower bounds for I1(K,Z◦
q(K)) which hold true for

every isotropic convex body K in R
n and any 1 � q � n. In fact, our arguments are quite di-

rect and make use of estimates for simple parameters of the bodies Zq(K), such as their radius
or their volume, so that it is straightforward to reach analogous upper and lower bounds for
I1(K,Z◦

q(M)) in the more general case when K and M are not necessarily the same isotropic
convex body.

Since hZq(K)(x) � R(Zq(K))‖x‖2, we have that

I1
(
K,Z◦

q(K)
)
� R

(
Zq(K)

) ∫
‖x‖2 dx � R

(
Zq(K)

)√
nLK, (3.1)
K
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which, in combination with the fact that R(Zq(K)) � β1qLK (a direct consequence of (2.6)),
leads to the bound

I1
(
K,Z◦

q(K)
)
� β1q

√
nL2

K. (3.2)

More generally, we have that

I1
(
K,Z◦

q(M)
)
� R

(
Zq(M)

) ∫
K

‖x‖2 dx � β1q
√

nLKLM. (3.3)

However, in the case that M is an orthogonal transformation of K , the next lemma shows that
the average of the quantity I1(K,Z◦

q(M)) can be bounded much more effectively than in (3.3).

Lemma 3.1. Let K be a centered convex body of volume 1 in R
n. For every 2 � q � n,

( ∫
O(n)

I
q

1

(
K,Z◦

q

(
U(K)

))
dν(U)

)1/q

� C
√

q/nI 2
q (K), (3.4)

where C > 0 is an absolute constant.

Proof. We write

∫
O(n)

I
q

1

(
K,Z◦

q

(
U(K)

))
dν(U) �

∫
O(n)

I
q
q

(
K,Z◦

q

(
U(K)

))
dν(U)

=
∫

O(n)

∫
K

∫
U(K)

∣∣〈x, y〉∣∣q dy dx dν(U)

=
∫
K

∫
K

∫
O(n)

∣∣〈x,Uy〉∣∣q dν(U)dy dx

=
∫
K

∫
K

‖y‖q

2

∫
Sn−1

∣∣〈x, θ〉∣∣q dσ (θ) dy dx

= c
q
n,q

∫
K

∫
K

‖y‖q

2‖x‖q

2 dy dx

= c
q
n,qI

2q
q (K),

where cn,q 
 √
q/n. �

Recall that in the case that K is isotropic, one has from [17] that Iq(K) 
 max{√nLK,

R(Zq(K))}. Then, Lemma 3.1 shows that, for every 2 � q � n,
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( ∫
O(n)

I
q

1

(
K,Z◦

q

(
U(K)

))
dν(U)

)1/q

� C1 max
{√

qn,q2
√

q/n
}
L2

K, (3.5)

where C1 > 0 is an absolute constant. Therefore, for every 2 � q � √
n, there exists a set Aq ⊆

O(n) with ν(Aq) � 1 − e−q such that I1(K,Z◦
q(U(K))) � C2

√
qnL2

K for all U ∈ Aq . It is thus
conceivable that there are properties of the bodies Zq(K) which we can exploit to also bound
I1(K,Z◦

q(K)) more effectively than in (3.1) and (3.2).
We now pass to lower bounds; we will present three simple arguments. For the first one we

do not have to assume that K or M are in the isotropic position, only that they are centered and
have volume 1: from [13, Corollary 2.2.a] we have that

I1
(
K,Z◦

q(M)
) =

∫
K

hZq(M)(x) dx � n

n + 1

1

|Z◦
q(M)|1/n

. (3.6)

Then, by the Blaschke–Santaló inequality, we get that

I1
(
K,Z◦

q(M)
)
� c1n

∣∣Zq(M)
∣∣1/n � c2

√
qnLM (3.7)

for all 2 � q � √
n, because |Zq(M)|1/n � c3

√
q/nLM for this range of values of q by a recent

result of Klartag and E. Milman (see [9]). When
√

n � q � n, we have the weaker lower bound
|Zq(M)|1/n � c4

√
q/n, which is due to Lutwak, Yang and Zhang (see [12]). It follows that

I1(K,Z◦
q(M)) � c5

√
qn for this range of values of q .

