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Abstract: A systematic approach to soliton interaction is presented in terms of a particular class of solitary waves 
(padeons) which are linear fractions with respect to the nonlinearity parameter c. A straigthforward generalization of 
the padeon to higher order rational fractions (multipadeon) yields a natural ansatz for N-soliton solutions. This ansatz 
produces multisoliton formulas in terms of an ‘interaction matrix’ A. The structure of the matrix gives some insight 
into the hidden IST-properties of a familiar set of ‘integrable’ equations (KdV. Boussinesq, MKdV, sine-Gordon. 

nonlinear Schrijdinger). The analysis suggests a ‘padeon’ working definition of the soliton, leading to an explicit set of 
necessary conditions on the padeon equation. 

1. Introduction 

It is common observation that the term ‘soliton’ which has become so popular in many areas 
of the physics concerned with nonlinear phenomena does not refer to a clear and generally 
accepted definition. 

Solitons are generally understood as being ‘special solutions to some special nonlinear PDE’s’. 
Though the special character of solitons has become clear for those exceptional equations which 
enjoy as remarkable hidden properties as the existence of an inverse spectral transform (IST). 
physicists feel often satisfied with the more phenomenological picture of a solitary wave with 
‘particle-like interaction properties’. 

Yet many equations are known to possess pulsed solutions in the form of a bell or a kink, 
showing various degrees of stability throughout interaction [l]. and it is not always possible to 
decide from results of numerical experiments whether such excitations should be called ‘solitons’, 
or not.. . . 

Studying some familiar soliton equations (KdV, Boussinesq. MKdV, Sine-Gordon) from a 
direct point of view [6] it is easy to realize that the particle-like interaction properties of their 
solitary waves can be related to their analytic properties with respect to the nonlinearity 
parameter e. These solitary waves are linearly related to a [O/l] fraction in e of a particular 
functional form (padeon). The corresponding N-soliton solutions are linearly related to [N - 

l/N] fractions in C, solving the ‘primary’ (padeon) equation. each partial fraction of which 
corresponds to a soliton. 

One of the purposes of this paper is to present a ‘padeon’ approach to soliton interaction 
which could lead to a working definition of the soliton that would fill the gap between the 
‘spectral’ soliton and the ‘phenomenological’ one. The analysis is developed from a naive point 
of view in order to serve the other main purpose of this work. This is to help the soliton hunter to 
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decide whether a given nonlinear equation possesses solitons, or not. and to obtain multisoliton 
formulas. 

In contrast with other direct approaches, such as Hirota’s [3] and Rosales’ [7], the padeon 
method does not require the introduction of bilinear forms, or any other clever but not 
straightforward manipulations. 

The paper is organized as follows: We first consider the simplest nonlinear evolution equation 
(Burgers) that gives rise to solitary waves, and we obtain a two-parameter family of solitary 
waves (kinks) by scaling the fieldvariable. We then introduce the padeons, solutions of a general 
‘ padeon equation*, and the corresponding N-padeons (Section 2). The existence of dipadeons 
(N = 2) and their relation to two-soliton solutions is discussed in Section 3. 

We then proceed to the case of N > 2-soliton interactions by considering N-padeons which 
can be expressed with a hermitean (symmetric) N X N interaction matrix. Their existence and 
asymptotic properties are discussed in Section 4. The appearance of a condition of a new type 
(separability) characterizes the transition from N = 2 to N 2 3. The form .of the interaction 
matrix is also specified. 

In Section 5, we discuss the connection between the interaction matrix and the IST approach 

to multisolitons. 
A straightforward generalization to complex padeons is presented in the case of the cubic 

Schrijdinger equation (Section 6). Degenerate N-padeons are illustrated with the Burgers 

equation (Section 7). 

