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We extend the definition of tridendriform bialgebra by introducing
a parameter q. The subspace of primitive elements of a q-
tridendriform bialgebra is equipped with an associative product
and a natural structure of brace algebra, related by a distributive
law. This data is called q-Gerstenhaber–Voronov algebras. We
prove the equivalence between the categories of conilpotent q-
tridendriform bialgebras and of q-Gerstenhaber–Voronov algebras.
The space spanned by surjective maps between finite sets, as well
as the space spanned by parking functions, have a natural structure
of q-tridendriform bialgebra, denoted ST(q) and PQSym(q)∗, in
such a way that ST(q) is a sub-tridendriform bialgebra of
PQSym(q)∗. Finally we show that the bialgebra of M-permutations
defined by T. Lam and P. Pylyavskyy comes from a q-tridendriform
algebra which is a quotient of ST(q).

© 2010 Elsevier Inc. All rights reserved.

Introduction

Some associative algebras admit finer algebraic structures. Dendriform algebras were introduced
by J.-L. Loday in [7] as associative algebras whose product splits into two binary operations satisfying
some relations. In particular, any associative product induced somehow by the shuffle product is an
example of dendriform structure. The algebraic operad describing dendriform algebras is regular, so it
is determined by the free dendriform algebra on one element, which is the algebra of planar binary
rooted trees described in [9]. The natural question which arises is the existence of a regular operad
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such that the free algebra spanned by one element has, as underlying vector space, the space spanned
by all planar rooted trees. Here are two examples of such an operad:

(1) In [4], Frédéric Chapoton defined a K-algebra as a differential graded dendriform algebra
equipped with an extra associative product and a boundary map, satisfying certain conditions.
When considering the free K -algebra on one element, the differential homomorphism on planar
trees coincides with the co-boundary map of the associahedron.

(2) In a joint work with J.-L. Loday, see [10], the second author introduced the notion of tridendriform
algebra, which is an associative algebra such that the product splits into three operations.

In fact the free K-algebra is the associated graded algebra of the free tridendriform algebra.
In this paper, we define the notion of q-tridendriform algebra which is a parametrized triden-

driform algebra. The advantage of this notion is that it permits us to deal simultaneously with
tridendriform algebras (when q = 1) and the notion of K-algebras (obtained when q = 0). Mimicking
the definition of dendriform bialgebra given in [15], a q-tridendriform bialgebra is a bialgebra such
that the associative product comes from a q-tridendriform structure, which satisfies certain compati-
bility relations with the coproduct.

Our main motivation to study this type of bialgebras are the following examples:

(1) Given a positive integer n, let [n] denote the set {1, . . . ,n}. We define a q-tridendriform bialgebra
structure on the space spanned by all surjective maps from [n] to [r], for all positive integers
r � n, which we denote by ST(q). As a vector space ST(q) is spanned by all the faces of the
permutohedron.

(2) In [12] and [11], J.-C. Novelli and J.-Y. Thibon define the 1-tridendriform bialgebra PQSym∗ of
parking functions. This structure is generalized to any q. The natural map which associates to any
parking function a surjective map is called the standardization, its dual induces a monomorphism
of q-tridendriform bialgebras from ST(q) to PQSym∗(q), which differs from the one defined in
[11] for q = 1. In a forthcoming paper, we apply this homomorphism to prove that PQSym∗(q) is
free as a tridendriform algebra, as was conjectured in [11].

(3) The bialgebra MMR of big multi-permutations defined by T. Lam and P. Pylyavskyy in [6] comes
from a 1-tridendriform bialgebra structure, which may be generalized to a q-tridendriform bial-
gebra MMR(q), for any q. We prove that the q-tridendriform bialgebra MMR(q) is a quotient
of ST(q).

Any dendriform algebra H may be equipped with a brace algebra structure (see [14]), in such
a way that whenever H is a dendriform bialgebra the subspace Prim(H) of primitive elements of H is
a sub-brace algebra. Moreover, the category of conilpotent dendriform bialgebras and the category of
brace algebras are equivalent (see [3] and [15]). We extend these results to q-tridendriform bialgebras
by introducing the notion of q-Gerstenhaber–Voronov algebras, denoted GVq-algebras, which are brace
algebras (B, M1n) equipped with an associative product · which satisfies the distributive law:

M1n(x · y; z1, . . . , zn) =
∑

0�i� j�n

q j−i M1i(x; z1, . . . , zi) · zi+1 · · · · · z j · M1(n− j)(y; z j+1, . . . , zn).

As any q-tridendriform bialgebra has a natural structure of dendriform algebra, we show that we can
associate to any q-tridendriform algebra a GVq-algebra which has the same underlying vector space.
Following the results described in [15], we prove that:

(1) the subspace of primitive elements of a q-tridendriform bialgebra H is a sub-GVq-algebra of H ,
(2) the free q-tridendriform algebra spanned by a vector space V is isomorphic, as a coalgebra, to

the cotensor coalgebra of the free GVq-algebra spanned by V ,
(3) the category of conilpotent q-tridendriform bialgebras is equivalent to the category of GVq-

algebras.
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Our result gives a good triple of operads for the theory of generalized bialgebras studied by Loday,
cf. [8].

Let us point out that, applying Chapoton’s results, the operad of GV0-algebras may be equipped
with a differential in such a way that we recover the operad S2 described in [16], also called homotopy
G-algebra in [5].

The paper is organized as follows. The first section gives the definition of q-tridendriform bialgebra,
illustrated by some examples. In the next section we prove the structure theorem for conilpotent q-
tridendriform bialgebras and GVq-algebras, which generalizes the Cartier–Milnor–Moore Theorem in
our context. In the last section we describe the q-tridendriform structures of the bialgebras of parking
functions and of big multi-permutations and prove that there exists a diagram of q-tridendriform
bialgebras:

PQSym∗(q) ←↩ ST(q) � MMR(q)

Notations

All vector spaces and algebras are over a field K. Given a set X , we denote by K[X] the vector
space spanned by X . For any vector space V , we denote by V ⊗n the tensor product of V ⊗ · · · ⊗ V ,
n times, over K. In order to simplify notation, we shall denote an element of V ⊗n indistinctly by
x1 ⊗ · · · ⊗ xn or (x1, . . . , xn).

A coalgebra over K is a vector space C equipped with a linear homomorphism � : C −→ C ⊗ C
which is coassociative. A counit of a coalgebra (C,�) is a linear homomorphism ε : C −→ K such that
μ ◦ (ε ⊗ IdC ) ◦ � = idC = μ ◦ (IdC ⊗ ε) ◦ �, where μ denotes the action of K on C . The kernel of ε is
denoted by C .

For any coalgebra (C,�) the image of an element x ∈ C under � is denoted using the Sweedler’ s
notation �(x) = ∑

x(1) ⊗ x(2) .
Let (C,�,ε) be a counital coalgebra such that C = K ⊕ C , an element x ∈ C is primitive if �(x) =

x ⊗ 1K + 1K ⊗ x. The subspace of primitive elements of C is denoted Prim(C). There exists a natural
filtration on C given by:

• F1(C) = Prim(C),
• Fn(C) := {x ∈ C | �(x) ∈ Fn−1C ⊗ Fn−1C},

where �(x) = �(x) − 1K ⊗ x − x ⊗ 1K .

Definition. The counital coalgebra C is said to be conilpotent if

C = K ⊕
⋃
n�1

FnC .

Given a vector space V , we denote by T c(V ) the space T (V ) = ⊕
n�0 V ⊗n equipped with the

coalgebra structure given by deconcatenation:

�c(x1 ⊗ · · · ⊗ xn) :=
n∑

i=0

(x1 ⊗ · · · ⊗ xi) ⊗ (xi+1 ⊗ · · · ⊗ xn),

for x1, . . . , xn ∈ V .
Let n be a natural number, the ordered set {1, . . . ,n} is denoted by [n]. If J = { j1, . . . , jk} ⊆ [n]

and r � 1, we denote by J + r the set { j1 + r, . . . , jk + r}. A composition of n is an ordered set
n = (n1, . . . ,nr) of positive integers such that

∑r
i=1 ni = n; while a partition of n is a sequence of

non-negative integers λ = (l1, . . . , lr) such that
∑r

i=1 li = n.
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The symmetric group of permutations of n elements is denoted by Sn . Given a composition
n = (n1, . . . ,nr) of n, an n-shuffle is a permutation σ ∈ Sn such that σ(n1 + · · · + ni + 1) < · · · <

σ(n1 + · · · + ni+1), for 0 � i � r − 1. We denote by Sh(n1, . . . ,nr) the set of all n-shuffles.
Consider the set of maps between finite sets. We identify a function f : [n] −→ [r], with its image

( f (1), . . . , f (n)).
Given a map f : [n] −→ [r] and a subset J = {i1 < · · · < ik} ⊆ [n], the restriction of f to J is the

map f | J := ( f (i1), . . . , f (ik)). Similarly, for a subset K of [r], the co-restriction of f to K is the map
f |K := ( f ( j1), . . . , f ( jl)), where { j1 < · · · < jl} := {i ∈ [n]/ f (i) ∈ K }.

For any map f : [n] −→ [r], let max( f ) be the maximal element in the image of f . If g ∈ Fm is
another map, then f g is the element in Fn+m such that

f g(i) :=
{

f (i), for 1 � i � n,

g(i − n), for n + 1 � i � n + m.

