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Abstract: A systematic approach to soliton interaction is presented in terms of a particular class of solitary waves
(padeons) which are linear fractions with respect to the nonlinearity parameter €. A straigthforward generalization of
the padeon to higher order rational fractions (multipadeon) yields a natural ansatz for N-soliton solutions. This ansatz
produces multisoliton formulas in terms of an ‘interaction matrix’ 4. The structure of the matrix gives some insight
into the hidden IST-properties of a familiar set of ‘integrable’ equations (KdV. Boussinesq, MKdV, sine-Gordon,
nonlinear Schrodinger). The analysis suggests a ‘padeon’ working definition of the soliton, leading to an explicit set of
necessary conditions on the padeon equation.

1. Introduction

It is common observation that the term ‘soliton’ which has become so popular in many areas
of the physics concerned with nonlinear phenomena does not refer to a clear and generally
accepted definition.

Solitons are generally understood as being ‘special solutions to some special nonlinear PDE’s".
Though the special character of solitons has become clear for those exceptional equations which
enjoy as remarkable hidden properties as the existence of an inverse spectral transform (IST),
physicists feel often satisfied with the more phenomenological picture of a solitary wave with
‘particle-like interaction properties’.

Yet many equations are known to possess pulsed solutions in the form of a bell or a kink,
showing various degrees of stability throughout interaction [1], and it is not always possible to
decide from results of numerical experiments whether such excitations should be called ‘solitons’,
or not....

Studying some familiar soliton equations (KdV, Boussinesq, MKdV, Sine-Gordon) from a
direct point of view [6] it is easy to realize that the particle-like interaction properties of their
solitary waves can be related to their analytic properties with respect to the nonlinearity
parameter €. These solitary waves are linearly related to a [0/1] fraction in € of a particular
functional form (padeon). The corresponding N-soliton solutions are linearly related to [N —
1/N] fractions in e, solving the ‘primary’ (padeon) equation, each partial fraction of which
corresponds to a soliton.

One of the purposes of this paper is to present a ‘padeon’ approach to soliton interaction
which could lead to a working definition of the soliton that would fill the gap between the
‘spectral’ soliton and the ‘phenomenological’ one. The analysis is developed from a naive point
of view in order to serve the other main purpose of this work. This is to help the soliton hunter to
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decide whether a given nonlinear equation possesses solitons, or not, and to obtain multisoliton
formulas.

In contrast with other direct approaches, such as Hirota’s [3] and Rosales’ {7]. the padeon
method does not require the introduction of bilinear forms, or any other clever but not
straightforward manipulations.

The paper is organized as follows: We first consider the simplest nonlinear evolution equation
(Burgers) that gives rise to solitary waves, and we obtain a two-parameter family of solitary
waves (kinks) by scaling the fieldvariable. We then introduce the padeons, solutions of a general
‘padeon equation’, and the corresponding N-padeons (Section 2). The existence of dipadeons
(N =2) and their relation to two-soliton solutions is discussed in Section 3.

We then proceed to the case of N > 2-soliton interactions by considering N-padeons which
can be expressed with a hermitean (symmetric) N X N interaction matrix. Their existence and
asymptotic properties are discussed in Section 4. The appearance of a condition of a new type
(separability) characterizes the transition from N =2 to N > 3. The form of the interaction
matrix is also specified.

In Section 5, we discuss the connection between the interaction matrix and the IST approach
to multisolitons.

A straightforward generalization to complex padeons is presented in the case of the cubic
Schrodinger equation (Section 6). Degenerate N-padeons are illustrated with the Burgers
equation (Section 7).

2. Solitary waves, padeons and N-padeons

A straightforward procedure of deriving the solitary wave solutions of a given nonlinear
equation has been suggested by several examples given in [6]. To recall the method. we consider
Burgers’ nonlinear diffusion equation:

V=V +VV,=0. (1)
Setting V' = ¢V one can look for particular solutions V{(x, f, €) of the scaled equation:
V= Voot eV, =0, (2)

displaying particular properties with respect to the parameter e. Starting with a power series
expansion

20
Vix, 1, €)= 2 "V, (x, 1), (3)
n=0
one can set up conditions so as to define the successive V,’s as particular solutions of the
iteration hierarchy:

[/O.l— I/Z).xx =0,
n-1

Vee=Veee== L VWayoro n=1. (4)
j=0

Here, we are looking for progressive wave solutions V(£ = x — kt) of the Burgers equation which
could describe a travelling pulse in the form of a kink, say with:
lim V(§)=c>0 and slim V(¢) =0. (5)

£— — 0
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At n =0 we observe that the linearized Burgers equation possesses positive solutions of the form
exp #, with § = — k¢ and k > 0, which are totally monotonic functions of §. Going through the
iteration with this choice for ¥, one can try to end up with a rational fraction in exp 8 of the

appropriate form:

V=exp 8/(1+(e/c)exp ) (6)
which would indeed produce a kink V' = eV, with the above properties (5), and which could be
regarded as the sum of a geometrical perturbation series.