For the second argument, we require that K is isotropic and we write

I1
(
K,Z◦

q(M)
) =

∫
K

hZq(M)(x) dx =
∫
K

max
z∈Zq(M)

∣∣〈x, z〉∣∣dx (3.8)

� max
z∈Zq(M)

∫
K

∣∣〈x, z〉∣∣dx � c max
z∈Zq(M)

‖z‖2LK

= cR
(
Zq(M)

)
LK.

Finally, if M is isotropic as well, we can use Hölder’s inequality to get

I1
(
K,Z◦

q(M)
) =

∫
K

hZq(M)(x) dx (3.9)

�
∫
K

hZ2(M)(x) dx =
∫
K

‖x‖2LM dx � c
√

nLKLM.

All the estimates presented above are gathered in the next proposition.

Proposition 3.2. Let K and M be isotropic convex bodies in R
n. For every 2 � q � n,

c1 max
{√

nLKLM,
√

qn,R
(
Zq(M)

)
LK

}
� I1

(
K,Z◦

q(M)
)
� c2q

√
nLKLM. (3.10)
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In addition, if 2 � q � √
n then

c1 max{√nLKLM,
√

qnLM} � I1
(
K,Z◦

q(M)
)
� c2q

√
nLKLM. (3.11)

The situation is more or less clear in the unconditional case. Recall that a convex body K

in R
n is called unconditional if it is symmetric with respect to all coordinate hyperplanes (for

some orthonormal basis of R
n). Then, it is easy to check that one can bring K to the isotropic

position by applying an operator which is diagonal with respect to this basis. It is also not hard
to prove that the isotropic constant of K satisfies LK 
 1. The upper bound follows from the
Loomis–Whitney inequality; see also [2]. It is known (from [3]) that, for every q � 2, one has
hZq(K)(y) � c

√
qn‖y‖∞, where c > 0 is an absolute constant. This leads us to the estimates

c1
√

qn � I1
(
K,Z◦

q(K)
)
� c

√
qn

∫
K

‖x‖∞ dx � c2
√

qn logn (3.12)

for all 2 � q � n (the same estimates hold true for the quantity I1(K,Z◦
q(M)) when M is too an

unconditional isotropic convex body).

4. The reduction

Let κ, τ > 0. Throughout this paper, we say that an isotropic convex body K in R
n is (κ, τ )-

regular if

logN
(
K, tBn

2

)
� κn2 log2 n

t2
for all t � τ

√
n logn. (4.1)

The purpose of this section is to present a reduction of the slicing problem to the study of the
quantity I1(K,Z◦

q(K)) for (κ, τ )-regular isotropic convex bodies: we show that any upper bound
for I1(K,Z◦

q(K)) immediately leads to an upper bound for the isotropic constant LK of a regular
convex body K . Note that the dependence seems to be nontrivial, in the sense that using the
simple estimates of Section 3 we can already recover the currently known bound for LK with a
loss of a logarithmic factor, while a small (although not necessarily easy) improvement to those
estimates will also result in new bounds for LK . In a sense, we will have fully presented our
reduction by the end of the next section, where we provide a self-contained proof of the fact
that there exist regular isotropic convex bodies K in R

n with LK 
 Ln. First, let us see how the
quantity I1(K,Z◦

q(K)) and the isotropic constant of a regular convex body K are connected.

Theorem 4.1. There exists an absolute constant ρ ∈ (0,1) with the following property: given
κ, τ � 1, for every n � n0(τ ) and every (κ, τ )-regular isotropic convex body K in R

n we have
that, if q � 2 satisfies

2 � q � ρ2n and I1
(
K,Z◦

q(K)
)
� ρnL2

K, (4.2)

then

L2
K � Cκ

√
n

q
log2 nmax

{
1,

I1(K,Z◦
q(K))

√
qnL2

K

}
. (4.3)
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Proof. We define a convex body W in R
n, setting

W := {
x ∈ K: hZq(K)(x) � C1I1

(
K,Z◦

q(K)
)}

, (4.4)

where C1 = e2β2 and β2 > 0 is the constant which appears in Lemma 2.3. From Markov’s in-
equality we have that |W | � 1 − e−2β2 and also trivially that |W | � 2−1 � 2− q

2 (as long as
β2 � 1). Then we set

K1 := W. (4.5)