We denote by ∩( f , g) the cardinal of the intersection Im( f ) ∩ Im(g).

1. Tridendriform bialgebras

We introduce the definition of q-tridendriform algebra in such a way that specializing in q = 1
we get the definition of tridendriform algebra given in [10], while for q = 0 we get the definition of
K-algebra described in [4]. Our main goal is to study the tridendriform algebra structures of the space
of parking functions defined in [11] and of the space of multipermutations introduced in [6], which
we treat in the next sections. We give in the present section some other examples. The first one is
described in [10] for q = 1 and in [4] for q = 0, while the second one is studied in [13] for q = 1 and
in [4] for q = 0.

1.1. Definition. A q-tridendriform algebra is a vector space A together with three operations
≺: A ⊗ A → A, · : A ⊗ A → A and �: A ⊗ A → A, satisfying the following relations:

(1) (a ≺ b) ≺ c = a ≺ (b ≺ c + b � c + qb · c),
(2) (a � b) ≺ c = a � (b ≺ c),
(3) (a ≺ b + a � b + qa · b) � c = a � (b � c),
(4) (a · b) · c = a · (b · c),
(5) (a � b) · c = a � (b · c),
(6) (a ≺ b) · c = a · (b � c),
(7) (a · b) ≺ c = a · (b ≺ c).

Note that the operation ∗ :=≺ +q · + � is associative. Moreover, given a q-tridendriform algebra
(A,≺, ·,�), the space A equipped with the binary operations ≺ and � := q · + � is a dendriform
algebra, as defined by J.-L. Loday in [7].

1.2. Examples. a) The free tridendriform algebra. Let Tn denote the set of planar rooted trees with
n + 1 leaves. For instance,

T0 = {|}, T1 =
{ }

, T2 =
{

, ,

}
.

The tree with n + 1 leaves and a unique vertex (the root) is called the n-corolla, and denoted by cn .
Given trees t1, . . . , tr , let

∨
(t1, . . . , tr) be the tree obtained by joining the roots of t1, . . . , tr , or-

dered from left to right, to a new root. It is easy to see that any tree t ∈ Tn may be written in a unique
way as t = ∨

(t1, . . . , tr), with ti ∈ Tni and
∑r

i=1 ni + r − 1 = n. On the space K[T∞] spanned by the
set T∞ := ⋃

n�1 Tn , we define operations ≺, · and � recursively as follows:
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t � | = t · | = | · t = | ≺ t = 0, for all t ∈ T∞,

| � t = t ≺ | = t, for all t ∈ T∞,

t ≺ w =
∨(

t1, . . . , tr−1, tr ∗ w
)
,

t · w :=
∨(

t1, . . . , tr−1, tr ∗ w1, w2, . . . , wl),
t � w :=

∨(
t ∗ w1, w2, . . . , wl),

for t = ∨
(t1, . . . , tr) and w = ∨

(w1, . . . , wl), where ∗ is the associative product ∗ =≺ +q · + � pre-
viously defined.

Note that, even if we need to consider the element | ∈ T0 as the identity for the product ∗ in order
to define the tridendriform structure on K[T∞], the elements | ≺ |, | · | and | ≺ | are not defined.

Following [4] and [10], it is immediate to verify that the data (K[T∞],≺, ·,�) is the free q-
tridendriform algebra spanned by the unique element of T1.

For any vector space V , the q-tridendriform structure of K[T∞] extends naturally to the space
Tridendq(V ) := ⊕

n�1 K[Tn] ⊗ V ⊗n as follows:

(t ⊗ v1 ⊗ · · · ⊗ vn) ◦ (w ⊗ u1 ⊗ · · · ⊗ um) := (t ◦ w) ⊗ v1 ⊗ · · · ⊗ vn ⊗ u1 ⊗ · · · ⊗ um;
where ◦ is replaced either by �, or ≺, or ·, respectively. In this case, Tridendq(V ) is the free q-
tridendriform algebra spanned by V (see [4] and [10]).

b) The algebra of surjective maps. Let STr
n be the set of surjective maps from [n] to [r], for 1 � r � n,

and let STn := ⋃n
r=1 STr

n . Given f : [n] −→ [r] there exists a unique surjective map std( f ) ∈ STr
n such

that f (i) < f ( j) if, and only if, std( f )(i) < std( f )( j), for 1 � i, j � n. The map std( f ) is called the
standardization of f .

For example if f = (2,3,3,5,7), then std( f ) = (1,2,2,3,4).
Let × : STr

n × STs
m −→ STr+s

n+m be the map

(α,β) �→ α × β := (
α(1), . . . ,α(n),β(1) + r, . . . , β(m) + r

)
.

Let ST(q) be the vector space ST := ⊕
n�1 K[STn] equipped with the operations �, · and ≺ defined

as follows:

f � g :=
∑

max(h)<max(k)

q∩(h,k)hk,

f · g :=
∑

max(h)=max(k)

q∩(h,k)−1hk,

f ≺ g :=
∑

max(h)>max(k)

q∩(h,k)hk,

where the sums are taken over all pairs of maps (h,k) verifying that hk is surjective, std(h) = f and
std(k) = g , for f ∈ STn and g ∈ STm .

For example, if α = (1,2,1) ∈ ST3 and β = (2,1) ∈ ST2, then

α � β = (1,2,1,4,3) + q(1,2,1,3,2) + q(1,2,1,3,1) + (1,3,1,4,2) + (2,3,2,4,1),

α · β = q(1,2,1,2,1) + (1,3,1,3,2) + (2,3,2,3,1),

α ≺ β = q(1,3,1,2,1) + (1,4,1,3,2) + q(2,3,2,2,1) + (2,4,2,3,1) + (3,4,3,2,1).

To check that (ST(q),�, ·,≺) is a q-tridendriform algebra we refer to [4] and to [13].



E. Burgunder, M. Ronco / Journal of Algebra 324 (2010) 2860–2883 2865
c) Rota–Baxter algebras. Let (A, ·) be an associative algebra over K. A Rota–Baxter operator of weight q
on A (see [1]) is a linear map R : A → A verifying that:

R(x) · R(y) = R
(

R(x) · y
) + R

(
x · R(y)

) + qR(x · y),

for x, y ∈ A. The data (A, ·, R) is called an associative Rota–Baxter algebra of weight q.
Any Rota–Baxter algebra A of weight q has a natural structure of q-tridendriform algebra with the

associative product · and the operations ≺ and � given by:

x ≺ y := x · R(y),

x � y := R(x) · y,

for x, y ∈ A.

Let (A,≺, ·,�) be a q-tridendriform algebra and let A+ := A ⊕ K. We denote by ε : A+ −→ K

the projection on the second term. For any x ∈ A, we fix x � 1K = x · 1K = 1K · x = 1K ≺ x = 0 and
1K � x = x = x ≺ 1K .

1.3. Definition. A q-tridendriform bialgebra over K is a q-tridendriform algebra H equipped with
a linear homomorphism � : H+ −→ H+ ⊗ H+ verifying the following conditions:

(1) �(1K) = 1K ⊗ 1K,

(2) (ε ⊗ Id) ◦ �(x) = 1K ⊗ x and (Id ⊗ ε) ◦ �(x) = x ⊗ 1K , for all x ∈ H ,
(3) �(x � y) := ∑

(x(1) ∗ y(1)) ⊗ (x(2) � y(2)),
(4) �(x · y) := ∑

(x(1) ∗ y(1)) ⊗ (x(2) · y(2)),
(5) �(x ≺ y) := ∑

(x(1) ∗ y(1)) ⊗ (x(2) ≺ y(2)),

where �(x) = ∑
x(1) ⊗ x(2) for all x ∈ H , and by convention:

• (x ∗ y) ⊗ (1K � 1K) := (x � y) ⊗ 1K ,
• (x ∗ y) ⊗ (1K · 1K) := (x · y) ⊗ 1K ,
• (x ∗ y) ⊗ (1K ≺ 1K) := (x ≺ y) ⊗ 1K , for x, y ∈ H .

Note that if (H,≺, ·,�,�) is a q-tridendriform bialgebra, then (H+,∗,�) is a bialgebra in the
classical sense.

We describe the bialgebra structure of the q-tridendriform algebras described in Examples a) and
b) of 1.2.

a) Let V be a vector space.
Given elements xi = (ti; vi

1, . . . , vi
ni

) ∈ Tni ⊗ V ⊗ni , for 1 � i � r and vectors w1, . . . , wr−1 ∈ V , let∨
w1,...,wr−1

(x1, . . . , xr) :=
(∨(

t1, . . . , tr); v1
1, . . . , v1

n1
, w1, v2

1, . . . , vr−1
nr−1

, wr−1, vr
1, . . . , vr

nr

)
,

in Tn ⊗ V ⊗n , where n = ∑r
i=1 ni + r − 1.

The coproduct � on the free q-tridendriform algebra Tridendq(V ) is the unique linear homomor-
phism satisfying that:

(1) �(1K) = 1K ⊗ 1K .
(2) �(cn; v1, . . . , vn) := (cn; v1, . . . , vn) ⊗ 1K + 1K ⊗ (cn; v1, . . . , vn), for n � 1.
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(3) �(x) :=
∑(

x1
(1) ∗ · · · ∗ xr

(1)

) ⊗
∨

w1,...,wr−1

(
x1
(2), . . . , xr

(2)

) + x ⊗ 1K,

for x = ∨
w1,...,wr−1

(x1, . . . , xr), with xi ∈ Tni ⊗ V ⊗ni .

b) For any α ∈ STn , define:

�( f ) =
∑

j

f r
(1) ⊗ f r

(2),

where the sum is taken over all 0 � j � n, such that there exists δr ∈ Sh( j,n − j)−1 with f =
( f r

(1) × f r
(2)) · δ.