With this in mind, it is natural to attempt to solve the system (4), with , = exp 6, under the

condition that V, be proportional to exp(» + 1)8. This requirement yields the following sequence
of particular solutions:

V,=(-=)"(2k)™" exp(n +1)8. (7)

n

The resulting series (3) is the geometrical series:

Vix, t e)—expﬁi/—eexpa\n (
) 3 "=0k 2k }

8)
It generates, for arbitrary positive values of ¢, a regular kink, rational in € as a [0/1] Padé form:

[0/1]V =exp 8/(1 + (¢/2k) exp 6) (9)

which sums the geometrical series (8) and which is an actual solution of (2). This fraction can

1 ha tha f
aiso o¢ written in tne form:

[0/1]V = =2z /(1 +€z) with z=(1/2k)V,. (10)

The corresponding two parameter family of solitary wave solutions eV of the Burgers equation
(1) takes the [1 /1] form:

[1/1]V = ~23, log(1 + €z).

By applying the same technique to several nonlinear dispersive equations (KdV, Boussinesq,
RLW, p-KdV, sine-Gordon, ¢*) with lowest nonlinearity of order p + 1, one obtains [6] closed
form solitary wave solutions, generated by exponential solutions of the linearized equation, which
exhibit a particular structure with respect to the nonlinearity parameter ¢ =A”, A\ being the
scaling parameter.

Yet, solitons are not just ordinary solitary waves. Their particle-like interaction properties
correspond to the existence of multisoliton solutions which behave asymptotically as a (nonlin-
ear) superposition of separated solitary waves. The fact that the solitary wave solutions of the
standard soliton equations (KdV, boussmesq, MKAYV, Sine-Gordon) are linearly related to a
rational [0/1] fraction in ¢ for a ‘primary’ field variable seems to indicate that the existence of
N-solitons should be related to the existence of higher order solutions to the ‘primary’ equations,
rational in € of type [N — 1/N], each partial fraction of which would account for a soliton.

Furthermore, we remark that the [0/1] solitary wave solutions of the corresponding *primary’
equations have the same functional form, similar to that obtained for the Burgers equation:

[0/1)V==2z,/(1+€z?), z=(1/2k)exp 8, 8= —kx+w(k)t, (11)

where p =1 or 2 and w(k) is given by the linear dispersion relation. Calling such solitary waves

1111y Sulil

‘padeons’ we examine under which conditions a given padeon equation (i.e. a nonlinear equation
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with padeon solitary wave solutions) for a field V(x, t) can be regarded as a soliton equation, or
as the primary equation associated with a soliton equation. We assume that the linear dispersion
relation produces a phasevelocity w(k)/k which is a monotonic function of 4.

Starting the iteration procedure for the padeon equation with a superposition of N exponential

solutions of the linearized equation:
N

Vo= Lajexpb. 6
j=1
we construct a generalized perturbation series V=Y*, " V,, by requiring that ¥, should be a
linear combination of the various exponentials which appear as an inhomogeneous term at the
r.h. side of the nth iteration equation. The asymptotic properties of the desired N-soliton
solutions, and their regularity at € > 0, suggest that one should look for particular solutions of
the padeon equation of the form

[N-1/N]V = Z

involving N positive valued funcuons z;(x, t), constrained by the assumption that the nth order

term in the expansion of [N — l/N]V should coincide with the V, calculated through iteration:
N

V,=-2(=)"Y 2/"z; ., = —2(-)" TH(Z""Z,) (14)
J=1

where Z stands for the diagonal N X N matrix with element Z,; =z, §,,. Though the positivity
(realness) of the z,’s is not necessary for the regularity of [N —1/N]V at € > 0, we impose it here
for simplicity. Let us even restrict our search to [N —1/N] solutions in which also the
numerators —2z, . are positive valued, so that their poles interlace with N —1 zeros on the
negative real e- axns This additional (Stieltjes) property follows, at N = 2, from the positivity of
z, and z,, and shows up [5] for all NV in the KdV-case. At the present stage it seems a reasonable
ansatz on account of the asymptotic cancellations that we expect between N — 1 poles and zeros
of [N — l/N]V If [N — 1/N]V solutions of the form (13) can be found with z;> 0 and z; , <0,
we call them ‘N-padeons’.