Applying both cases of Lemma 2.3 to the set W with p = 2, we see that

1

2
Z2(K1) ⊆ Z2(K) ⊆ 2Z2(K1). (4.6)

This implies that

1

4
L2

K = 1

4

∫
K

〈x, θ〉2 dx �
∫
K1

〈x, θ〉2 dx � 4
∫
K

〈x, θ〉2 dx = 4L2
K (4.7)

for every θ ∈ Sn−1, and hence

nL2
K

4
�

n∑
i=1

∫
K1

〈x, ei〉2 dx =
∫
K1

‖x‖2
2 dx � 4nL2

K. (4.8)

We also have

K1 = |W |−1/nW ⊆ 2W ⊆ 2K, (4.9)

thus for every x ∈ K1 we have x/2 ∈ W , and using (2.25) of Lemma 2.3 again, we can write

hZq(K1)(x) � 2hZq(K)(x) = 4hZq(K)(x/2) � 4C1I1
(
K,Z◦

q(K)
)
. (4.10)

Finally,

logN
(
K1, tB

n
2

)
� logN

(
2K, tBn

2

)
� 4κn2 log2 n

t2
, (4.11)

for all t � 2τ
√

n logn. We now write

nL2
K � 4

∫
K1

‖x‖2
2 dx � 4

∫
K1

max
z∈K1

∣∣〈x, z〉∣∣dx. (4.12)

(4.11) tells us that for every t � 2τ
√

n logn, we can find z1, . . . , zNt ∈ K1 such that K1 ⊆⋃Nt (zi + tBn), and |Nt | � exp(
4κn2 log2 n

2 ). It follows that
i=1 2 t
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max
z∈K1

∣∣〈x, z〉∣∣ � max
1�i�Nt

∣∣〈x, zi〉
∣∣ + max

w∈tBn
2

∣∣〈x,w〉∣∣
= max

1�i�Nt

∣∣〈x, zi〉
∣∣ + t‖x‖2, (4.13)

and hence

nL2
K � 4

∫
K1

max
1�i�Nt

∣∣〈x, zi〉
∣∣dx + 4t

∫
K1

‖x‖2 dx

� 4
∫
K1

max
1�i�Nt

∣∣〈x, zi〉
∣∣dx + 8t

√
nLK. (4.14)

We choose

t2
0 = 16C2κ max

{
1,

I1(K,Z◦
q(K))

√
qnL2

K

}
n3/2

√
q

log2 n, (4.15)

where C2 = 16C1β2β1 with β2 the constant appearing in (2.7) and β1 the constant from
Lemma 2.1. With this choice of t0, we have

t2
0 � 16C2κ

√
n

q
n log2 n � 16C2κ

ρ
n log2 n, (4.16)

as long as q satisfies (4.2), and

t2
0 � 16C2κ

I1(K,Z◦
q(K))

qL2
K

n log2 n. (4.17)

From (4.16) it is clear that

t2
0 � 16C2κ

n log2 n

ρ
� 4τ 2n logn, (4.18)

provided that n � n0(τ, κ, ρ), so the argument above, leading up to (4.14), remains valid for

t = t0. We also set p0 := 4κn2 log2 n

t2
0

. Observe that p0 � q (as long as q is assumed to satisfy (4.2)),

if ρ is chosen properly: indeed, we have max{1,
I1(K,Z◦

q (K))√
qnL2

K

} � ρ
√

n/q , and hence

t2
0 � 16C2κρ

n2 log2 n

q
. (4.19)

If we choose ρ < 1/(4C2), then we have

p0 = 4κn2 log2 n

t2
� 4κn2q log2 n

2 2
= q

4C ρ
� q. (4.20)
0 16C2κρn log n 2
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We therefore see that, using Lemma 2.1 with q ′ = 1, we can write

∫
K1

max
1�i�Nt0

∣∣〈x, zi〉
∣∣dx � β1 max

1�i�Nt0

hZp0 (K1)(zi) � β1β2
p0

q
max

1�i�Nt0

hZq(K1)(zi). (4.21)

Combining the above with (4.14), (4.10) and the definition of C2, we get

nL2
K � C2

p0

q
I1

(
K,Z◦

q(K)
) + 8t0

√
nLK. (4.22)