For example

�(2,1,3,5,3,4,4,1) = 1K ⊗ (2,1,3,5,3,4,4,1) + (1,1) ⊗ (1,2,4,2,3,3)

+ (2,1,1) ⊗ (1,3,1,2,2) + (2,1,3,3,1) ⊗ (2,1,1)

+ (2,1,3,3,4,4,1) ⊗ (1) + (2,1,3,5,3,4,4,1) ⊗ 1K.

The coproduct may also be described in terms of co-restrictions as follows:

�( f ) =
r∑

j=1

f |[ j] ⊗ std
(

f |[n− j]+ j).

To see that ST(q) with � is a q-tridendriform bialgebra, suppose that hk ∈ STn are such that
std(h) = f and std(k) = g . It is easy to check that:

(1) if max(h) < max(k), then

�(hk) =
∑

max(h(2))<max(k(2))

h(1)k(1) ⊗ h(2)k(2),

(2) if max(h) = max(k), then

�(hk) =
∑

max(h(2))=max(k(2))

h(1)k(1) ⊗ h(2)k(2),

(3) if max(h) > max(k), then

�(hk) =
∑

max(h(2))>max(k(2))

h(1)k(1) ⊗ h(2)k(2),

where both h(1)k(1) and h(2)k(2) are surjective.

Moreover, if h(1) = h|[p]∩Im(h) , h(2) = h|[q−p]+p∩Im(h) , k(1) = k|[r]∩Im(k) and k(2) = k|[s−r]+r∩Im(k) , then
∩(h,k) = ∩(h(1),k(1)) + ∩(h(2),k(2)).
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2. Structure theorem for tridendriform bialgebras

We want to prove that any conilpotent q-tridendriform bialgebra can be reconstructed from the
subspace of its primitive elements. In order to do so we need to introduce the notions of brace algebra
(see [5]) and of q-Gerstenhaber–Voronov algebra. Our construction mimics previous results obtained
for dendriform bialgebras and brace algebras. Whenever the results exposed in the present work are
obtained easily by applying the methods developed in [15], we refer to it for the details of the proofs.

2.1. Definition.

(1) A brace algebra is a vector space B equipped with n + 1-ary operations M1n : B ⊗ B⊗n −→ B , for
n � 0, which satisfy the following conditions:
(a) M10 = IdB ,

(b) M1m(M1n(x; y1, . . . , yn); z1, . . . , zm)

=
∑

0�i1� j1�···� jn�m

M1r
(
x; z1, . . . , zi1 , M1l1(y1; . . . , z j1), . . . , M1ln (yn; . . . , z jn ), . . . , zm

)
,

for x, y1, . . . , yn, z1, . . . , zm ∈ B , where lk = jk − ik , for 1 � k � n, and r = ∑n
k=1 ik +m− jn +n.

(2) A q-Gerstenhaber–Voronov algebra, GVq-algebra for short, is a vector space A endowed with
a brace structure given by operations M1n and an associative product ·, satisfying the distributive
relation:

M1n(x · y; z1, . . . , zn) =
∑

0�i� j�n

q j−i M1i(x; z1, . . . , zi) · zi+1 · · · · · z j · M1(n− j)(y; z j+1, . . . , zn),

for x, y, z1, . . . , zn ∈ B .

In [15] we constructed a functor from the category of dendriform algebras to the category of brace
algebras, we recall this construction. Let (A,≺, �̃) be a dendriform algebra, we denote:

ω≺(y1, . . . , yi) := y1 ≺ (
y2 ≺ · · · (yi−1 ≺ yi)

)
ω�̃(yi+1, . . . yn) := (

(yi+1�̃yi+2)�̃ · · ·)�̃yn.

The brace operations M1n are defined as follows:

M1n(x; y1, . . . , yn) =
n∑

i=0

(−1)n−iω≺(y1, . . . , yi)�̃x ≺ ω�̃(yi+1, . . . , yn),

for n � 1.
Given any q-tridendriform algebra (A,≺, ·,�) we associate to it the brace algebra (A, M1n) ob-

tained from the dendriform algebra (A,≺, �̃ = q · + �).

2.2. Proposition. If (A,≺, ·,�) is a q-tridendriform algebra, then (A, M1n, ·) is a GVq algebra.

Proof. We know that (A, M1n) is a brace algebra, therefore it suffices to prove that · and M1n satisfy
the distributive relation:

M1n(x · y; z1, . . . , zn) =
∑

0�i� j�n

q j−i M1i(x; z1, . . . , zi) · zi+1 · · · · · z j · M1(n− j)(y; z j+1, . . . , zn),

for x, y, z1, . . . , zn ∈ A.
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As ω≺(v1, . . . , vr) · v = v1 · (ω≺(v2, . . . , vr) � v), for any v1, . . . , vr, v ∈ A, we can split the expres-
sion

∑
q j−i M1i(x; z1, . . . , zi) · zi+1 · · · · · z j · M1(n− j)(y; z j+1, . . . , zn),

in three types of terms:

a) Xr,i, j,l := (
ω≺(z1, . . . , zr)�̃x ≺ ω�̃(zr+1, . . . , zi)

)
· zi+1 · · · · · z j · (ω≺(z j+1, . . . , zl) � y ≺ ω�̃(zl+1, . . . , zn)

)
,

with j − i � 1,

b) Yr,i,l := (
ω≺(z1, . . . , zr) � x ≺ ω�̃(zr+1, . . . , zi)

) · (ω≺(zi+1, . . . , zl) � y ≺ ω�̃(zl+1, . . . , zn)
)
,

c) Zr,i,l := (
z1 · (ω≺(z2, . . . , zr) � x ≺ ω�̃(zr+1, . . . , zi)

))
· (ω≺(zi+1, . . . , zl) � y ≺ ω�̃(zl+1, . . . , zn)

)
.

For j − i � 1, the term Xr,i, j,l appears in:

• M1,i(x; z1, . . . , zi) · zi+1 · · · · · z j · M1,n− j(y; z j+1, . . . , zn) with the coefficient q j−i(−1)i+l ,
• M1,i(x; z1, . . . , zi) · zi+1 · · · · · z j−1 · M1,n− j(y; z j1 , . . . , zn) with the coefficient q j−i−1 · q · (−1)i+l+1.

So, the coefficient of Xr,i, j,l is q j−1[(−1)i+l + (−1)i+l+1] = 0, and therefore

∑
q j−i M1,i(x; z1, . . . , zi) · zi+1 · · · · · z j · M1,n− j(y; z j+1, . . . , zn)

=
∑

0�r�i�l�n

(−1)r+l−i Yr,i,l + q
∑

1�r�i�l�n

(−1)r+l−i Zr,i,l.

For r < l, we have that

Yr,i,l = ((
ω≺(z1, . . . , zr) � x

) ≺ (
ω�̃(zr+1, . . . , zi) � ω≺(zi+1, . . . , zl)

)) · (y ≺ ω�̃(zl+1, . . . , zn)
)

= (
ω≺(z1, . . . , zr) � x

) · ((ω�̃(zr+1, . . . , zi) � ω≺(zi+1, . . . , zl)
) � (

y ≺ ω�̃(zl+1, . . . , zn)
))

.

If r < i, then

ω�̃(zr+1, . . . , zi) � ω≺(zi+1, . . . , zl)

= ω�̃(zr+1, . . . , zi+1) ≺ ω≺(zi+2, . . . , zl) + ω�̃(zr+1, . . . , zi) ≺ ω≺(zi+1, . . . , zl)

which implies that:

l∑
i=r

(−1)iω�̃(zr+1, . . . , zi) � ω≺(zi+1, . . . , zl)

= (−1)r(ω≺(zr+1, . . . , zl) − zr+1 ≺ ω≺(zr+2, . . . , zl)
) = 0,

Therefore, we get that
∑l

i=r(−1)r+l−i Yr,i,l = 0, for r < l. So,
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∑
0�r�i�l�n

(−1)r+l−i Yr,i,l =
∑

0�r�n

(−1)r Yr,r,r

=
∑

0�r�n

(−1)rω≺(z1, . . . , zr) � (x · y) ≺ ω�̃(zr+1, . . . , zn).

Applying an analogous argument we get that

∑
1�r�i�l�n

(−1)r+l−i Zr,i,l =
∑

1�r�n

(−1)r Zr,r,r

= (
ω≺(z1, . . . , zr) · (x · y) ≺ ω�̃(zr+1, . . . , zn)

)
.

We can conclude that:

∑
0�i� j�n

q j−i M1,i(x; z1, . . . , zi) · · · zi+1 · · · · · z j · M1,n− j(y; Z j+1, . . . , zn)

=
n∑

r=0

ω≺(z1, . . . , zr)�̃(x · y) ≺ ω�̃(zr+1, . . . , zn)M1n(x · y; z1, . . . , zn),

which ends the proof. �
Proposition 2.2 states that there exists a functor F from the category of q-tridendriform algebras

to the category of GVq algebras. Conversely, for a GVq-algebra (B, M̃1n, ·), let

UqGV(B) := TriDend(B)/I

where I is the tridendriform ideal spanned by the elements:

M̃1n(x; y1, . . . , yn) −
n∑

i=0

(−1)n−iω≺(y1, . . . , yi)�̃x ≺ ω�̃(yi+1, . . . , yn),

for all x, y1, . . . , yn ∈ B . A standard argument shows that UqGV is a left adjoint of F .
The following result shows that the subspace of primitive elements of H is a GVq-algebra.