§=-kx+w(k)t, 0<k <---<ky, a,€R (12)

7

1+ezP p=1lor2 (13)

3. Dipadeons (N = 2)

That N-padeons have the required asymptotic properties at N = 2 can be easily checked [6].
As the existence of dipadeons (two-soliton solutions) constitutes a crucial step towards the
existence of solitons, we recall the (necessary) conditions it imposes on the padeon equation.
Starting with the following solution of the linearized equation:

Vo=exp &, +exp S, & =0,+Ina}, (15)
we get after the first two iterations:

+1)%
_y 2SR VA o(p ) id(1 2 2), (16)
(2k,)”
_ P
_ep@p-1)& Y Buzperomexp[(2p+1—m) S +m] +id (1 22),

(2k,)** =1
(17)

with mixing coefficients a;, and B,, depending on the particular form of the padeon equation.
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We assume the existence of a solution [1,/2}V, of the form (13), which matches the perturba-
tion terms V, and in particular ¥ and V; (p=1 or 2):
Vo=—-2Tr Z,, (18)
v, =2Tr 2)?(Tr Z,) = 2|(Tr 2)? 7" det Z] .. (19)
It then follows that:
Tr Z=exp &, /2k, + exp & /2k,, (20)
det Z=-—"— exp(&, +,), n=1- 4-—k k if p=1, (21)
4k k, k,+k,
[/ 1 o \
det Z=1(Trz)™" -2 Jexp(sF, +F)+id(1=22) if p=2.
2( ) 4k,2k Zkl + kz p 1 2 ( ) P
(22)
The assumed positivity of z,, implies the necessary condition on «,
0<ay, <(pk,+k,)/4k{k,. (23)
The eigenvalues z, , obtained from Tr Z and det Z
1,2
z12=3[Tr £ {(Tr 2" — 4 det 2]"7] (24)

provide the ‘eigenvalue’ representation of the solution.

The positivity of ~2z, . follows from the condition (23). Thus, if it exists, the solution is a
dipadeon. Furthermore, it follows from the explicit expressions for z;, and z, that as t = + e,
with @ fixed, r =1 or 2, only one eigenvalue (z,) remains finite, while the other one (z,¢,) goes
to zero or to + c0:

z,~exp 8§, ast— +oo. (25)
kinks (p =1) or bells

e values of |¢| the dipadeon separates

'5.
[}
3
o

' b ~os h RN
) which etam their identity through interaction, as one expects from a two soliton

-
]
LS

Once the positivity’ condition (23) on e, is fulfilled, a further necessary condition for the
existence of a dipadeon is that the second-order term in the expansion of 1/21V: =2 Tr(Z?*
Z), calculated from ¥, and V;, should coincidence with the expression (17) for V,. Expressing
Tr(Z?” Z,) in terms of Tr Z and det Z one obtains the following conditions on the 8’s:

p=1: = [(2k, + k) /Ky (ky + k)] @y,
p=2: PBu=(8k +ky)/ 4k} (2k, +k )ja,z, (26)
52- [k, + ky) /8ke ey (2hey + )] gy |1+ k2 k(g + Ky )]

4. N-padeons and the interaction matrix

Let us now assume that the primary equation produces padeons and dipadeons.
Before deciding that the corresponding solitary waves can be regarded as true solitons one
should be able to extend the number of interacting waves to arbitrary N, without loosing the
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asymptotic property that as ¢t — + oo with 8, fixed
z;~a, exp 8, witha,=«a(k..... ky). (27)

For this purpose we need another representation of the N-padeon than the one we have used so
far.

In fact, a striking feature of multisoliton interaction is that the number of interacting solitons
and their relative size is of no qualitative importance, and that the collisions occur in pairs [8].
Therefore, if an N-padeon is to be understood as an N-soliton solution, one should be able to
represent it in terms of an explicit ‘interaction’ matrix A, of dimension N, such that 4, =
Ak, k).

At N =2 we remark that the positivity of —2z, . allows us to rewrite the dipadeon in the
form:

[12]V=(p. (I+e27) ') (28)

where |u) denotes a C? vector with components p;, such that |p,]?= =2z,  and (p| =(|pg)™.
This diagonal matrix representation is equivalent with nondiagonal ones involving similar
matrices A = SZ S~!, and more particularly with ‘symmetric’ representations:

[1/2]V=(¢,(I+eA?)"'¢) withd =UZU*=A" (29)

where U is a unitary 2 X 2 matrix and |¢) = U | u). It means that V, can also be expressed as a
‘sandwich’

V,=(=)"(¢, A"%9). (30)
Consistency with the conditions (14) leads to the following ‘trace’ conditions on A:
Tr[ 47724, + 1¢) ()] =0. (31)

41.p=1

If satisfied for n =0 and n =1, it is easy to verify that, in the 2-dimensional case (N = 2), the
condition (31) is satisfied for all n. When added to the previous conditions (20, 21) which
determine Tr 4 and det A, these trace conditions amount to a constraint between the elements
of A and the components of |¢).