2. Solitary waves, padeons and N-padeons 

A straightforward procedure of deriving the solitary wave solutions of a given nonlinear 
equation has been suggested by several examples given in [6]. To recall the method. we consider 
Burgers’ nonlinear diffusion equation: 

v-v,,+ Vv,=O. (1) 

Setting V= ET one can look for particular solutions V(x, t, E) of the scaled equation: 

1: - TV, + ,Fv, = 0, (2) 

displaying particular properties with respect to the parameter E. Starting with a power series 
expansion 

F(x, t, c) = f E”V,(X, t), (3) 
n-0 

one can set up conditions so as to define the successive V,,‘s as particular solutions of the 
iteration hierarchy: 

V - V,,,=O, 0-r , 
n-l 

v . If.1 -vnxx= - c my++, n 2 1. 
j=O 

Here, we are looking for progressive wave solutions V(5 = x - kt) of the Burgers equation which 
could describe a travelling pulse in the form of a kink, say with: 
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At n = 0 we observe that the linearized Burgers equation possesses positive solutions of the form 
exp 8, with 0 = - k.$ and k > 0, which are totally monotonic functions of 5. Going through the 

iteration with this choice for V,, one can try to end up with a rational fraction in exp 8 of the 
appropriate form: 

V = exp e/(1 + (C/C) exp 0) (6) 

which would indeed produce a kink V = cl/, with the above properties (5) and which could be 
regarded as the sum of a geometrical perturbation series. 

With this in mind, it is natural to attempt to solve the system (4) with V, = exp 8, under the 
condition that V, be proportional to exp( n + 1)8. This requirement yields the following sequence 
of particular solutions: 

V, = (-)“(2k)-” exp(n + 1)0. (7) 

The resulting series (3) is the geometrical series: 

F(x, t, f) = exp engo( -G$f)“. (8) 

It generates, for arbitrary positive values of 6, a regular kink, rational in E as a [O/l] Pad& form: 

[O/l] v= exp e/(1 + (r/2k) exp 0) (9) 

which sums the geometrical series (8) and which is an actual solution of (2). This fraction can 

also be written in the form: 

[O/l] v= -2z,/(l + EZ) with z = (1/2k)V,. (IO) 

The corresponding two parameter family of solitary wave solutions cv of the Burgers equation 
(1) takes the [l/l] form: 

[l/l] v= -23, log(1 + EZ). 

By applying the same technique to several nonlinear dispersive equations (KdV, Boussinesq, 
RLW, p-KdV, sine-Gordon, e4) with lowest nonlinearity of order p + 1, one obtains [6] closed 
form solitary wave solutions, generated by exponential solutions of the linearized equation, which 
exhibit a particular structure with respect to the nonlinearity parameter e = A’, X being the 
scaling parameter. 

Yet, solitons are not just ordinary solitary waves. Their particle-like interaction properties 
correspond to the existence of multisoliton solutions which behave asymptotically as a (nonlin- 
ear) superposition of separated solitary waves. The fact that the solitary wave solutions of the 
standard soliton equations (KdV, Boussinesq, MKdV, Sine-Gordon) are linearly related to a 
rational [O/l] fraction in E for a ‘primary’ field variable seems to indicate that the existence of 
N-solitons should be related to the existence of higher order solutions to the ‘primary’ equations, 
rational in E of type [N - l/N], each partial fraction of which would account for a soliton. 

Furthermore, we remark that the [O/l] solitary wave solutions of the corresponding ‘primary’ 
equations have the same functional form, similar to that obtained for the Burgers equation: 

[O/l]v= -2z,/(1+rzP), z=(1/2k) exp 8, B= -kx+w(k)t, (11) 

where p = 1 or 2 and w(k) is given by the linear dispersion relation. Calling such solitary waves 
‘padeons’ we examine under which conditions a given padeon equation (i.e. a nonlinear equation 
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- 
with padeon solitary wave solutions) for a field V(x. t) can be regarded as a soliton equation, or 
as the primary equation associated with a soliton equation. We assume that the linear dispersion 
relation produces a phasevelocity w(k)/k which is a monotonic function of k. 