2.3. Lemma. Let (H,≺, ·,�,�) a q-tridendriform bialgebra. If the elements x, y, z1, . . . , zn of H are primitive,
then M1n(x; z1, . . . , zn) and x · y are primitive, too.

Proof. If x and y are primitive, then

�(x · y) = x · y ⊗ 1K + x ⊗ (1K · y) + y ⊗ (x · 1K) + 1K ⊗ x · y = x · y ⊗ 1K + 1K ⊗ x · y,

because 1K · y = x · 1K = 0.
To see that M1n(x; z1, . . . , zn) is primitive, it suffices to note that the brace operation M1n on

the q-tridendriform algebra (H,≺, ·,�) coincides with the brace defined on the dendriform algebra
(H,≺, �̃ := q ·+ �) in [15]. Since (H,≺, �̃,�) is a dendriform bialgebra, it suffices to apply the result
of [15]. �

Let (H,≺, ·,�,�) be a q-tridendriform bialgebra, we say that H is conilpotent if (H+,�) is a
conilpotent coalgebra. For n � 1, define linear maps �n: H⊗n −→ H and �

n : H −→ H⊗n as follows:
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�1 = Id, (1)

�n = �n−1 ◦(Id⊗n−2 ⊗ �)
, (2)

�
1 = Id, (3)

�
n = (

Id⊗n−2 ⊗�
) ◦ �

n−1
. (4)

Note that in this case H = H+ .
Let etri : H −→ H be the linear map given by

e(x) :=
∑
n�1

(−1)n+1 �n ◦�n(x).

For any element x ∈ H , we have that etri(x) = x − ∑
x(1) � etri(x(2)), for �(x) = ∑

x(1) ⊗ x(2) . The
previous equality implies that:

(1) If x ∈ Prim(H), then etri(x) = x.
(2) Whenever x = y � z ∈ Fn(H) for elements y, z ∈ Fr(H) with r < n, a recursive argument on n

shows that etri(x) = 0.

So, we may consider etri as a projection from H to Prim(H). Moreover, the proposition below shows
that any element x ∈ H may be described in terms of the operation � and primitive elements.

2.4. Proposition. Let (H,≺, ·,�,�) be a conilpotent q-tridendriform bialgebra. Any element x ∈ Fn(H) sat-
isfies that:

x = etri(x) +
∑

etri(x(1)) � etri(x(2)) + · · · +
∑

ω�
(
etri(x(1)), . . . , etri(x(n))

)
=

n∑
r=1

(∑
ω�

(
etri(x(1)), . . . , etri(x(r))

))
,

where �
r
(x) = ∑

x(1) ⊗ · · · ⊗ x(r) and

ω�
(
etri(x(1)), . . . , etri(x(r))

) := (((
etri(x(1)) � etri(x(2))

) � etri(x(3))
) � · · ·) � etri(x(r)).

Proof. Since H is conilpotent, any element x belongs to Fn(H), for some n � 1. We have also that
x − etri(x) = ∑

x(1) � etri(x(2)). The result is clear for n = 1.
For n � 2, �(x) = ∑

x(1) ⊗ x(2) , with x(1) and x(2) in Fn−1(T ). By a recursive argument, we get that

x(1) =
n−1∑
r=1

(∑
ω�

(
etri(x(1)(1)), . . . , etri(x(1)(r))

))
.

So,

x = etri(x) +
∑(

n−1∑
r=1

(∑
ω�

(
etri(x(1)(1)), . . . , etri(x(1)(r))

) � etri(x(2))
))

=
n∑

r=1

(∑
ω�

(
etri(x(1)), . . . , etri(x(r))

))
,

which ends the proof. �
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2.5. Remark. (See [15].) If the elements x1, . . . , xn belong to Prim(H), then

�
(
ω�(x1, . . . , xn)

) =
n∑

i=0

ω�(x1, . . . , xi) ⊗ ω�(xi+1, . . . , xn),

where ω�(∅) := 1K .

Note that Proposition 2.4 and Remark 2.5 imply that for any conilpotent q-tridendriform bialgebra
(H,≺, ·,�,�), the linear homomorphism from (H+,�) to the cotensor coalgebra T c(Prim(H)) which
sends an element x ∈ Fn(H) to

∑n
r=1(

∑
etri(x(1)(1))⊗· · ·⊗etri(x(1)(r))) is an isomorphism of coalgebras.

We have proved that the subspace of primitive elements of a q-tridendriform bialgebra has a nat-
ural structure of GVq algebra. In fact, there exists an equivalence between the category of conilpotent
q-tridendriform bialgebras and the category of GVq algebras. The last part of the section is devoted to
this result.

2.6. Proposition. Let V be a K-vector space. The primitive part of the free q-tridendriform algebra
Tridendq(V ) is the free GVq algebra over V .

Proof. To prove the result we may assume that V is a finite dimensional space over K, the general
case follows by taking a direct limit.

Suppose that dimK (V ) = m and that B is a basis of V . We know that a basis for the space
Tridendq(V )n , of homogeneous elements of degree n of Tridendq(V ), is given by the set Tn × Bn

whose cardinal is Cnmn , where Cn = |Tn| is the super-Catalan number. But the vector space
Tridendq(V ) is isomorphic to the tensor space T (Prim(Tridendq(V )), which implies that the dimen-
sion of Prim(Tridendq(V )n) is Cn−1mn .

The paragraph above implies that there exists a bijection between the set Tn−1 × Bn of elements
(t;b1, . . . ,bn) ∈ Tn × Bn such that t = ∨

(|, t2, . . . , tr) and a basis of the space of primitive elements
of Tridend(V ). Let T �

n denote the set of all trees in Tn of the form
∨

(t1, . . . , tr) with |t1| � 1. We
have that for any t = ∨

(|, t2, . . . , tr), etri((t;b1, . . . ,bn) = (t;b1, . . . ,bn) + z where z belongs to the
subspace spanned by T �

n × Bn , which implies that the set of elements etri((t;b1, . . . ,bn), with t ∈ T �
n

form a basis of Prim(Tridendq(V )).
On the other hand, the free GVq algebra GVq(V ) spanned by V has a basis GVq(B) whose elements

of degree n may be described recursively as follows:

(1) GVq(B)1 = B,
(2) GVq(B)n is the set of all elements of the form

M1n1

(
b1; y1

1, . . . , y1
n1

) · · · · · M1nr

(
br; yr

1, . . . , yr
nr

)
,

where b1, . . . ,br ∈ B, yi
j ∈ GVq(B)nij , with nij < n, and 0 � ni for 1 � i � r.

To end the proof it suffices to note that there exists a unique bijective map ϕ from GVq(B) to T �
n × Bn

such that:

(1) ϕ1(b) = (c1,b), for b ∈ B,
(2) ϕm(M1n(b; y1, . . . , yn) = (c1,b) ≺ ω�(ϕm1 (y1), . . . ,ϕmn (yn)), where ω�(x1, . . . , xn) = (((x1 �

x2) � x3) . . .) � xn .
(3) ϕm(y1, . . . , yn) = ϕm1 (y1) · · · · · ϕmn (yn).

Since Prim(Tridendq(V )) is a GVq algebra which contains V , it must be isomorphic to GVq(V ). �
Applying the previous results we may show that the category of conilpotent q-tridendriform bial-

gebras is equivalent to the category of q-Gerstenhaber–Voronov algebras.
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2.7. Theorem. Let (H,≺, ·,�) be a q-tridendriform bialgebra.

(1) If H is conilpotent then H is isomorphic to the enveloping tridendriform algebra UqGV(Prim(H)).
(2) Any GVq algebra B is isomorphic to the primitive algebra Prim(UqGV(B)) of its enveloping algebra.

Proof. We give the main line of the proof, for the details we refer to the analogous result for conilpo-
tent dendriform bialgebras proved in [15].

If H is a conilpotent q-tridendriform bialgebra, we know that H is isomorphic as a coalgebra to
T c(Prim(H)). To prove the first statement, it suffices to verify that the composition:

H −→ T c(Prim(H)
) ∼= Tridendq

(
Prim(H)

) −→ UqGV
(
Prim(H)

)
,

is an isomorphism of q-tridendriform bialgebras, which is straightforward to check.
For the second point, it is clear that B ⊆ Prim(UqGV(B)). On the other hand, we have that

Prim(Tridendq(B)) = GVq(B). Since in enveloping algebra UqGV(B) we identify the elements of
Prim(Tridendq(B)) with elements of B , we get the result. �

Proposition 2.6 gives an easy way to compute the free q-Gerstenhaber–Voronov algebra spanned
by a vector space V . Let X be a basis of V , we know that Tridendq(V ) is isomorphic, as a coalgebra,
to T c(GVq(V )). We know that the underlying vector space of Tridendq(V ) is the vector space spanned
by the set

⋃
n�1 Tn × Xn of all pairs (t, x1 × · · · × xn), where t is a rooted planar tree and x1, . . . , xn

are elements of X .
On the other hand, define the product / on the graded vector space K[T∞,X ] = ⊕

n�1 K[Tn × Xn]
by setting that (t, x1 × · · · × xn)/(w, y1 × · · · × ym) is the element (t/w, x1 × · · · × xn × y1 × · · · × ym),
where t/w is the tree obtained grafting the root of t to the first leaf of w . For example,

/
=

The product / is graded and associative. Moreover, (K[T∞,X ], /) is the free associative algebra
spanned by the colored trees of the form (t, x1 × · · · × xn), with t = ∨

(|, t2, . . . , tr). Given a tree
t = ∨

(|, t2, . . . , tr), the tree t′ ∈ Tn−1 is defined as follows:

t′ :=
{∨

(t2, . . . , tr), for r > 2,

t2, for r = 2.