Yet, in order that A4 be acceptable as a ‘two-soliton interaction’ matrix it is necessary that,
when restricted to N = 1, the sandwich (30) reproduces the geometrical form (—)"exp #((1/2k,)
exp %,)" which characterized the padeon. We thus need to have:

A, =(1/2k)exp & and ¢, =exp(}F +1i§,). (32)

Together with the conditions (20,21), this requirement fixes ¢, in terms of a phase §,:
¢, = exp(3¥, + 18,), and determines A4 in terms of %, and some extra phase x:

Ay =(1/2k,) exp &%, Ap=(1—n)/dkk,exp 3(& + ) +ix). (33)
The trace condition (n = 1) fixes x in terms of §; — §,:
"I(kl + kz)z - (kl — k2)2 e
1-19

912

tg(x+82—8‘)=k1+k2 with o), =

(34)
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though, at the cost of a new condition on a5, in order that ¢,, be real:
o, < 1/(k + ky). (35)

If this additional condition is satisfied, we can find a hermitean interaction matrix A. Rewriting

A4 in termg of o it takes the um ple form:
Ay, interms o1 o, 1t takes Ine Iorm:

2=(k1+k2_i‘712)_ 193 (36)

Let us now go to arbitrary N. In this case V, =LY, exp ., whereas the first order term V, takes

AEAS AL

N N
exp 2.
-V = P L+ YV a exnl & +%) (37)
1 bt 2/( bt U S AT J/ A 4
i=1 ! i*y
Tm modaw ¢hhns thin Al mvra D s D e b lin avtmmortlals 60 mem AT N/ AJ fcnbmwnnbs man sun oo sl Aalacan v b
111 OIUC] Lildat LIIC 4aLoOvVe & 4Z THaAalllA DC CALCLDIVIC LU dll [V A Y UHIClaClivull [HIalllA Wil CICIHTHL
. -1 *
A=k, +k,—io,,|” ¢.0F m#*n (38)
which satisfies the generahzed trace conditions (31), written in terms of C“-vectors |¢) with
— ayn/l 4 1i¢ naraccary fannandiv) that:
\f) - U/\y\ 21/ I lU }, lL 49 1L Looal \ayy»uuu\/ wiiat.
(1) elther the parameters
.
. n,/(k +kj) (k,—k;) ithn =1 k,.kj
"y 1—m,, i A Kk
L ’ i
be separable:
o, =v,—v withy,=v(k,),
(ii) or that the related parameters p,; =tg™" o,,/(k; + k;) be separable:
o, =v,—v, withy=v»(k).
The separability of o;, implies that o;; must have the form:
k,+k;
0, = > . (40)

{1 41\ f \2
KT K] TG~ y)

When this is the case, i.e. when a,, has the particular structure displayed by the formula (40). so
that it automatically satisfies the previous conditions (23) and (35), the dipadeon (N-padeon)
may be called a ‘two soliton’ ( N-soliton) solution.

Indeed, we may as well particularize the choice of the phases §,, so that the x-derivative of
the matrix A satisfies the dyadic relation:

~24, =)ol (41)

It suffices to take &, , linear in x, and such that 8, = 3v,. In this form A can be generalized to
an N X N matrix:

-4f Tax 1 (x))(e(x)| (42)

with elements 4,,, = (x* + x,)” ',.¢*,, where ¢, = expi[—x*x + w(k,)t]and x, =k, +iv,,



242 F. Lambert, M. Musette / Solitons

This hermitean matrix is bound to be positive definite for all . Its principal minors M(i, --- i),
1 < n < N, are all positive; they can be written in the form:

M(iy - i,) = [ I1 (2k,-",)] { I1 n, ]exp(%,+ e+ (43)
m=1 l<m.l "
with
. SN2 ) N2
= (ki—k;) +(vi—7))
Y (l( +k,‘2+('v,—v,\2.
1 17 A\ #H g7
Using the fact that the eigenvalues z; > 0 of 4 obey the N equations:
N N
Y z, oz, = Y M(iy---i,), n=1,...,N (44)
i< <ip=1 <. <i,=1

it is easy to check (along the same lines as in [5]) that, as t —> + oo with §, fixed, the z,’s have the
required asymptotic behaviour
a?