Starting the iteration procedure for the padeon equation with a superposition of IV exponential 
solutions of the linearized equation: 

V,= t”jexp*,. ej= -k,x+w(k,)t, O<k,< *** ck,, a,ER (12) 
j=l 

we construct a generalized perturbation series Y= ErC0 cn V,, by requiring that V, should be a 
linear combination of the various exponentials which appear as an inhomogeneous term at the 
r.h. side of the nth iteration equation. The asymptotic properties of the desired N-soliton 
solutions, and their regularity at e > 0, suggest that one should look for particular solutions of 

the padeon equation of the form: 

[N-1/N&&, p=lor2 
J 

(13) 

involving N positive valued functions rj( X, t), constrained by the assumption that the n th order 
term in the expansion of [N - l/NIV should coincide with the V, calculated through iteration: 

V,= -2(-)“tiP”zj.,= -2(-)“Tr(ZP”Z,) 
j=l J 

(14) 

where Z stands for the diagonal Iv X N matrix with element Zjj =3 6,i. Though the positivity 
(realness) of the zJ’.s is not necessary for the regularity of [N - l/NIV at c > 0, we impose it here 
for simplicity. Let us even restrict our search to [N - l/N] solutions in which also the 
numerators - 2zJ:, are positive valued, so that their poles interlace with N - 1 zeros on the 
negative real e-axrs. This additional (Stieltjes) property follows, at N = 2, from the positivity of 
z, and z2, and shows up [5] for all N in the KdV-case. At the present stage it seems a reasonable 
ansatz on account of the asymptotic cancellations that we expect between N - 1 poles and zeros 
of [Iv - l/NIV. If [N - l/NIV solutions of the form (13) can be found with zj > 0 and zj..r < 0, 
we call them ‘N-padeons’. 

3. Dipadeons (N = 2) 

That N-padeons have the required asymptotic properties at N = 2 can be easily checked [6]. 
As the existence of dipadeons (two-soliton solutions) constitutes a crucial step towards the 
existence of solitons, we recall the (necessary) conditions it imposes on the padeon equation. 
Starting with the following solution of the linearized equation: 

V,=exp 9, +exp Yz, Y;=fl,+ln at, (15) 
we get after the first two iterations: 

(16) - v, = exd p + WI 
PUP 

+ (Y,* exp( p.9, +Yz) + id(1 @ 2), 

v = exp(2p - 0% 
2 

Ok, )‘” 

+iP m.2p+,_m exp[(2p + 1 - m)SP, + mY2] + id (1 + 2), 
m=I 

07) 
with mixing coefficients (Y,~ and &j depending on the particular form of the padeon equation. 
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We assume the existence of a solution [l/211/, of the form (13), which matches the perturba- 
tion terms V, and in particular V0 and V, ( p = 1 or 2): 

V, = - 2 Tr Z, , (18) 

V, = 2(Tr Z)“(Tr Z,) - 2[(Tr Z)P-’ det Z] _~. (19) 

It then follows that: 

Tr Z= exp Y,/2k, + exp SP,/2k,, (20) 

det Z=& exp(Y,+&), ~=1-4~~:: P(Y,~ if p = 1, 
1 2 1 2 

det Z= +(Tr Z)-’ 
[( 

---& - a,2 

2k, + k, 
exp(sP’, +Y;) + id (1 s 2) if p = 2. 