The map t �→ t′ gives a bijection from Tn to Tn−1 ∪ Tn−1, where t maps to t′ in the first copy of
Tn−1 ∪ Tn−1 for r > 2 and t maps to t′ in the second copy of Tn−1 ∪ Tn−1 for r = 2. So, the vector
spaces K[T∞,X ] and K[X] ⊕ ⊕

n�2(K[Tn−1 × Xn] ⊕ K[Tn−1 × Xn]) are isomorphic. Proposition 2.6
states that the set Tn−1 × Xn ∪ Tn−1 × Xn is a basis of the subspace of homogeneous elements of
degree n of GVq(V ), for n � 2.

We identify the element (t, x1 × · · · × xn) in the first copy of Tn−1 × Xn with the tree t , with its
leaves colored by the elements x1, . . . , xn from left to right and the root colored with ·, while the
element (t, x1 × · · · × xn) in the second copy of Tn−1 × Xn is identified with the same colored tree
excepted that the root is colored by the letter M . For instance

(
, x1, . . . , x5

)
�→

x1 x2 x3 x4 x5

.
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Let us denote by ·(t, x1 × · · · × xn) the tree t with its leaves colored by the elements xi and its
root colored by ·, and by M(t, x1 × · · · × xn) the same colored tree but with the rooted colored M
instead of ·. Given planar rooted trees (t1, . . . , tr), let Comb(t1, . . . , tr) be the tree (t1 ∨ t2) ∨ · · ·) ∨ tr .
It is easy to see that for any planar rooted tree t there exist unique integers m, r and unique planar
trees t1, . . . , tr such that t = Comb(cm−1, t1, . . . , tr), here cm−1 is the tree with m leaves and a unique
vertex.

We want to define a bijective map αn from Tn−1 × Xn ∪ K[Tn−1 × Xn to a basis of the subspace of
homogeneous elements of degree n of GVq(V ). For n = 1, the set B1 := X is a basis of GVq(V )1. We
identify each element of x ∈ X with the pair (c0, x), that is the tree with a unique leaf, colored by x,
and no vertex.

For n = 2, the set B2 := {x · y | x, y ∈ X} ∪ {M11(x; y) | x, y ∈ X} is a basis of GVq(V )2. We define

α2(·( , x × y)) := x · y, and α2(M(·( , x × y)) := M11(x; y).

For n > 2, the definition of GVq algebra implies that the set

Bn :=
{

z1 · · · · · zr
∣∣ zi ∈ Bni ,

∑
ni = n

}
∪

{
M1r(x; z1, . . . , zr)

∣∣ x ∈ X, zi ∈ Bni ,
∑

ni = n − 1
}
,

is a basis of the vector space GVq(V )n . Define αn recursively as follows:

αn
(·(t; x1, . . . , xn)

) := αn1

(
M

(
t1, x1, . . . , xn1

)) · · · · · αnr

(
M

(
tr, xn−nr+1, . . . , xn

))
,

for t =
∨(

t1, . . . , tr),
αn

(
M(t; x1, . . . , xn)

) := M1r
(
x1;αn1

(·(t1, x2, . . . , xn1+1
))

, . . . ,αnr

(·(tr, xn−nr+1, . . . , xn
)))

,

for t = Comb
(
c0, t1, . . . , tr),

αn
(
M(t; x1, . . . , xn)

) := M1r
(
x1 · · · · · xm−1;αn1

(·(t1, xm, . . . , xm+n1−1
))

, . . . ,

αnr

(·(tr, xn−nr+1, . . . , xn
)))

,

for t = Comb
(
cm, t1, . . . , tr), with m > 0,

where M1r(x1 · · · · · xm−1;αn1 (·(t1, xm, . . . , xm+n1−1)), . . . ,αnr (·(tr, xn−nr+1, . . . , xn))) may be written as
a sum of elements of Bn , applying the relationship between the operations M1r ’s and ·.

The construction above gives a simple description of free q-Gerstenhaber–Voronov algebras. This
description and Theorem 2.7 will permit us to show that the tridendriform algebra of surjective maps
and the tridendriform algebra of parking functions, which we describe in the next section of this
paper, are free. These results are the object of a second paper, under redaction.

2.8. Example. For n � 1, consider the subset Irrn of irreducible elements of STn defined as Irrn :=
STn \ ⋃n−1

i=1 STi × STn−i . The product × defines on the space ST := ⊕
n�1 K[STn] a structure of free

associative algebra spanned by the set
⋃

n�1 Irrn , which implies that the dimension of the subspace
of homogeneous elements of degree n of PrimST(q) coincides with |Irrn|.

There exists a natural way to describe a basis of PrimST(q), it suffices to observe that for all
f ∈ STn , the primitive element etri( f ) = f + ∑

i f i , with f i ∈ ⋃n−1
i=1 STi × STn−i for all i. So applying

the idempotent etri to the irreducible elements of
⊕

n�1 STn we get a basis of PrimST(q).
However, there exist another way to describe a basis of PrimST(q), which generalizes the construc-

tion of a basis of the subspace of primitive elements of the Malvenuto–Reutenauer Hopf algebra given
in [2]. Consider on the set STn the partial order spanned by the relation f < f · si , if f (i) < f (i + 1),
where si is the permutation of Sn which exchanges i and i + 1. For example
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(2,1,2,3,4) < (2,2,1,3,4) < (2,2,1,4,3) < (2,2,4,1,3) < (2,2,4,3,1)

< (2,4,2,3,1) < (4,2,2,3,1) < (4,2,3,2,1) < (4,3,2,2,1).

Clearly, the Hasse diagram of the partially ordered set (STn,<) is not connected, two elements f
and g are in the same component if, and only if, | f −1( j)| = |g−1( j)| for all 1 � j � n.

For any f ∈ STn , define the element M f = ∑
g� f μ(g; f )g ∈ K[STn], where μ is the Moe-

bius function of the poset STn . Applying the same arguments given in [2], we get that �(M f ) =∑
g×h= f Mg ⊗ Mh , so the collection {M f } f ∈Irrn is a basis of the subspace of homogeneous elements

of degree n of Prim ST(q).
For instance, consider f = (3,2,1) ∈ Irr3, the primitive elements associated to f are given by:

etri(3,2,1) = (3,2,1) − (1,3,2) − (2,3,1) + (1,2,3) + q
(
(1,1,2) − (1,2,1)

)
= M(3,2,1)q

(
(1,1,2) − (1,2,1)

)
.

3. Tridendriform structure on the spaces of parking functions and of multipermutations

3.1. Parking functions

In [11], J.-C. Novelli and J.-Y. Thibon defined a 1-tridendriform structure on the space PQSym∗
spanned by parking functions. We show that their result extends naturally to any q, in such a way that
the coalgebra structure on the parking functions gives a q-tridendriform bialgebra on PQSym∗ . Our
main result is that the q-tridendriform bialgebra ST(q) is a sub-tridendriform bialgebra of PQSym∗(q).
We begin by recalling some basic definitions about parking functions, for a more complete description
we refer to [11].

3.2. Definition. A map f : [n] → [n] is called an n-non-decreasing parking function if f (i) � i for 1 �
i � n. The set of n-non-decreasing parking functions is denoted by NDPFn .

The composition f := f ↑ ◦σ of a non-decreasing parking function f ↑ ∈ N D P Fn and a permutation
σ ∈ Sn is called an n-parking function. The set of n-parking functions is denoted by PFn .

Note that given a parking function f = f ↑ ◦σ , the non-decreasing parking function f ↑ is uniquely
determined but σ is not unique. However, if ri = | f −1(i)|, for 1 � i � n, then there exists a unique
(r1, . . . , rn)-shuffle σ0 such that f = f ↑ ◦ σ−1

0 .

3.3. Example. In low dimensions, the sets NDPFn and PFn are described as follows:

• NDPF1 = {(1)}, NDPF2 = {(1,2), (1,1)},
• NDPF3 = {(1,2,3), (1,1,2), (1,1,3), (1,2,2), (1,1,1)},
• PF1 = {(1)}, PF2 = {(1,2), (1,1), (2,1)},
• PF3 = S3 ∪ (1,2,2) ◦ Sh(1,2)−1 ∪ (1,1,2) ◦ Sh(2,1)−1 ∪ (1,1,3) ◦ Sh(2,1)−1 ∪ {(1,1,1)}.

