NOTE

On an Involution Concerning Pairs of Polynomials over \mathbb{F}_2

Astrid Reifegerste

Institut für Algebra und Geometrie, Otto-von-Guericke-Universität Magdeburg,
Postfach 4120, 39016 Magdeburg, Germany
E-mail: astrid.reifegerste@mathematik.uni-magdeburg.de

Communicated by the Managing Editors
Received July 9, 1999

From the work of S. Corteel et al. (1998, J. Combin. Theory Ser. A 82, 186-192),
the number of coprime m-tuples of monic polynomials of degree n over \mathbb{F}_2 is equal
to $q^{mn} - q^{(n-1)m + 1}$. In particular, among the ordered pairs of polynomials of degree
n over \mathbb{F}_2 there are as many relatively prime as non-relatively prime ones. We give
an involution that proves this result. © 2000 Academic Press

Key Words: pairs of polynomials over \mathbb{F}_2.

1. INTRODUCTION

The subject of [1] is the enumeration of all coprime m-tuples of elements
of order n in a prefab, i.e., of such tuples whose elements have no prime
factor in common. To this end, a general form of the pentagonal number
sieve was proved which implies, among other things, the following result:
the number of coprime m-tuples of monic polynomials of degree n over \mathbb{F}_q
is $q^{mn} - q^{(n-1)m + 1}$. Considering the special case $q = m = 2$ yields the nice
consequence that the sets of ordered pairs of coprime polynomials of
degree n over \mathbb{F}_2 and of non-coprime ones, respectively, are equinumerous.
In [1], the authors asked for a combinatorial proof of this fact. Here we
present such a proof.

Our bijection is based on elementary properties of the resultant of two
polynomials over \mathbb{F}_2.
Let \(f(x) = \sum_{i=0}^{m} a_i x^i \) and \(g(x) = \sum_{i=0}^{n} b_i x^i \) be polynomials of formal degree \(m \) resp. \(n \) over a field \(K \). The determinant

\[
\text{res}(f, g) = \begin{vmatrix}
 a_m & a_{m-1} & \cdots & a_0 & 0 & \cdots & 0 \\
 0 & a_m & a_{m-1} & \cdots & a_0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & a_m & a_{m-1} & \cdots & a_0 \\
 b_n & b_{n-1} & \cdots & b_0 & 0 & \cdots & 0 \\
 0 & b_n & b_{n-1} & \cdots & b_0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & b_n & b_{n-1} & \cdots & b_0 \\
\end{vmatrix}_{m+n}
\]

is called the resultant of \(f \) and \(g \). If \(a_m \neq 0 \) and \(f(x) = a_m(x - \alpha_1) \cdots (x - \alpha_m) \) in the splitting field of \(f \) over \(K \), then \(\text{res}(f, g) \) is also given by the formula

\[
\text{res}(f, g) = a_m^n \prod_{i=1}^{m} g(\alpha_i).
\]

We have \(\text{res}(f, g) = 0 \) if and only if \(f \) and \(g \) have a common divisor of positive degree in \(K[x] \). Define \(\text{res}(1, 0) := 1 \) for \(\text{char } K \neq 0 \).

Lemma. Let \(f, g \) be polynomials of degree \(n \geq 1 \) over \(\mathbb{F}_2 \).

(a) Then \(\text{res}(f, g) = \text{res}(f, f + g) \).

(b) If \(f = sq + r \) for some \(s, q, r \in \mathbb{F}_2[x] \) then \(\text{res}(f, s) = \text{res}(s, r) \).

Proof. (a) This is obvious. (b) Let \(s(x) = (x - \alpha_1) \cdots (x - \alpha_k) \) in the splitting field of \(s \) over \(\mathbb{F}_2 \). Then \(\text{res}(s, r) = \prod_{i=1}^{k} r(\alpha_i) = \prod_{i=1}^{k} (f(\alpha_i) + s(\alpha_i) q(\alpha_i)) = \text{res}(s, f) = \text{res}(f, s) \). \(\square \)

2. THE BIJECTION

In this section we describe the recursive construction of a one-to-one mapping \(\varphi_n \) from the set \(M_n \) of ordered pairs of polynomials of degree \(n \) over \(\mathbb{F}_2 \) onto itself which satisfies \(\text{res}(\varphi_n(f, g)) = \text{res}(f, g) + 1 \) for all \((f, g) \in M_n \).

For \(i = 1, 2 \) we denote by \((f, g)^{(i)} \) the \(i \)th component of the pair \((f, g) \).

Set \(\text{deg } 0 = 0 \).

Input: \((f, g) \in M_n \)

Step 1. Determine \(s = f + g; \ k := \text{deg } s. \)

Step 2. If \(k > 0 \) then go to step 3, otherwise put \(f' := f, \ g' := g + 1 \) and terminate.
Step 3. Determine $r = f + sx^n - k$; $m := \deg r$.