1 x 

(21) 

(22) 
The assumed positivity of z,.~ implies the necessary condition on OL,~ 

0 < (Y,~ c ( pk, + k2)/4k[k2. (23) 

The eigenvalues z,,~ obtained from Tr Z and det Z: 

*I .2 = f[Tr Z+ [(Tr Z)‘- 4 det z]“~] (24) 

provide the ‘eigenvalue’ representation of the solution. 
The positivity of - 2zjeX follows from the condition (23). Thus, if it exists, the solution is a 

dipadeon. Furthermore, it follows from the explicit expressions for z, and z2 that as t + + cc, 
with 8 fixed, r = 1 or 2, only one eigenvalue (z,) remains finite, while the other one ( zi S ,) goes 
tozeroor to +cc: 

Zi -exp8, ast+ &cc. (25) 

This means that at large values of 1 t 1 the dipadeon separates into two kinks ( p = 1) or bells 
(p = 2) which retain their identity through interaction, as one expects from a two-soliton 
solution. 

Once the ‘positivity’ condition (23) on cy12 is fulfilled, a further necessary condition for the 
existence of a dipadeon is that the second-order term in the expansion of [1/2]v: - 2 Tr( Zzp 
Z,), calculated from V, and V,, should coincidence with the expression (17) for V2. Expressing 
Tr( Z2P Z,) in terms of Tr Z and det Z one obtains the following conditions on the p’s: 

P = 1: P,2 = [Ok, + k,)/k,(k, + k,)] a,,, 

p = 2: P,, = [(4k, + k,)/#(Zk, + k,)] q2, (26) 

P2,= [Ok, +k,)/%k,(% +k2)1a,2[1 +4+2/k,(h +k2)‘]- 

4. IV-padeons and the interaction matrix 

Let us now assume that the primary equation produces padeons and dipadeons. 
Before deciding that the corresponding solitary waves can be regarded as true solitons one 

should be able to extend the number of interacting waves to arbitrary N, without loosing the 
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asymptotic property that as t + + co with 0, fixed 

z I -CY, exp 0, withcr,=a,(ki ,.... k,v). (27) 

For this purpose we need another representation of the N-padeon than the one we have used so 
far. 

In fact, a striking feature of multisoliton interaction is that the number of interacting solitons 
and their relative size is of no qualitative importance, and that the collisions occur in pairs [8]. 
Therefore, if an N-padeon is to be understood as an N-soliton solution, one should be able to 
represent it in terms of an explicit ‘interaction’ matrix A, of dimension N, such that Aij = 

A(k;, kj). 
At N = 2 we remark that the positivity of -2z,., allows us to rewrite the dipadeon in the 

form: 

[1/2]l/= (/L, (z+EZP)-i/L) (28) 

where 1 p) denotes a Q= ’ vector with components pi, such that 1 pi I2 = - 2~;._~ and (p 1 = ( 1 p))‘. 

This diagonal matrix representation is equivalent with nondiagonal ones involving similar 
matrices A = SZ S-i, and more particularly with ‘symmetric’ representations: 

[1/2]v= (+, (Z+EA~)-‘I$) withA = UZU/+=A+ (29) 

where U is a unitary 2 X 2 matrix and I+) = U 1 p). It means that V, can also be expressed as a 
‘sandwich’ 

v, = (-)“(+. A”+#+ (30) 

Consistency with the conditions (14) leads to the following ‘trace’ conditions on A: 

Tr[AP”(2A, + INNI = 0. (31) 

4.1. p = I 

If satisfied for n = 0 and n = 1, it is easy to verify that, in the 2-dimensional case (N = 2), the 
condition (31) is satisfied for all n. When added to the previous conditions (20, 21) which 
determine Tr A and det A, these trace conditions amount to a constraint between the elements 

of A and the components of I $). 

Yet, in order that A be acceptable as a ‘two-soliton interaction’ matrix it is necessary that, 
when restricted to N = 1, the sandwich (30) reproduces the geometrical form (-)” exp 9,((1/2k,) 

exp 9,)” which characterized the padeon. We thus need to have: 

A,, = (1/2k,) exp yi and $, = exp(iy, + i6,). 

Together with the conditions (20,21), this requirement fixes +i in terms of a phase 

+2 = exp(&V, + is,), and determines A in terms of Y;.2 and some extra phase x: 

A 22 = OP2) exp $7 A,, = {(l - “)/4k,k, exp i(S@i +y2) + ix). 