25,20, z;3,>+c and z,—al*expf, afF’ =2k l_[n,, (45)

r l>r

for phase velocities which increase with k, and the s-reversed situation for phase velocities which
decrease with 4. _

Thus, as we follow the rth solitary wave, the x-derivative of —¢[N —1/N ]V, which can now
be written in the familiar form

—3 [N/NJV=—ed(o, (I +eA) '¢) =232 log det(I +eA) (46)
tends, when ¢ — + 00, to the ‘one soliton’ limit

1k? cosh™24(8.+ 1. ,) with , =log(a?/2k,) + log al*). (17)
In the other case (ii) the separability of p,; implies that «;, must have the particular form:

ay, = (cos?(», — vz)) (ky+ k) (48)
which, for a first order m n g coefficient (i.e. which arises from the first iteration eouanon) can

200, 20 a4 22290 uxing coeilfcient (1.€. 1L allats 19 0 0

hardly be expected from any padeon equation (the usual dispersion relations do not produce
transcendental function of k). Nevertheless, we remark that: 0 < a,, < (k; + k,) ! so that, if it
exists, the dipadeon could be expressed in terms of a positive definite hermitean 2 X 2 interaction
matrix with:

|cos(u,—v2)| S+

A= €&Xp—5 +i(8, - §,)
k,+k, 2
and
8,=06,+v.
However, though in the case the 3 X 3 interaction matrix which generalizes the above 2 X2
matrix can still be shown to be positive definite (it has positive principal minors), it is clear from
the form of A4.,, and its x-derivative, that such interaction matrix can no longer be chosen so as

1 1o 0 Ays, 1valtlve, U

p—
~

to satisfy the former ‘dyadic relation’ (4
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As we shall see in the next section, such property of the interaction matrix, as the one
displayed by formula (42), is closely related to the IST-interpretation of solitons.

42. p=2

Looking at N = 2 for a symmetric representation of the dipadeon in the form (29) in terms of
a hermitean matrix 4 with 4, = A(k,, k;) and 4;, = (2k,)"'exp &, and a C? vector |¢) with
components ¢, = exp(3.%, + i8)), it follows from identification of the first order term

Vi=—(9, 4%¢) (49)

with the expression (16) that | A, | must be proportional to exp3 (%, +%,). Hence, det 4 = det Z
must be proportional to exp(¥, +.%,). According to the formula (22) this means that k,0,,/(2k,
+ k,) must be symmetric for the interchange of the indices 1 and 2. Under this condition, we see
that det Z takes a simpler form, analogous to (21):

4k *k,
2k, + kp 12

det Z= —1 exp(& +%). n=1-

4k, k, (50)

Repeating now the reasoning of case (a) one easily concludes that if a;,(a,,) satisfies the
condition:

klaIZ/(Zkl+k2)=k2a21/(k1+2kl) (51)
and belongs to the smaller interval:
0 < ay, < (2ky + ky) /ky(ky + k,)° (52)

there exists a hermitean 2 X 2 interaction matrix A4 for representing the dipadeon and that its
non-diagonal elements take a form analogous to (36). Going to arbitrary N, with V;=XN
exp %, the first order term V; takes the form

N exp 3'56 N N
-v,=Y et Yo, exp2Z+5)+ L ay exp(S+ 5+, (53)
i=1 1 i*j i<j<l
Setting
k2k . ke k) = (k- k)
n=l_4——lj——-a and 6. = 77:/( 1 j) ( i /) ,
ij 2k, +k; & 1—n,;

it follows from what was shown in part (a) that, in order that 4 be extensible to a hermitaen
N X N interaction matrix with elements (m # n):

Ay = (Kt k= i0,,) 0,05, ¢, =exp(35, +18,,) (54)
which can be represented by the dyadic:
=3[ dzie(z, 1) ¥ (2. 1))
it is necessary that o,; be separable: o,; =y, — v, with v, = y(k,), or that the ;s be of the form:

&= (2k,+ k) k[ (K, + k) + (v.- 3,07 (5)
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Furthermore, in order that the expression (53) be consistent with the N-dimensional generaliza-
tion of formula (49) the coefficients «,, must have the form:

ijl

_ (ki+k,)(k;+ k) -0,
ijt .
’ “&+k»2+qﬂ“kf+hf+oﬂ

J

a; i

=2(c,y+cy+e;) with ¢ (56)