Recall that the cardinal of NDPFn is the Catalan number cn = (2n)!
(n+1)!n! , while the number of ele-

ments of PFn is (n + 1)n−1.
The map Park : ⋃

n�1 Fn −→ ⋃
n�1 PFn (see [12]) is defined as follows. Let f ↑ : [n] −→ [r] be

a non-decreasing function, the element Park( f ↑) is given by:

Park
(

f ↑)
( j) :=

{
1, for j = 1,

Min{Park( f ↑)( j − 1)) + f ↑( j) − f ↑( j − 1), j}, for j > 1.
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Suppose now that f = f ↑ ◦ σ , where f ↑ is a non-decreasing function and σ is a permutation.
Define

Park( f ) := Park
(

f ↑) ◦ σ .

3.3.1. Remark. Let f ∈ PFn be a parking function. It is easy to check that:

(1) f (i) = f ( j) if, and only if Park( f )(i) = Park( f )( j),
(2) f (i) < f ( j) if, and only if Park( f )(i) < Park( f )( j),

for 1 � i, j � n.
There exists a natural embedding ×P : PFn × PFm ↪→ PFn+m given by:

f ×P g := (
f (1), . . . , f (n), g(1) + n, . . . , g(m) + n

)
, for f ∈ PFn and g ∈ PFm.

Note that it is not the same that the one considered on ST, which is denoted ×.

Let PQSym∗ denote the vector space spanned by the set
⋃

n�1 PFn of parking functions. For any
q ∈ K, we endow PQSym∗ with a structure of q-tridendriform bialgebra, which extends the J.-C. Nov-
elli and J.-Y. Thibon construction of 1-tridendriform bialgebra on this space.

The binary operations ≺, · and � on PQSym∗ are defined in a similar way that in the case of ST:

f ≺ g :=
∑

max(h)>max(k)

q∩(h,k)hk,

f · g :=
∑

max(h)=max(k)

q∩(h,k)−1hk,

f � g :=
∑

max(h)<max(k)

q∩(h,k)hk,

where the sums are taken over all pairs of maps (h,k) verifying that hk is parking, Park(h) = f and
Park(k) = g , for f , g ∈ ⋃

n�1 PFn .
For example, if f = (1,3,1) ∈ PF3 and g = (1,1) ∈ PF1, then

f ≺ g = (2,4,2,1,1) + (2,5,2,1,1) + (3,5,3,1,1) + q
(
(1,3,1,1,1) + (1,4,1,1,1)

+ (1,5,1,1,1)
) + (1,3,1,2,2) + (1,4,1,2,2) + (1,4,1,3,3) + (1,5,1,2,2)

+ (1,5,1,3,3) + (1,5,2,4,4),

f � g = (1,3,1,4,4),

f · g = (1,3,1,3,3).

Applying the same arguments that in [11] it is easily seen that (PQSym∗,≺, ·,�) is a q-
tridendriform algebra. We denote by PQSym∗(q) the space PQSym∗ endowed with the structure of
q-tridendriform algebra.

Define a coproduct � on PQSym∗ by setting for f ∈ PFn:

�( f ) =
∑

j

f j
(1) ⊗ f j

(2),
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where the sum is taken over all 0 � j � n such that there exist f j
(1) ∈ PF j , f j

(2) ∈ PFn− j and δ j ∈
Sh( j,n − j)−1 with f = ( f j

(1) ×P f j
(2)) ◦ δ j . Note that for any 0 � j � n, if the decomposition f =

( f j
(1) ×P f j

(2)) ◦ δ j exists, then the elements f j
(1) , f j

(2) and δ j are unique.
For example,

�
(
(1,5,5,3,6,2,3)

) = (1,5,5,3,6,2,3) ⊗ 1K + (1,3,2,3) ⊗ (1,1,2)

+ (1,2) ⊗ (3,3,1,4,1) + (1) ⊗ (4,4,2,5,1,2) + 1K ⊗ (1,5,5,3,6,2,3).

3.4. Proposition. The q-tridendriform algebra PQSym∗(q), equipped with � is a q-tridendriform bialgebra.

Proof. Let us see that

�( f � g) =
∑

( f(1) ∗ g(1)) ⊗ ( f(2) � g(2)),

for f ∈ PFn and g ∈ PFm . The other relations may be verified in a similar way.
Let h ∈ Fn and k ∈ Fm be such that hk ∈ PFn+m , Park(h) = f , Park(k) = g and max(h) < max(k).

Suppose that for 0 � j � n + m, the function hk may be written as:

hk = (
(hk)

j
(1) ×P (hk)

j
(2)

) ◦ δ j,

with (hk)
j
(1) ∈ PF j , (hk)

j
(2) ∈ PFn+m− j and δ j ∈ Sh( j,n + m − j)−1.

Then there exists a unique integer 0 � r � j such that (hk)
j
(1) = hr

(1)k
j−r
(1) , (hk)

j
(2) = hr

(2)k
j−r
(2) , and

δ j = (δ1
j × δ2

j ) · γ , with δ1
j ∈ Sh(r,n − r)−1, δ2

j ∈ Sh( j − r,m + r − j)−1 and γ ∈ Sh(n,m)−1. In this

case we have that f = (Park(hr
(1)) ×P Park(hr

(2))) ◦ δ1
j and g = (Park(k j−r

(1) ) ×P Park(k j−r
(2) )) ◦ δ2

j . Finally,

it is easy to see that max(hr
(2)) < max(k j−r

(2) ). So, to any term in �( f � g) corresponds a term in
(∗× �) ◦ (� × �)( f ⊗ g).

Conversely, suppose that f = ( f r
(1) ×P f r

(2)) ◦ δr and g = (gl
(1) ×P gl

(2)) ◦ γl , for parking functions

f r
(1) , f r

(2) , gl
(1) , gl

(2) and permutations δr ∈ Sh(r,n − r)−1 and γl ∈ Sh(l,m − l)−1. Let h1 ∈ Fr , h2 ∈ Fn−r ,
k1 ∈ Fl and k2 ∈ Fm−l be such that:

(1) h1k1 ∈ PFr+l and h2k2 ∈ PFn+m−r−l ,
(2) Park(hi) = f r

(i) and Park(ki) = gl
(i) , for i = 1,2,

(3) max(h(2)) < max(k(2)).

The elements h = (h1 ×P h2)◦δr ∈ Fn and k = (k1 ×P k2)◦γl ∈ Fm verify that hk ∈ PFn+m , Park(h) = f ,
Park(k) = g and max(h) < max(k). �

Note that any surjective map from {1, . . . ,n} to {1, . . . , r} is a parking function. There exists a nat-
ural map from PFn to STn given by f �→ std( f ) which is surjective but not injective, and coincides
with the identity map on STn . The linear map αn : K[STn] −→ K[PFn] given by

αn( f ) =
∑

h∈PFn|std(h)= f

h,

is a monomorphism, for n � 1.

3.5. Theorem. The bialgebra ST(q) is a sub-q-tridendriform bialgebra of PQSym∗(q).
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Proof. Let f ∈ STn and g ∈ STm . Given u ∈ PFn+m there exist unique functions u1 ∈ Fn and u2 ∈ Fm

such that u = u1u2, and unique functions h ∈ Fn and k ∈ Fm such that std(u) = hk. Moreover, we have
that std(u1) = std(h) and std(u2) = std(k).

Note that

αn+m( f � g) =
∑

u∈PFn+m

q∩(h,k)u,

where the sum is extended over all the functions u such that std(u) = hk, with std(h) = f , std(k) = g
and max(h) < max(k).

On the other hand,

αn( f ) �q αm(g) =
∑

u∈PFn+m

q∩(u1,u2)u,

where the sum is extended over all the functions u = u1u2 such that std(Park(u1)) = f ,
std(Park(u2)) = g and max(u1) < max(u2).

It is immediate to check that:

(1) std(Park(ui)) = std(ui), for i = 1,2,
(2) if u = u1u2 and std(u) = hk, then ∩(h,k) = ∩(u1, u2),
(3) if std(u1) = f and std(u2) = g , then std(u1u2) = hk with std(h) = f and std(k) = g ,
(4) if std(u1u2) = hk, then max(h) < max(k) if, and only if, max(u1) < max(u2).

We may conclude that αn+m( f � g) = αn( f ) � αm(g).
Similar arguments show that αn+m( f · g) = αn( f ) · αm(g) and αn+m( f ≺ g) = αn( f ) ≺ αm(g).
So, ST(q) is a q-tridendriform subalgebra of PQSym∗(q).
To prove that α is a coalgebra homomorphism, suppose that h ∈ PFn and 0 � r � n are such that

std(h) = f and

h = (
hr

(1) ×P hr
(2)

) ◦ δr, for hr
(1) ∈ PFr, hr

(2) ∈ PFn−r and δr ∈ Sh(r,n − r)−1.

Let f r
(1) := std(hr

(1)) and f r
(2) := std(hr

(2)), we get that f = ( f r
(1) × f r

(2)) ◦ δr .
Conversely, suppose that f = ( f r

(1) × f r
(2)) ◦ δr , for some f r

(1) ∈ STr , f r
(2) ∈ STn−r and δr ∈

Sh(r,n − r)−1.
Given elements hr

(1) ∈ PFr and hr
(2) ∈ PFn−r , the element h := (hr

(1) ×P hr
(2)) ◦ δr ∈ PFn verifies that

std(h) = f .
The arguments above imply that:

�
(
αn( f )

) =
∑

std(h)= f

�(h) =
∑

std(h)= f

( ∑
r

hr
(1) ⊗ hr

(2)

)

=
∑

r

( ∑
std(hr

(i))= f r
(i)

hr
(1) ⊗ hr

(2)

)
=

∑
r

αr
(

f r
(1)

) ⊗ αn−r
(

f r
(2)

)
,

which proves that α is a coalgebra homomorphism. �
Clearly, since any surjective map is a parking function, there exists the natural inclusion homomor-

phism ι : ST ↪→ PQSym∗ , but ι is not a coalgebra homomorphism. For instance, the element (1,1,2) is
primitive in PQSym∗ . An element x ∈ STn is such that ιn(x) = αn(x) if, and only if, x is a permutation.
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Note that (PQSym∗,×P ) is an associative algebra, too. If we denote by PIrrn the subset of⋃
n�1 PFn of all parking functions f such that there do not exist f1 ∈ PFi and f2 ∈ PFn−i with

f = f1 ×P f2 and 1 � i � n − 1. So, as a vector space PQSym∗ is isomorphic to T (K[⋃n�1 PIrrn]),
which implies that the space of primitive elements of PQSym∗ of degree n has dimension PIrrn , for
n � 1.