* $m \leq n - 1$ *

Step 4. Set

$$(s', r') := \begin{cases}
\phi_4(s, r) & \text{if } k = m \\
(\phi_m(s + r, r)^{(1)} + \phi_m(s + r, r)^{(2)}, \phi_m(s + r, r)^{(2)}) & \text{if } k < m \\
(\phi_4(s, s + r)^{(1)}, \phi_4(s, s + r)^{(1)} + \phi_4(s, s + r)^{(2)}) & \text{if } k > m.
\end{cases}$$

Step 5. Put $f' := s'x^n - k$, $g' := f + s'$.

Output: $\phi_4(f, g) := (f', g')$

We use the notation above throughout this paper.

Theorem 1. For any pair $(f, g) \in M_n$ of polynomials the above algorithm determines a pair $(f', g') \in M_n$ satisfying $\text{res}(f', g') = \text{res}(f, g) + 1$. The number of iterations is at most n.

Proof. The finiteness of the algorithm immediately follows from its description ($k, m \leq n - 1$).

Clearly, by construction, the theorem is true for $k = 0$. Assume $k \geq 1$ and so $n \geq 2$.

First we will show by induction on n that $(f', g') \in M_n$.

For $n = 2$ one has $k = 1$ and $m \leq 1$. If $m = 1$ then $(s', r') = \phi_4(s, r)$ and hence $\deg s' = \deg r' = 1$. Otherwise, setting $(\tilde{s}, \tilde{r}) = \phi_4(s, s + r)$, we obtain $\deg \tilde{s} = \deg \tilde{r} = 1$. Thus $s' = \tilde{s}$ is linear and $r' = \tilde{s} + \tilde{r} \in F_2$. In any case, $\deg f' = \deg g' = 2$.

Assume now $n > 2$. Suppose that the degrees of s and s' resp. r and r' are equal, so $s' = s'x^n - k$ and $g' = f + s'$ are obviously of degree n. In fact, we have $\deg s = \deg s'$ and $\deg r = \deg r'$ at every stage of the algorithm.

Let $k' = \deg s'$, $m' = \deg r'$; the polynomials and the corresponding degrees will be indexed to indicate the stage of their appearance in the course of the algorithm. We first consider the last stage denoted by e. As seen above, $e < \infty$. By construction, one has $k_{e+1} = 0$ and $k_i > 0$ for $i \leq e$.

Therefore we may assume that $k_e \geq m_e$. Otherwise $f_{e+1} = s_e + r_e$, $g_{e+1} = r_e$, and hence $s_e = s_{e+1}$ is of degree $k_e = k_{e+1} = 0$. In case $k_e = m_e$, we obtain $f_{e+1} = s_e$, $g_{e+1} = r_e$ which implies $s'_e = f_{e+1} = s_e$, $r'_e = g_{e+1} = r_e + 1$. For $k_e > m_e$, setting $f_{e+1} = s_e$, $g_{e+1} = s_e + r_e$ gives $s'_e = f_{e+1} = s_e$, $r'_e = f_{e+1} + g_{e+1} = s_e + (s_e + r_e + 1) = r_e + 1$ again. In particular, in both cases $k_e = k'_e$, $m_e = m'_e$ is satisfied. So we may assume the existence of $i < e$ such that $k_{i+1} = k'_i$. Consider the ith stage according to the different cases of Step 4 in the algorithm:
(i) \(k_i = m_i \). Since \(k_i, m_i < n \), we are done by inductive assumption.

(ii) \(k_l < m_l \). By induction, we have \(m_l = m'_l \). Compute \(\varphi_{m_l}(f_{i+1}, g_{i+1}) \) where \(f_{i+1} = s_i + r_i \) and \(g_{i+1} = r_i \). Then \(s_{i+1} = f_{i+1} + g_{i+1} = s_i \) and so \(k_i = k_{i+1} = k'_i + 1 \) by assumption. On the other hand, \(s'_i = f'_{i+1} + g'_{i+1} = s'_{i+1} \), so \(k'_i = k'_{i+1} + 1 \). Therefore \(k_i = k'_i \).

(iii) \(k_l > m_l \). Here the inductive assumption yields \(k_i = k'_i \). Compute \(\varphi_{m_l}(f_{i+1}, g_{i+1}) \) where \(f_{i+1} = s_i + r_i \) and \(g_{i+1} = s_i + r_i \). Then \(s_{i+1} = f_{i+1} + g_{i+1} = r_i \) and, by assumption \(k_{i+1} = k'_{i+1} + 1 \). Setting \(r'_i = f'_{i+1} + g'_{i+1} = s'_{i+1} \), we get \(m_l = m'_l \). Consequently \(m_l = m'_l \).