5. Solitons and their interaction matrix

Let us consider the case of the KdV equation (p = 1):

qt + qx.\'x + 6qqx = 0 (57)

Taken as a reflectionless Schrodinger potential [4] the KdV-soliton is obtained through solution
of the Marchenko equation:

K(x, y; 1)+ F(x +y; t)+ef dzK(x, z; t)F(z+y; t)=0 (58)
with
N
Flx+y; 1)=1Y a? exp| =1k, (x +y) + k31| = 1 (y, 1).9(x. 1)),
j=1
and ¢;(x, t)=a; exp%(—ij+kft), by taking K(x, y; ¢t) on the diagonal x =y and by

considering: g(x, ) =23, K(x, x; t). Yet, the solution K(x, y; t) has the form: K(x, y; t)
= 1(¢(y, t),h(x, t)) with

(e, 1) y= =1+ 3efTdz10( 1) Yol 01 T(x 1),
so that .
K(x, x5 1) = =18 (x, 1), (I +edy) "o(x, 1)),
Av=}["dz18(2, 1) X o(z N1 (59)

The N-soliton solution of the KdV equation takes than the familiar form:

[N/Nlg= —ed, Tr[(I+edy) " o(x, £) ¥ &(x, £)|] =202 log det(I + e4,).
(60)

Hence, the existence of an interaction matrix A, as it arises in the form (42) with the padeon
approach, hints at the existence of a Marchenko equation of type (58) underlying the KdV
dynamics.

On the other hand, we remark that for soliton equations with a higher nonlinearity ( p = 2),
such as the MKdV equation and the Sine-Gordon equation, the [1/2] fraction which results
from taking e times the squared padeon has the particular form [6]:

[12]V2=¢{[0/1]V}? =82 log(1 + €22), z=(1/2k)V,. (61)
In fact it turns out [7] that also their N-padeons [N —1/N 1V are such that the related
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[ZN —1/2N] fractions: {2N — 1/2NJV* =¢{[N — 1/’1‘\"]?}2 can be expressed in the remarkable
form
N
[2N=1/2N]V2=02Y log(1 +ez?). (62)

ot
=1

For dipadeons (N = 2), with p = 2, which can be expressed with a 2 X 2 interaction matrix 4, a
formula of type (62) can only hold if a,, takes the special form

’""iz=(2k1+k1)/k1(k1+kz)2; (63)
Indeed, identification of the first two orders in ¢ of:

2
[3/4]V2=032Y log(1 +ez2) with V2=¢[VZ+2eV ¥, + (V2 +2V ;) + -+ - ]
i=1

leads to the relations: V;? =92 Tr(Z?)
2V, ¥, = $92{2 det(22) — [Tr(Z?)]*}. (64)

According to the expression V, = exp %, + exp % and the form (16) of V;, we get for det(Z?)
the expression:

det(Z?) =[ 1 -+ 12 S = iz ] exp(2F, + 2.5,)
| (ky+ ky)" 32kiky 2(k, +k ,)° J
r fa . 429 v 1 (65)
1 _ (1 +48kja,)

exp(3.%, +%) +id(1 £ 2).

+ 2 2 2 2
| 2620k, + k) 2633k, + k)7 |

Comparison with the former expression (50) of det Z shows that the coefficient of exp(3%#;, +.%,)
should vanish. This determines «,, as it is given by formula (63).
This means that the interaction matrix for expressing N-soliton solutions which correspond to
amn Ao +1 A smmmam b cblhmaald 1o wnal romm aan b

1v-paucuua Wllll uu: piopcl I.y \UL} S1oui1a oc€ rcas b_yllllllclllb
Finally, it is worth noticing that when «,, takes this particular form, the N-padeons:

[N—1/N]V= (9, (1+eA2)“¢>,

where ¢ and A are given by the relati ons (54), correspond precisely to the form of the
reflectionless Schrodinger potentnals which arise from the two-component inverse method [4]

6. Complex padeons and the cubic Schrédinger equatiions
Cattima f NI i o1 - Sl 1t "
Setting ¢ = Ay in the nonlinear Schrodinger equation
. 2 _
Yor Ty, + 24| =0 (66)

we obtain the scaled version

Yoo FiY, +2¢| Y| =0 with e=|A|2 (67)
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A complex iteration series ¢ =X, €™y, can now be constructed by taking the following
solution of the linearized equation:

Yo=exp 8, 0= —kx+ik?t, keC (68)
and by choosing for ¢, the particular solution of the nth iteration equation:
n—1
tI"Jrl.,r.vr—+_‘l!/,1.1= —2 Z IP/"P[‘P:: (69)