The trace condition (n = 1) fixes x in terms of 8, - 6,: 

tdx + 82 - 4) = * with u,~ = 
.Tj (k, + k,)l - (k, - k2)2 “2 

2 1-V 1 

32) 

6,: 

33) 

(34) 
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though, at the cost of a new condition on cq?, in order that u,* 

(Y12 < l/(k, + k,). 

If this additional condition is satisfied, we can find a hermitean 
A,, m terms of u,~, it takes the simple form: 

A,, = (k, + k, - iq.12)-‘+l+;. 

be real: 

(35) 

interaction matrix A. Rewriting 

(36) 

Let us now go to arbitrary N. In this case & = I:=, exp q whereas the first order term V, takes 

the form 

Iv exp 2x. 
- v,=c 2k 

+ t 1y,, exp(c4q fy). 
i=l 1 i+j 

(37) 

In order that the above 2 x 2 matrix be extensible to an N X N interaction matrix with elements 

A mn =[k,+k,-ia,,,]-‘9,9,*, m#n (38) 

which satisfies the generalized trace conditions (31), written in terms of C”-vectors I+) with 
+j = exp(+q + is,), it is necessary (appendix) that: 

(i) either the parameters 

u 
= q,j(k;+k,)2- @i-k,)’ kikj 

‘J 

[ 1 -9ij I 

with qij = 1 - 4-a 
k;+k, ‘J’ 

be separable: 

et j = Yl - Yj with yi = y( ki), 

(ii) or that the related parameters p,j = tg-’ a,j/( ki + kj) be separable: 

p,, = v; - vj with vi = v( k;). 

The separability of uij implies that uij must have the form: 

ki + kj 
Uij = 

(k,+kj)2+(yi-yj)2’ 
(40) 

When this is the case, i.e. when q2 has the particular structure displayed by the formula (40) so 
that it automatically satisfies the previous conditions (23) and (39, the dipadeon (N-padeon) 
may be called a ‘two soliton’ (N-soliton) solution. 

Indeed, we may as well particularize the choice of the phases 6,., so that the x-derivative of 
the matrix A satisfies the dyadic relation: 

-2A,= I+>(+I. (41) 

It suffices to take a,., linear in x, and such that 6i,X = $y,. In this form A can be generalized to 
an N X N matrix: 

A = + “dx’l+(x’))(+(x’) 1 
/ (42) 
X 

with elements A,,,,, = (xz + x,,)-‘+,,$*,,, where +,,, = exp+[ -x*,x + w( k,)t] and x,,, = k, + iy,,,. 
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This hermitean matrix is bound to be positive definite for all N. Its principal minors M( i, - . . i,), 

1 -c n < N, are all positive; they can be written in the form: 

with 

Using the fact that the eigenvalues z, > 0 of A obey the N equations: 

f z;, ***zi.=i ,<.. eCjVZ,M(‘i ***in), n=l,***,N 
;,< ... <;“=I 

(44) 

it is easy to check (along the same lines as in [5]) that, as t + + cc with 0, fixed, the zj’s have the 
required asymptotic behaviour 

(45) 

for phase velocities which increase with k, and the r-reversed situation for phase velocities which 
decrease with k. 

Thus, as we follow the rth solitary wave, the x-derivative of -e[ N - l/NIV, which can now 
be written in the familiar form 

-E&[N/N]V= -~a,($, (r+eA)-‘9) =28: logdet(l+rA) (46) 

tends, when t + + co, to the ‘one soliton’ limit 

ikf cash-2$(8, + r,,*) with r,,* = log( af/2k,) + log a:*). (17) 

In the other case (ii) the separability of pij implies that ai2 must have the particular form: 

(Y,2 = (co?( V, - Yz))/(k, + k2) (48) 

which, for a first order mixing coefficient (i.e. which arises from the first iteration equation) can 
hardly be expected from any padeon equation (the usual dispersion relations do not produce 
transcendental function of k). Nevertheless, we remark that: 0 < ai2 < (k, + k,)-’ SO that, if it 
exists, the dipadeon could be expressed in terms of a positive definite hermitean 2 X 2 interaction 

matrix with: 

A,, = Icosk(v~ky2) I exp* ly; + i(T;, - 8,) 
1 2 

and 

si = 8; + vi. 