Also, from (4.17) and the definition of p0, we have

C2
p0

q
I1

(
K,Z◦

q(K)
) = 4C2κI1(K,Z◦

q(K))

qt2
0

n2 log2 n � 1

4
nL2

K. (4.23)

Therefore, (4.22) becomes

nL2
K � C3t0

√
nLK. (4.24)

This gives us that

L2
K � C4

t2
0

n
= Cκ max

{
1,

I1(K,Z◦
q(K))

√
qnL2

K

}√
n

q
log2 n, (4.25)

as we desired. �
5. Regular convex bodies with maximal isotropic constant

Recall that Ln := max{LK : K is isotropic in R
n}. In order to be able to use the argument of

the previous section to bound Ln, we need to establish the existence of (κ, τ )-regular convex
bodies, namely bodies satisfying (4.1), whose isotropic constant is as “close” to Ln as possible.
The following theorem, formulated in the more general setting of log-concave measures, was
proven in [5].

Theorem 5.1. There exist absolute constants κ, τ and δ > 0 such that, for every n ∈ N, there
exists an isotropic convex body K in R

n with the following properties:

(i) LK � δLn.

(ii) logN(K, tBn
2 ) � κn2 log2 n

t2 , for all t � τ
√

n logn.

For the reader’s convenience, we will give an outline of the proof in the setting of convex
bodies. First, we recall the following theorem by Pisier which will be used in several steps of the
argument (see [19] for a proof in the symmetric case; this can easily be extended to the general
case):
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Theorem 5.2. Let K be a centered convex body of volume 1 in R
n. For every α ∈ (0,2) there

exists an ellipsoid Eα with |Eα| = 1 such that, for every t � 1,

logN(K, t Eα) � κ(α)

tα
n, (5.1)

where κ(α) > 0 is a constant depending only on α.

Remark 5.3. One can take κ(α) � κ1
2−α

, where κ1 > 0 is an absolute constant. An ellipsoid Eα

which satisfies (5.1) is called an α-regular M-ellipsoid for K .

Secondly, let us gather some useful facts about ellipsoids in R
n that we are going to need for

the proof of Theorem 5.1 (proofs for these facts can be found in [5,10,22]).

Lemma 5.4. Let E be an ellipsoid in R
n, then E = T (Bn

2 ) for some T ∈ GL(n). We denote the
eigenvalues of the matrix

√
T ∗T by λ1 � · · · � λn > 0 (recall that T ∗T is a symmetric, positive

definite matrix). Then, for all 1 � k � n − 1,

max
F∈Gn,k

|E ∩ F | = max
F∈Gn,k

∣∣PF (E )
∣∣ = ωk

k∏
i=1

λi (5.2)

and

min
F∈Gn,k

|E ∩ F | = min
F∈Gn,k

∣∣PF (E )
∣∣ = ωk

n∏
i=n−k+1

λi. (5.3)

Also, if the dimension n is even, we can find a subspace F ∈ Gn,n/2 such that PF (E ) = λn/2BF

(= λn/2B
n
2 ∩ F ).

In view of the last part of Lemma 5.4, we choose to restrict ourselves to the cases that the
dimension n is even, n = 2m for some m � 1, and prove Theorem 5.1 for those. However, as we
will see in Remark 5.7, it is not hard to then extend the theorem to all dimensions.

Proof of Theorem 5.1. We start with an isotropic convex body K1 with LK1 � δ1L2m, where
δ1 ∈ (0,1). Then, one has the following upper bound for the volume of sections of K1. �
Lemma 5.5. For every k-codimensional subspace E of R

2m, |K1 ∩ E|1/k � c1(δ1), where
c1(δ1) > 0 depends only on δ1.

Proof. Let E be a k-codimensional subspace of R
2m, and denote its orthogonal subspace by F .

We consider the body Bk+1(K1,F ), a convex body in the subspace F defined as in Section 2.2,
and we recall that

c1
LBk+1(K1,F ) � |K1 ∩ E|1/k � c2

LBk+1(K1,F )
(5.4)
LK1 LK1
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for some absolute constants c1, c2 independent of m or k. On the other hand, it is not hard to
check that if k � j then Lk � c3Lj (see e.g. [6, Theorem 4.2.2]). Thus,

LBk+1(K1,F ) � Lk � c3L2m = (c3/δ1)LK1 , (5.5)

and the lemma follows with c1(δ1) = c2c3/δ1. �
We will now invoke Pisier’s theorem to also give a lower bound for the volume of m-

dimensional sections of K1 that contain its barycenter.