3.6. Multipermutations

In [6], T. Lam and P. Pylyavskyy define a big multi-permutation or M-permutation of n as an ordered
partition (B1, . . . , Bm) of n such that if an element i, 1 � i � n − 1, belongs to the block B j , then
i + 1 /∈ B j . The set of M-permutations of n is denoted S M

n .
The element B = [(1,4,6), (2,7), (3,5)] is an M-permutation of 7, while D = [(1,6,7), (2,3),5,4]

is not.
Let W = (W1, . . . , Wr) be an ordered partition of n, the M-standardization of W is the big multi-

permutation stdM(W ) obtained by:

(1) delete i + 1 if both i and i + 1 belong to the same block W j ,
(2) if i does not appear in any block obtained applying the rule above, then reduce all numbers larger

than i in (1).

For example stdM[(1,6,7), (2,3),5,4] = [(1,5),2,4,3].
Let J be a subset of [n] and let B ∈ S M

n , the restriction B| J of B to J is the intersec-
tion B with J . If B = [(1,4,6), (2,7), (3,5)] and J = {1,2,4,6}, then B| J = [(1,4,6),2]. Let B =
[(i1

1, . . . , i1
r1

), . . . , (il
1, . . . , il

rl
)] be a big multi-permutation, for any integer k we denote by B + k the

ordered partition [(i1
1 + k, . . . , i1

r1
+ k), . . . , (il

1 + k, . . . , il
rl

+ k)].
In [6], the authors define an algebra structure on the vector space MMR spanned by the set of all

M-permutations, as follows:

B • D =
∑

W , for B ∈ S M
n and D ∈ S M

m ,

where the sum is taken over:

(1) all W ∈ S M
n+m such that W |[n] = B and stdM(W |[m]+n) = D ,

(2) all W ∈ S M
n+m−1 such that W |[n] = B and stdM(W |[m]+n−1) = D .

For example,

[
(13),2

] • [2,1] = [
(1,3),2,5,4

] + [
(1,3), (2,5),4

] + [
(1,3),5,2,4

] + [
(1,3,5),2,4

]
+ [

5, (1,3),2,4
] + [

(1,3,5), (2,4)
] + [

5,4, (1,3),2
] + [

4, (1,3),2
]

+ [
(1,3),5,4,2

] + [
(1,3,5),4,2

] + [
5, (1,3),4,2

]
.

For any ordered partition W = (W1, . . . , Wl) ∈ S M
n+m such that W |[n] = B and

stdM(W |{n+1,...,n+m}) = D , define the integer
⋂W

B,D as the number of blocks W j such that W j ∩ [n] �=
∅ and W j ∩ [m] + n �= ∅. It is immediate to check that, if B = (B1, . . . , Br) and D = (D1, . . . , Ds), then⋂W

B,D = r + s − l.
Let B = (B1, . . . , Br) and D = (D1, . . . , Ds). We define binary operations �, · and ≺ on the space

MMR as follows:

(1) B � D := ∑
q
⋂W

B,D W , where the sum is taken over:
• all W = (W1, . . . , Wl) ∈ S M

n+m with W |[n] = B and stdM(W |[m]+n) = D ,



E. Burgunder, M. Ronco / Journal of Algebra 324 (2010) 2860–2883 2879
• all W ∈ S M
n+m−1 with W |[n] = B and stdM(W |[m]+n−1) = D ,

such that Wl ∩ [n] = ∅.

(2) B · D := ∑
q
⋂W

B,D −1W , where the sum is taken over:
• all W = (W1, . . . , Wl) ∈ S M

n+m with W |[n] = B and stdM(W |[m]+n) = D , such that Wl ∩ [n] �= ∅
and Wl ∩ [m] + n �= ∅,

• all W ∈ S M
n+m−1 with W |[n] = B and stdM(W |[m]+n−1) = D , such that Wl ∩ [n] �= ∅ and Wl ∩

[m] + n − 1 �= ∅.

(3) B ≺ D := ∑
q
⋂W

B,D W , where the sum is taken over:
• all W = (W1, . . . , Wl) ∈ S M

n+m with W |[n] = B and stdM(W |[m]+n) = D , such that Wl ∩[m]+n =
∅,

• all W ∈ S M
n+m−1 with W |[n] = B and stdM(W |[m]+n−1) = D , such that Wl ∩ [m] + n − 1 = ∅.

Let us denote by MMR(q) the space MMR equipped with the products �, · and ≺.

3.7. Proposition. The data (MMR(q),�, ·,≺) is a q-tridendriform algebra.

Proof. Let B = (B1, . . . , Br) ∈ S M
n , D = (D1, . . . , Ds) ∈ S M

m and E = (E1, . . . , Et) ∈ S M
p . We prove that

B � (D � E) = (B ∗ D) � E , and that B · (D � E) = (B ≺ D) · E . The other relationships can be verified
in a similar way.

We have that B � (D � E) = ∑
W δ(W )W , while (B ∗ D) � E = ∑

W α(W )W , where the both sums
are taken over all the M-permutations W = (W1, . . . , Wl) satisfying that:

• W ∈ S M
n+m+r , W 1 := W |[n] = B , W 2 := W |{n+1,...,n+m} = D , W 3 := W |{n+m+1,...,n+m+r} = E and

Wl = Et + n + m,
• W ∈ S M

n+m+r−1, W 1 := W |[n] = B , W 2 := W |{n+1,...,n+m} = D , W 3 := W |{n+m,...,n+m+r−1} = E and
Wl = Et + n + m − 1,

• W ∈ S M
n+m+r−1, W 1 := W |[n] = B , W 2 := W |{n,...,n+m−1} = D , W 3 := W |{n+m,...,n+m+r−1} = E and

Wl = Et + n + m − 1,
• W ∈ S M

n+m+r−2, W 1 := W |[n] = B , W 2 := W |{n,...,n+m−1} = D , W 3 := W |{n+m−1,...,n+m+r−2} = E
and Wl = Et + n + m − 2.

We need to prove that α(W ) = δ(W ). We give a detailed proof of it for the case W ∈ S M
n+m+r , the

other cases are analogous.
Let V ∈ S M

n+m be such that W |[n+m] = V and let R ∈ S M
m+r be such that W |[m+r]+n = R +n. We have

that α(W ) = ⋂V
B,D +⋂W

V ,E , where
⋂V

B,D is the number of blocks of V which have both elements in

[n] and elements in [m] + n, while
⋂W

V ,E is the number of blocks of W which have both elements in

[n + m] and elements in [r] + n + m. So, α(W ) = ∑l
i=1 α(W i), where α(W i) =

⎧⎨
⎩

0, if W i ⊆ [n] or W i ⊆ [m] + n or W i ⊆ [r] + n + m,

1, if W i contains integers in exactly two sets of [n], [m] + n and [r] + n + m,

2, if W i contains integers in all the sets [n], [m] + n and [r] + n + m.

On the other hand, δ(W ) = ⋂R
D,E +⋂W

B,R , where
⋂R

D,E is the number of blocks of R which have

both elements in [m] and elements in [r] + m, while
⋂W

B,R is the number of blocks of W which have

both elements in [n] and elements in [m + r] + n, which implies that δ(W ) = ∑l
i=1 α(W i) = α(W ).

For the second equality, we have that B · (D � E) = ∑
qβ(W )W and (B ≺ D) · E = ∑

qγ (W )W ,
where both sums are taken over all M-permutations W = (W1, . . . , Wl) such that:

• W ∈ S M
n+m+r , W 1 := W |[n] = B , W 2 := W |[m]+n = D , W 3 := W |[r]+n+m = E , and Wl = Br ∪ Et +

n + m,
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• W ∈ S M
n+m+r−1, W 1 := W |[n] = B , W 2 := W |[m]+n = D , W 3 := W |[r]+n+m−1 = E , and Wl =

Br ∪ Et + n + m − 1,
• W ∈ S M

n+m+r−1, W 1 := W |[n] = B , W 2 := W |[m]+n−1 = D , W 3 := W |[r]+n+m−1 = E , and Wl =
Br ∪ Et + n + m − 1,

• W ∈ S M
n+m+r−2, W 1 := W |[n] = B , W 2 := W |[m]+n−1 = D , W 3 := W |[r]+n+m−2 = E , and Wl =

Br ∪ Et + n + m − 2.