Jdom=0 j+m+I=n~1
which is proportional to the exponential in the r.h. side: exp(@ + 2n Re 8). The resulting series:

€

y=expf) |- ————exp(2 Re 9) (70)
n=0 4(Re k)
is geometrical and generates the regular [0/1] solitary wave solution of (67)
- exp 0
[0/1] ¢ = P (71)

1+¢/(2Re k)’ exp(2Re §)

Since (67) has a complex [0/1] solitary wave whose absolute value has the typical padeon
structure:

[¢]=—-2z/(1+€z?), z=(1/2Rek)exp(Re 8) (72)

it is reasonable to look for complex dipadeons in the form

- #% .“22 1
1/2)y = + =p(I+eZ?) 73
[1/2]¢ e T v A ) n (73)
where p denotes a C-vector with components g, ,, such that |p,|2= —2z, . and Z? stands for
the real diagonal matrix
zt 0
z2 =" . (74)
0 22

Let O be a complex orthogonal 2 X 2 matrix and ¢ = Op; it provides an equivalent representa-
tion:

[1/2]¢=¢"(I+€S?) ' with S2=0Z%0". (75)
According to the polar decomposition [2] of complex symmetric matrices. S? = AA, where 4
denotes a regular complex 2 X2 matric. Now, in order to be interpretable as a (complex)
two-soliton solution, [1/2]¢ should be expressible in terms of an ‘interaction matrix’ 4, such
that, when restricted to the one-component case (N = 1), the expression (75) reduces to the
former (complex) padeon-expression (71). This requires:

_(CXP %

1 and A,=(2Rek,) " exp(Re &,). (76)
exp 3%

Yet, det S2> 0 and det A is real, so that A =A".
In order to determine 4,, we must go back to the iteration series which arises from taking
Yo = exp &, + exp . Solving the first iteration equation (69)

i'4"1.! + \bl,xx = 2"1/(2)4/3 B (77)
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with
2
¥, = E &y exp(&’j+5’}+5’}*), (78)
ijud=1
we get
—y, = (2 Re k) ? exp(2F, + F*) + ¢y, exp( L, + L+ F,)
+¢yy e)(p(Z‘V1 +9”;) + id(l 22), (79)
where

ayy +ay, = (Re k!)_l(kf + kz)—]~

€12
_ -2
C12=a112=(k1+k;) .

Let us now compare the expression (79) with the first-order ‘sandwich’ that arises from
formula (75)

g = 5%, (80)
Setting A;, = A,0,97, with A, = A%, one readily obtains

A= (k. +k*)"!

“*12 ™ ~27
and thus

= * 1

Ay = (k +k3) exp 3 (£ +55*). (81)
M acenmnlicions ¢ mee AT N/ A haveraitan e sa b s abs i sun s booes as A —_ 4 A 1k olele ot o 1o PR |
JCliCidlisi 15 U all (v A Iv¥y JICiliItCall H1HILC1 altilvll IlidlllA Aij - ‘Pill IJ‘P/ WILIL (P’- - C«\p 217,- diid
A= (k + kl*)", we recover the N-soliton solutions of the scaled cubic Schrodinger equation
7] in tha fAarm Af Al;noﬂonno
llJ 111 Vil LU VL iy Hﬂu\«vllé

n -1

[N=1/N]y=(8,(I+e44*)" ) (82)

where ¢ denotes the C"-vector with components: ¢, = exp 1.

7. Degenerate case: the Burgers equation

With a first order mixing coefficient o, = (k.l + _1.52)//4!(1_1.:2, the condition (23) is no mor

QILCL LAAARAALS WRORAAILICAAL 84 T WA T A5 )/ SR A5, A0 LOIAN10MH PO S LU §

e
satisfied: the Burgers equation fails to produce (N > 2)-padeons. Yet, B, still satisfies the
condition (26). In fact, starting from the linearized Burgers equation with a solution V, = a?

101l d SOULULIY i

exp 0, + --- +a} exp Oy, the iteration series remains purely geometrical: the corresponding
solution of the Burgers equation is a [1 /1] fraction:
N g2

(1/1]V=-28log ¢, ¥v=1+¢€), ﬁexp 6. (83)

i=1 i
This particular relation between solutions ¥ of the linearized equation and [1 /1] solutions of the
full equation indicates the existence of the Cole-~Hopf transformation V' = —29 log ¢ which

linearizes the Burgers equation [7]. Clearly, the 1-pole solutions (83) cannot describe the
interaction of N solitons: the Burgers solitary wave (kink) is no soliton. However, it is easy to
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check that for N =2 such 1-pole solution splits up, at large negative times, into two separated
kinks, only one of which (the smaller one determined by k,) corresponds to the pole. The other
one is not the solitary wave determined by k,: it travels with velocity k; + k,. After some time
the latter will catch up the former and absorb it: the remaining kink is the solitary wave
determined by k,.