Lemma 5.6. For every F ∈ G2m,m we have |K1 ∩ F |1/m � c2(δ1), where c2(δ1) > 0 depends
only on δ1.

Proof. We consider an α-regular M-ellipsoid Eα for K1 (for the proof of this lemma we could
have fixed α = 1; however, some steps of this more general argument will be needed again later).
Set tα = max{1, [κ(α)]1/α}. Then,

∣∣PF (K1)
∣∣ � N(K1, tα Eα)

∣∣PF (tα Eα)
∣∣ � e2m

∣∣PF (tα Eα)
∣∣ (5.6)

for every F ∈ G2m,m. We also need the Rogers–Shephard inequality (see [20]) for both K1
and Eα : since |K1| = |Eα| = 1, we know that

1 = c1 � |K1 ∩ F |1/m
∣∣PF⊥(K1)

∣∣1/m � c2, (5.7)

and similar estimates hold true for Eα (see [21] or [14] for the left-hand side inequality). The idea
of the argument is the following: inequality (5.7) helps us relate the volume of m-dimensional
sections of K1 (or Eα) to that of m-dimensional projections of K1 (or Eα respectively); an
upper bound for the former will give us a lower bound for the latter and vice versa. Also, in-
equality (5.6) allows us to compare the maximum (or minimum) volume of the m-dimensional
projections of K1 to the maximum (or minimum) volume of the corresponding projections of Eα .
However, as we recalled in Lemma 5.4, the maximum volume of the m-dimensional projections
of an ellipsoid is the same as the maximum volume of its m-dimensional sections, so we can use
inequalities (5.6) and (5.7) once more to get from upper bounds for the volume of sections of K1
to lower bounds.

We now give the precise argument: combining (5.7) with the conclusion of Lemma 5.5, we see
that minF∈G2m,m

|PF⊥(K1)|1/m � c3(δ1). We then get from (5.6) that

min
F∈G2m,m

∣∣PF⊥(tα Eα)
∣∣1/m � c4(δ1).

Now, using (5.7) for Eα we get |Eα ∩ F |1/m � c5(δ1)tα for every F ∈ G2m,m. But from (5.2) we
have that

max
∣∣PF (Eα)

∣∣1/m = max |Eα ∩ F |1/m � c5(δ1)tα. (5.8)

F∈G2m,m F∈G2m,m
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Using (5.6) once again, we get |PF (K1)|1/m � c6(δ1)t
2
α for every F ∈ G2m,m. Inserting this

estimate into (5.7), we see that |K1 ∩ F |1/m � c7(δ1)/t2
α for every F ∈ G2m,m. We may choose

α = 1 now, and complete the proof with c2(δ1) = c7(δ1)/t2
1 . �

Conclusion of the proof of Theorem 5.1. Let α ∈ (1,2) and let Eα be an α-regular M-ellipsoid
for K . Recall that |Eα| = 1. Also, if Eα = T (Bn

2 ) = T (B2m
2 ), let λ1 � · · · � λ2m > 0 be the

eigenvalues of the matrix
√

T ∗T ; observe from Lemma 5.4 that

∣∣Bm
2

∣∣ 2m∏
i=m+1

λi = min
F∈G2m,m

∣∣PF (Eα)
∣∣ � max

F∈G2m,m

∣∣PF (Eα)
∣∣ = ∣∣Bm

2

∣∣ m∏
i=1

λi. (5.9)

Using (5.6) and the conclusion of Lemma 5.6, we get

∣∣Bm
2

∣∣1/m
λm � min

F∈G2m,m

∣∣PF (Eα)
∣∣1/m � e−2

tα
min

F∈G2m,m

∣∣PF (K1)
∣∣1/m

� e−2

tα
min

F∈G2m,m

|K1 ∩ F |1/m � c8(δ1)

tα
, (5.10)

and hence

λm � c9(δ1)

tα

√
n. (5.11)

In a similar way, using (5.8), we see that |Bm
2 |1/mλm � maxF∈G2m,m

|PF (Eα)|1/m � c5(δ1)tα ,
and hence λm � c10(δ1)tα

√
n. But from the last part of Lemma 5.4 we know that there exists a

subspace F0 ∈ G2m,m such that PF0(Eα) = λmBF0 , therefore,

c9(δ1)

tα

√
nBF0 ⊆ PF0(Eα) ⊆ c10(δ1)tα

√
nBF0 . (5.12)

Let W := Bm+1(K1,F0) and K := W × U(W), where U ∈ O(2m) satisfies U(F0) = F⊥
0 .