To check that β(W ) = γ (W ), for all W , is suffices to do a similar computation that the one in the
previous case. �

The coproduct on the space MMR+ is defined by T. Lam and P. Pylyavskyy (see [6]) as follows:

�(B) =
∑

[W ,R]=B

stdM(W ) ⊗ stdM(R),

where [W , R] is the union of two ordered partitions W and R , such that W is a partition of J and R
is a partition of K with [n] = J ∪ K and J ∩ K = ∅. In other words, for B = (B1, . . . , Br) and 0 � j � r
define B� j := (B1, . . . , B j) and B> j := (B j+1, . . . , Br). The coproduct � on B is given by:

�(B) =
l∑

i=0

stdM B�i ⊗ stdM B>i .

We have, for example, that:

�
([1]) = [1] ⊗ 1K + 1K ⊗ [1],

�
([

(2)(1)
]) = [

(2)(1)
] ⊗ 1K + [1] ⊗ [1] + 1K ⊗ [

(2)(1)
]
,

�
([

(13)(2)
]) = [

(13)(2)
] ⊗ 1K + [1] ⊗ [1] + 1K ⊗ [

(13)(2)
]
,

in the last example, note that [(13)(2)] = [[(13)], [2]] and stdM[(13)] = [1] = stdM[2].
In [6] the authors prove that (MMR(1),∗,�) is a bialgebra. We want to show that MMR(q)

equipped with the coproduct � is a quotient of the q-tridendriform bialgebra ST(q).
Let ϕ be the map from the set

⋃
n�1 STn of all surjections to the set

⋃
n�1 S M

n of M-

permutations, which sends f ∈ STn to the element stdM[( f −1(1)), . . . , ( f −1(n))]. For example, if
f = (2,3,3,6,1,5,1,2,4) then

ϕ( f ) = stdM
[
(5,7), (1,8), (2,3),9,6,4

] = [
(4,6), (1,7),2,8,5,3

]
.

Note that ϕ is surjective and does not respect the graduation.

3.8. Remark. Let f ∈ STn be a surjection, and let 1 � l � n be such that stdM[( f −1(1)), . . . , ( f −1(n))] ∈
S M

l , then there exists a unique f ∈ STl such that stdM[( f −1(1)), . . . , ( f −1(n))] = stdM[( f
−1

(1)), . . . ,

( f
−1

(l))]. Moreover, for any map h : {1, . . . , l} −→ {1, . . . , r} such that std(h) = f , there exist a unique
h ∈ Fn such that:

(1) (h(1), . . . ,h(l)) is obtained from (h(1), . . . ,h(n)) by eliminating all integers h(i) which are equal
to h(i − 1), for 1 < i � n,

(2) std(h) = f .
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For example, if f = (1,2,2,3,1,4), then f = (1,2,3,1,4). Take h = (4,6,7,4,9), we get that h =
(4,6,6,7,4,9).

Applying Remark 3.8 we are able to prove the following result.

3.9. Theorem. For any pair of elements f ∈ STn and g ∈ STm we have that:

(1) ϕ( f ≺ g) = ϕ( f ) ≺ ϕ(g),
(2) ϕ( f · g) = ϕ( f ) · ϕ(g),
(3) ϕ( f � g) = ϕ( f ) � ϕ(g),
(4) �(ϕ( f )) = (ϕ ⊗ ϕ)(�( f )).

Proof. If h and k are two maps such that hk ∈ STn+m , std(h) = f and std(k) = g , then

stdM
[(

h−1(1)
)
, . . . ,

(
h−1(r)

)] = stdM
[(

f −1(1)
)
, . . . ,

(
f −1(n)

)]
,

stdM
[(

k−1(1)
)
, . . . , (k−1(r)

] = stdM
[(

g−1(1)
)
, . . . , (g−1(m)

]
,

where max(hk) = r � n + m.
Suppose that max(h) > max(k), we have that:

[(
(hk)−1(1)

)
, . . . ,

(
(hk)−1(r)

)]
= [(

h−1(1) ∪ (
k−1(1) + n

))
, . . . ,

(
h−1(r − 1) ∪ (

k−1(r − 1) + n
))

,
(
h−1(r)

)]
,

where (h−1(i) ∪ (k−1(i) + n)) denotes the disjoint union of the sets h−1(i) and k−1(i) + n, for
1 � i � r − 1. The standardization stdM[((hk)−1(1)), . . . , ((hk)−1(r))] is an M-permutation W =
(W1, . . . , Wr) satisfying that:

(1) if h(n) �= k(1), then W |[n] = stdM[( f −1(1)), . . . , ( f −1(n))], W |[m]+n = stdM[(g−1(1) + n), . . . ,

(g−1(m) + n)] and Wr ∩ ([m] + n) = ∅,
(2) if h(n) = k(1), then W |[n] = stdM[( f −1(1)), . . . , ( f −1(n))], W |[m]+n−1 = stdM[(g−1(1) + n −

1), . . . , (g−1(m) + n − 1)] and Wr ∩ ([m] + n − 1) = ∅.

Conversely, let W = (W1, . . . , Wr) be an M-permutation such that W |[n] = ϕ( f ) = stdM[( f −1(1)),

. . . , ( f −1(n))] and Wr ⊆ [n], we have that

(1) if W |[m]+n = stdM[(g−1(1) + n), . . . , (g−1(m) + n)], then there exist maps h and k defined as
follows:
(a) h(i) is the unique integer such that i ∈ Wh(i) .

(b) k( j) is the unique integer such that j + n ∈ Wk( j) .
By Remark 3.8, there exist unique elements h ∈ Fn and k ∈ Fm such that std(h) = f , std(k) = g
and stdM[((hk)−1(1)), . . . , ((hk)−1(r))] = W .

(2) if W |[m]+n−1 = stdM[(g−1(1) + n − 1), . . . , (g−1(m) + n − 1)], then the maps h and k are defined
as follows:
(a) h(i) is the unique integer such that i ∈ Wh(i) .

(b) k( j) is the unique integer such that j + n − 1 ∈ Wk( j) .
Again, there exist unique elements h ∈ Fn and k ∈ Fm such that std(h) = f , std(k) = g and
stdM[((hk)−1(1)), . . . , ((hk)−1(r))] = W .

Moreover, since Wr ∩ ([m] + n) = ∅, we get that max(k) < max(h) = r in both cases.
We get then that ϕ( f ≺ g) = ϕ( f ) ≺ ϕ(g), the proofs of the second and third statements follow

from similar arguments.
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To end the proof of the theorem we need to show that ϕ is a coalgebra homomorphism. For

f ∈ STn , let f ∈ STl be the unique surjection such that stdM[( f −1(1)), . . . , ( f −1(r))] = [( f
−1

(1)), . . . ,

( f
−1

(l))]. It is easy to see that there exists a bijection between the set of elements (r, f k
(1), f k

(2)), with

0 � k � n, f k
(1) ∈ STk and f k

(2) ∈ STn−k , such that

f = (
f k
(1) × f k

(2)

) ◦ δk, for some δr ∈ Sh(k,n − k),

and the set of elements ( j, f
j
(1), f

j
(2)), with 0 � j � l, f

j
(1) ∈ ST j and f

j
(2) ∈ STl− j , such that

f = (
f

j
(1) × f

j
(2)

) ◦ τ j, for some τ j ∈ Sh( j, l − j).

So, it suffices to verify that �(ϕ( f )) = (ϕ ⊗ ϕ)(�( f )) for f satisfying that stdM[( f −1(1)), . . . ,

( f −1(n))] = [( f −1(1)), . . . , ( f −1(r))], that is when f (i) �= f (i + 1) for 1 � i � n − 1. If for some 0 �
k � n there exist f k

(1) ∈ STk , f k
(2) ∈ STn−k and δk ∈ Sh(k,n − k) such that f = ( f k

(1) × f k
(2)) ◦ δk and

W := [(( f k
(2))

−1(1) + s), . . . , (( f k
(2))

−1(n − k) + s)].
Conversely, let [( f −1(1)), . . . , ( f −1(r))] = [R, W ], with R = [R1, . . . , Rs] and W = [W1, . . . , Wr−s],

and suppose that R is a partition of {i1 < · · · < ik} and W is a partition of { j1 < · · · < jn−k}. Define
f k
(1) and f k

(2) as follows:

(1) f k
(1)(l) is the unique integer 1 � f k

(1)(l) � s such that il ∈ R f k
(1)

(l) , for 1 � l � k,

(2) f k
(2)(l) is the unique integer 1 � f k

(2)(l) � r − s such that jl ∈ R f k
(2)

(l) , for 1 � l � n − k.

It is clear that there exists a shuffle δk ∈ Sh(k,n − k) such that f = ( f k
(1) × f k

(2)) ◦ δk . We get then that

(ϕ ⊗ ϕ)
(
�( f )

) =
∑

k

ϕ
(

f k
(1)

) ⊗ ϕ
(

f k
(2)

)

=
∑

k

stdM
[((

f k
(1)

)−1
(1)

)
, . . . ,

((
f k
(1)

)−1
(k)

)]

⊗ stdM
[((

f k
(2)

)−1
(1)

)
, . . . ,

((
f k
(2)

)−1
(n − k)

)]
=

∑
ϕ( f )=[R,W ]

stdM(R) ⊗ stdM(W ) = �
(
ϕ( f )

)
. �

As a consequence of Theorem 3.9, we can assert that MMR(q) is a q-tridendriform bialgebra.

3.10. Corollary. The q-tridendriform algebra MMR(q) equipped with the coproduct � is a q-tridendriform
bialgebra which is a quotient of ST(q).
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