The Burgers equation corresponds to a degenerate case for which the rank of the N XN
interaction matrix equals 1: it possesses degenerate N-padeons, N — 1 poles of which coincide
with N — 1 zeros.

8. Conclusion

The present analysis shows that if N-padeons are expressible in terms of a regular hermitean
N X N interaction matrix they possess the particular asymptotic properties which characterize an
N-soliton solution; i.e. the existence of such padeons guarantees the existence of solitons. Such
padeon-solitons are easily detected: necessary conditions for their existence can be readily
checked on the first two iterated solutions that arise from a superposition of two exponential
solutions of the linearized equation (positivity condition, consistency conditions, separability
condition). These conditions can be used to discuss the precise status of candidate soliton
equations and of non-integrable padeon equations whose solitary waves do not enjoy the full set
of stability properties which characterize the soliton.

Though the present framework represents only a first attempt to characterize solitons from a
direct point of view (generalizations of the padeon should also be considered) it produces the
solitons of the familiar IST-solvable equations as well as the corresponding multisoliton
formulas. By considering only symmetric (hermitean) interaction matrices we did not cover the
entire positivity interval to which the first mixing coefficients «,, must belong for the existence
of dipadeons. We restricted our analysis to padeon equations for which «,, belongs to a
sub-interval, the end-point of which coincides with the KdV (MKdV)-case. Extensions will be
treated elsewhere.

By producing multisoliton interaction matrices the padeon approach can give some insight
into the hidden IST-properties of the equation. In particular, it can tell whether a given soliton
equation can be associated with a familiar scattering problem.

Appendix

The N X N interaction matrix 4 has nondiagonal elements: 4,,,=®,A,,,®F with A, =
(k, +k,—ic,,)"', and @, = exp(lp, +15,). From the form of its diagonal elements 4,,, =
(1/2k,)k,, exp ¢, it follows that the first generalized trace condition (31), with n=20, is
automatically satisfied. The second trace condition (n = 1) implies

2k, +k,)=(A,,)" " +(A,,)"" andthus o, = —q,,. (A1)
The third trace condition (n = 2) can be written:
Z A/mAmn[(kl - kn - 2i6n.x + 2i8/.x)An1 - 1] exp(q')l + (‘pm + q)n) = 0 (AZ)

{.m.n
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L expt(P1+q)m+¢n)\olm+omn+onl) Im{ Ay, Ay, A,y =V \AJ)
I<m<n
This implies that either of the two following conditions must be satisfied:
(i) o, +o0,,+o0,=0, which, together with the property (Al), requires the separability of
= sk, kj):
o,=v,—Y, with y=y(k,). (A4)
(i) Im(A,, A, A,) =0, which means that the related 6,;= (k, + k;)”'o,, must satisfy the
condition:
aij+6j1+a/i 116/[6/1" (AS)
or that
6, =tg(v,—») with » =»(k,), (A6)

requiring thus the separability of the parameters p,; = tg"‘(o,j/k, + k).

In both cases one verifies that the further trace conditions are automatically satisfied for all ».
In particular, it is easy to see that the fourth trace condition (# = 3) amounts to the equation:
Z exp(@, + ¢ +to + ‘Pm){Im(AijAj/A/mAmi)(oij +0,+ 0, + 0,.)

i<j<l<m

+ Im(AilAlmAmjAji)(ail +o0,,+0,,+ ",/,-)
+ Im(Ai/Aleijmi)(oiI +o0,,+0,, + omi)}

1
+4 Z exp(z(pi + P, + (pm) : ﬁlm(AiI/llmAmi)(oi[ + Oim + omi) = O (A7)
i<l<m !
In the first case, this condition is clearly satisfied as a result of condition (A4). In the second
case, Im(A, A,,A i) Vanishes as a result of the relation

m

olj + _/I + olm + G i oljo_]lolm + ojlalmomi + olmomioij + mioijojl
vhich i1g itself a conseauence of {A6) and the nropertyv that ac A+ B+ C+ D=0
wiicn 1s tisell a consequence of (AL) and the property that as 4 s+ - v
tg A+tg B+tgC+tg D=tg A-tgB-tgC+tg B-tgC-tg D+1tg C-tg D-tg A
Lts N.tg A .t D
‘r'l.5 L’ lé A lé D.
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