Since W is almost isotropic and LU(W) = LW , from [6, Lemma 1.6.6] we see that K =
W × U(W) is an almost isotropic convex body in R

n ≡ R
2m with LK = LW . We will show

that K satisfies (i) and (ii); the same conclusion will then immediately follow (perhaps with
slightly different constants for property (ii)) for any isotropic linear image T (K) of K satisfying
T (K) 
 K .

Proof of (i). Since LK = LW , from (5.4) we get

LK = LW � c−1
2 LK1

∣∣K1 ∩ F⊥
0

∣∣1/m � c−1
2 c2(δ1)LK1 � δLn, (5.13)

where δ = δ1c2(δ1)/c2. For the last two inequalities we have used Lemma 5.6 and the fact that
LK1 � δ1Ln. �
Proof of (ii). Using the fact that N(A×A,B ×B) � N(A,B)2 for any two nonempty sets A,B ,
and also the fact that Bm × Bm ⊆ √

2B2m, we may write for any s > 0,
2 2 2
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N
(
K,s

√
2nBn

2

)
� N

(
W × U(W), s

√
n(BF0 × BF⊥

0
)
)

� N(W, s
√

nBF0)
2. (5.14)

From (2.15) we know that

Zm

(
Bm+1(K1,F0)

) 
 ∣∣K1 ∩ F⊥
0

∣∣1/m
PF0

(
Zm(K1)

)
, (5.15)

therefore, using Lemmas 5.5, 5.6 and the fact that conv(C,−C) 
 Zm(C) for every centered
convex body C of volume 1 in F0 or in R

n, we get

conv(W,−W) 
 Zm

(
Bm+1(K1,F0)

) 
 ∣∣K1 ∩ F⊥
0

∣∣1/m
PF0

(
Zm(K1)

)

δ1 PF0

(
conv(K1,−K1)

)
. (5.16)

But then, recalling also (5.12), we have for every r > 0,

N
(
W,c10(δ1)tαr

√
nBF0

)
� N

(
conv(W,−W), c10(δ1)tαr

√
nBF0

)
� N

(
conv(W,−W), rPF0(Eα)

)
� N

(
c11(δ1)PF0

(
conv(K1,−K1)

)
, rPF0(Eα)

)
� N

(
c11(δ1) conv(K1,−K1), rEα

)
� N

(
K1 − K1, c12(δ1)r(Eα − Eα)

)
� N

(
K1, c13(δ1)rEα

)2 (5.17)

(note that for the last two inequalities we have also used that Eα is convex and symmetric, so
Eα − Eα = 2Eα , that K1 is convex and contains the origin, so conv(K1,−K1) ⊂ K1 −K1, as well
as the fact that N(A − A,B − B) � N(A,B)2). It follows that

N
(
K, t

√
nBn

2

)
� N

(
K1,

c13(δ1)t√
2c10(δ1)tα

Eα

)4

(5.18)

for every t > 0. Since Eα is an α-regular M-ellipsoid for K1, it remains to consider large enough
t � τ(δ1, α), where

τ(δ1, α) := √
2c10(δ1)tα/c13(δ1) = tα/c14(δ1), (5.19)

to deduce from (5.1) and (5.18) that

logN
(
K, t

√
nBn

2

)
� 4 logN

(
K1,

c14(δ1)t

tα
Eα

)
� 4κ(α)tαα

cα
14(δ1)

n

tα
. (5.20)

Choosing α = 2 − 1
logn

, we have κ(α) � κ1 logn and tα 
 t2 as long as, say, t � n2. This com-
pletes the proof. �
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Remark 5.7. Now that we have proven the existence of an isotropic body K in R
2m which

has properties (i) and (ii) of Theorem 5.1, we can easily prove the existence of such bodies in
R