By iteration, we derive the assertion. To prove the remaining statement \(\text{res}(f', g') = \text{res}(f, g) + 1 \), we use induction by \(n \) once more. For \(n = 1 \) it holds trivially. Assume \(n \geq 2 \). By the lemma, we obtain \(\text{res}(f, g) = \text{res}(f, s) = \text{res}(s, r) \). Applying the inductive assumption and the lemma, we deduce depending on the cases in Step 4 that:

(i) \(\text{res}(s', r') = \text{res}(s, r) + 1 \) because \(k = m < n \);

(ii) \(\text{res}(s', r') = \text{res}(s, r) + 1 \) because \(k = m < n \); and \(\text{deg } r = \text{deg } r' = m' \) throughout the algorithm, we can inductively derive that \(\varphi_{m_l}(s, r) = \text{res}(s, r) + 1 \) analogously as (ii).

Therefore, \(\text{res}(f', g') = \text{res}(f', s') = \text{res}(s', r') = \text{res}(f, g) + 1 \).

Theorem 2. The mapping \(\varphi_n \) is an involution.

Proof. Certainly the assertion holds for \(k = 0 \), i.e., for \(\varphi_n: M_n \to M_n \), \(f, f + c \mapsto f, f + c + 1, c \in \mathbb{Z} \). So assume \(k \geq 1 \). Since \(\text{deg } s = \text{deg } s' = k' \) and \(\text{deg } r = \text{deg } r' = m' \) throughout the algorithm, we can inductively derive that \(\varphi_n \) is an involution for all \(n \).

The mapping \(\varphi_n \) can be described explicitly: \((x, x^2 + x) \mapsto (x^2 + 1, x^2 + x + 1) \). Let \((f', g') = \varphi_n(f, g) \) where \(f' = s' x^{n-k} + r', g' = f' + s' \) and \(n > 2 \). For computing \(\varphi_n(f', g') \), we have to treat the three cases of Step 4:

(i) \(k' = m' \). By induction, \((s', r') = \varphi_n(s', r') = \varphi_n(s, r) = (s, r) \) since \(k = k' < n \) and \(m = m' \).

(ii) \(k' < m' \). One has \(s' = s' + r', r' = s_r \) where \((s', r') = \varphi_n(s' + r', r') = \varphi_n(m(s + r, r) = (s + r, r) \) by induction for \(m = m' < n \). Note that \(k = k' \).

Thus \(s'' = s, r'' = r \).

(iii) \(k' > m' \). \(s'' = s, r'' = r \), analogously as (ii).

Therefore, \(f'' = s'' x^{n-k} + r'' = s x^{n-k} + r = f, g'' = f'' + s'' = f + s = g \).

Example. To illustrate the algorithm, we compute the image of \((f, g)\) for \(f = x^5 + x^4 + x \) and \(g = x^5 + x^3 + x^2 + x + 1 \) with respect to \(\varphi_3 \).
Thus \(\varphi(f, g) = (x^5 + x^4 + x^3 + x^2 + x + 1) \).

Remark. (1) As mentioned before, our bijection is \(k \)- resp. \(m \)-preserving. In particular, it has the nice property that it can be restricted to the set of pairs \((f, g) \# M_n \) with fixed degree of \(f + g \).

(2) Since \(\text{res}(f, g) = \text{res}(s, r) \), the bijection also proves the similar result that

\[
|\{(f, g) \in \mathbb{F}_2[x] : 1 \leq n_1, n_2 \leq n, \gcd(f, g) = 1\}| = |\{(f, g) \in \mathbb{F}_2[x] : 1 \leq n_1, n_2 \leq n, \gcd(f, g) \neq 1\}| \text{ for all } n \in \mathbb{N}, \text{ where } n_1 = \deg f, n_2 = \deg g.
\]

(3) Any polynomial \(h \in \mathbb{F}_2[x] \) of degree \(d \in \{1, \ldots, n-1\} \) is the gcd for exactly \(2^{n-d} - 1 \) pairs \((f, g) \in M_n \). Moreover, for \(2^{n-d} \) of these pairs \(f + g = h \) is satisfied (otherwise \(\deg (f + g) > d \)). In this case the mapping \(\varphi_n \) can be described explicitly. We have \(\varphi_n(f, g) = (f + 1, g + 1) \); to prove this, we compute \(\varphi_n(f, g) \) following the algorithm. So we get \(s = h, k = d > 0 \) and \(r = h(f + x^{-k}), m = \deg r \), where \(f = h f \). If \(f + x^{-k} \in \mathbb{F}_2 \) then \(r = 0 \) and \(r = s \), respectively, and in particular \(m \leq k \). In this case we have \(s = s, r = r + 1 \) and hence \(t = s x^{-k} + r = f + 1, g = f' + s = g + 1 \). If \(\deg f = x^{-k} \geq 1 \), and so \(k = m \), we obtain \(s_{new} = s \) and \(r_{new} = h(1 + f + x^{-k} + x^{-k} + h x^{-k}) \) at the next stage. Continue by considering \(k_{new} = k \) and \(m_{new} < m \) until one comes back to the case already discussed.

REFERENCE