2m−1 as well: just note that for every subspace F ∈ G2m,2m−1 we have that 2LK � |K ∩F⊥| �
2R(K). Combining this with the properties (2.14), (2.15) for the almost isotropic convex body
B2m(K,F) in the (2m − 1)-dimensional subspace F , we get that

LB2m(K,F ) 
 ∣∣K ∩ F⊥∣∣ 1
2m−1 LK 
 LK � δL2m � δ

c3
L2m−1, (5.21)

and also that

B2m(K,F) 
 Z2m−1
(
B2m(K,F)

) 
 ∣∣K ∩ F⊥∣∣ 1
2m−1 PF

(
Z2m−1(K)

) 
 PF (K). (5.22)

Since for every t > 0, N(PF (K), tBF ) = N(PF (K), tPF (B2m
2 )) � N(K, tB2m

2 ), we conclude
that the body B2m(K,F) will also satisfy properties (i) and (ii) of Theorem 5.1 with perhaps
slightly different, but still independent of the dimension, constants κ, τ and δ.

In the statement of Theorem 5.1, we can add one more property about the radius of the body
K that we look for: we can require that R(K) � γ

√
nLK where γ > 0 is an absolute constant.

The first step towards this is to use Bourgain’s argument [4] which reduces the slicing problem
to the study of bodies of small diameter; one can prove the following fact (see e.g. [6, Proposi-
tion 2.3.1]).

Lemma 5.8. There exists an isotropic convex body K1 in R
n with LK1 � δ1Ln and R(K1) �

γ1
√

nLK1 , where δ1, γ1 > 0 are absolute constants.

Then, we can repeat the proof of Theorem 5.1 starting with the body K1 ⊂ R
n = R

2m given
by Lemma 5.8. It is not hard to check that now R(W) � c(δ1)γ1

√
nLK1 : just write

R(W) = R
(
Bm+1(K1,F0)

)
� c1

∣∣K1 ∩ F⊥
0

∣∣1/m
R

(
PF0

(
Zm(K1)

))
� c2(δ1)R

(
conv(K1,−K1)

) = c2(δ1)R(K1) � c2(δ1)γ1
√

nLK1 . (5.23)

It is also easy to check that R(K) = R(W × U(W)) 
 R(W), hence R(K) � γ
√

nLK for some
absolute constant γ > 0. Similarly for the odd dimensions, we see that for every F ∈ G2m,2m−1,

R
(
B2m(K,F)

) 
 R
(
PF (K)

)
� R(K) � cγ

√
2m − 1LB2m(K,F ), (5.24)

where we have made use of (5.21), (5.22). Thus, we can state the following version of Theo-
rem 5.1.

Theorem 5.9. There exist absolute constants κ, τ, γ and δ > 0 such that, for every n ∈ N, there
can be found an isotropic convex body K in R

n with R(K) � γ
√

nLK , LK � δLn, and the
property that

logN
(
K, tBn

2

)
� κn2 log2 n

t2
for all t � τ

√
n logn.
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Definition 5.10. Let I K(κ, τ, γ, δ) denote the class of isotropic convex bodies whose existence
is established in Theorem 5.9. Let ρ > 0 be the absolute constant in Theorem 4.1. Then, we
define A(n,κ, τ, γ, δ) to be the set of all q ∈ [2, ρ2n] for which there exists K ∈ I K(κ, τ, γ, δ)

such that I1(K,Z◦
q(K)) � ρnL2

K . Observe that already, by (3.2), A(n,κ, τ, γ, δ) can be shown
to contain an interval of the form [2, c

√
n ] where c > 0 is an absolute constant. Clearly, any

improvement to the upper bound in (3.2) will automatically give us that A(n,κ, τ, γ, δ) contains
an even larger part of [2, ρ2n]. For those q we set

B(q) = inf

{
I1(K,Z◦

q(K))
√

qnL2
K

: K ∈ I K(κ, τ, γ, δ)

}
. (5.25)

Then, Theorem 4.1 implies the following: for every q ∈ A(n,κ, τ, γ, δ),

δ2L2
n � Cκ

√
n/q log2 nmax

{
1,B(q)

}
. (5.26)

In other words, we have:

Theorem 5.11. There exist absolute constants κ, τ, γ and δ > 0 such that, for every n ∈ N,

L2
n � min

{
Cκ

δ2

√
n/q log2 nmax

{
1,B(q)

}
: q ∈ A(n,κ, τ, γ, δ)

}
. (5.27)

The estimate Ln � c 4
√

n logn is a direct consequence of Theorem 5.11: observe that B(2) 
 1.

6. Isotropic convex bodies of small diameter

In [7, Section 3] it is proven that for every isotropic convex body K there exists a second
isotropic convex body C with bounded isotropic constant and the “same behavior” as K with
respect to linear functionals.

Theorem 6.1. Let K be an isotropic convex body in R
n. There exists an isotropic convex body C

in R
n with the following properties:

(i) LC � c1.
(ii) c2Zq(C) ⊆ Zq(K)

LK
+ √

qBn
2 ⊆ c3Zq(C) for all 1 � q � n.

(iii) c4Iq(C,W) � Iq (K,W)

LK
+ Iq(Dn,W) � c5Iq(C,W) for all 1 � q � n and every symmetric

convex body W in R
n.

The constants ci , i = 1, . . . ,5, are absolute positive constants.

The body C is defined as the “convolution” of K with a multiple of Bn
2 . If we also assume

that K is symmetric, then using the fact that Zn(C) 
 C and Zn(K) 
 K , we see that

C 
 K + Dn. (6.1)

LK
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From the previous section, we know that for our purposes it is enough to study the quantity
I1(K,Z◦

q(K)) in the cases that K is an isotropic symmetric convex body of small diameter; that
is, we can assume that R(K) � γ

√
nLK for some γ 
 1. The next proposition, which makes

use of Theorem 6.1, shows us that it even suffices to consider isotropic convex bodies which are
c(γ )-isomorphic to a ball.

Proposition 6.2. Let K be an isotropic symmetric convex body in R
n with R(K) � γ

√
nLK .

Then, there exists an isotropic symmetric convex body C such that:

(i) LC � c6,
(ii) c7Dn ⊆ C ⊆ c8γDn, and

(iii) I1(K,Z◦
q(K)) � c9I1(C,Z◦

q(C))L2
K for all 1 � q � n,

where c6, c7, c8, c9 > 0 are absolute constants.

Proof. We will use the fact that wq(Zq(K)) 
 √
q/nIq(K), and hence

c1
√

qLK � wq

(
Zq(K)

)
� γ

√
qLK (6.2)

for all 1 � q � n. We consider the body C defined by Theorem 6.1. It is clear that LC � c6 for
some absolute constant c6 > 0. Since 1

LK
Zq(K) ⊆ c3Zq(C), we have c3LKZ◦

q(K) ⊇ Z◦
q(C),

and hence

I1
(
C,Z◦

q(C)
)
� I1

(
C,c3LKZ◦

q(K)
) = 1

c3LK

I1
(
C,Z◦

q(K)
)
. (6.3)

Applying the inequality c5I1(C,W) � I1(K,W)
LK

with W = Z◦
q(K), we get

I1
(
C,Z◦

q(C)
)
� c9

I1(K,Z◦
q(K))

L2
K

, (6.4)

with c9 = (c3c5)
−1 Finally, from (6.1) and the fact that K

LK
⊆ γ

√
nBn

2 , we see that c7Dn ⊆
C ⊆ c8γDn. �

In view of this result, we can give one more version of the “reduction theorem” of Section 4.

Definition 6.3. Let I Ksd(γ ) denote the class of isotropic convex bodies that satisfy:

(i) LC � c6 and
(ii) c7Dn ⊆ C ⊆ c8γDn,

where ci > 0 are absolute constants (e.g. the ones in Proposition 6.2). For every 2 � q � n, set

Γ (q) = sup

{
I1(K,Z◦

q(K))√
qn

: K ∈ I Ksd(γ )

}
.

Then, Theorem 5.11 and Proposition 6.2 imply the following:
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Theorem 6.4. There exist absolute constants κ, τ, γ and δ > 0 such that, for every n ∈ N,

L2
n � min

{
Cκ

δ2

√
n/q log2 nΓ (q): q ∈ A(n,κ, τ, γ, δ)

}
. (6.5)

In other words, studying the behavior of
I1(K,Z◦

q (K))√
qn

within the class I Ksd(γ ) is enough in

order to understand the behavior of the parameter B(q) as well as whether that behavior can lead
to improved upper bounds for Ln.
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