However, though in the case the 3 x 3 interaction matrix which generalizes the above 2 X 2 
matrix can still be shown to be positive definite (it has positive principal minors), it is clear from 
the form of Ai2, and its x-derivative, that such interaction matrix can no longer be chosen so as 
to satisfy the former ‘dyadic relation’ (41). 
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As we shall see in the next section. such property of the interaction matrix, as the one 
displayed by formula (42) is closely related to the ET-interpretation of solitons. 

4.2. p = ? 

Looking at N = 2 for a symmetric representation of the dipadeon in the form (29) in terms of 
a hermitean matrix A with A,, = A(k;, k,) and A;, = (3k,)-’ exp Yj. and a C* vector 1 $a) with 
components +; = exp($Y; + is,), it follows from identification of the first order term 

V, = -(& A’+) (49) 

with the expression (16) that 1 A,, ( must be proportional to exp$( Y’, + Y;). Hence, det A = det 2 
must be proportional to exp(Y; +Y;). According to the formula (22) this means that k,a,/(2k, 
+ k,) must be symmetric for the interchange of the indices 1 and 2. Under this condition, we see 
that det Z takes a simpler form, analogous to (21): 

det Z= -&$-exp($ +Y;), 
1 2 

77 = ’ - 2k, + k, %2’ 

4k,*k, 

Repeating now the reasoning of case (a) one easily concludes that if q2( (Y*,) satisfies the 
condition: 

k,qz/(2k, + k,) = +2,/( k, + 2k, > (51) 

and belongs to the smaller interval: 

0 < q2 < (2k, + k,)/k,( k, + k2)2 (52) 

there exists a hermitean 2 X 2 interaction matrix A for representing the dipadeon and that its 
non-diagonal elements take a form analogous to (36). Going to arbitrary N, with V0 = I:,“_, 
exp q, the first order term V, takes the form 

N exp 39. 
-V,= 1 2 

;=, 4k, 
’ + faij exp(2?+7) + 5 ffij, exp( q + 3 + Y; ). (53) 

itj i<jcl 

Setting 

kfk, 
vii = ’ - 4 2k, + kj a.. and aij= 

qij(ki+kj)*- (ki-kj)2 “* 
I/ l - Yaj 1 9 

it follows from what was shown in part (a) that, in order that A be extensible to a hermitaen 
N x N interaction matrix with elements (m f n): 

A mn = (k, + k, - icrm,,)-‘c#a,,,~,f, +, = exp( iYm + is,,,) (54) 

which can be represented by the dyadic: 

A = f XWdz I$+, 1) >( +(z, t> I 
J 

it is necessary that u,~ be separable: ujj = y, - y, with y, = y( k;), or that the aij’s be of the form: 

aij = (2k, + k,)/k, [ ( kj -t: kJ)2 + ( yi - yj)*]. (55) 
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Furthermore, in order that the expression (53) be consistent with the N-dimensional generaliza- 
tion of formula (49) the coefficients (Y,,, must have the form: 

OL,~, = 2( c;,, + c,,, + clij) with c,,/ = 
Ck, + kjl(kj + k/) - ',j 

[(ki+kj)2+fJ;][(kj+k,)2+C7,;j. 
(56) 

5. Solitons and their interaction matrix 

Let us consider the case of the KdV equation (p = 1): 

4, + 4,X, + 6WX = 0. (57) 

Taken as a reflectionless Schrodinger potential [4] the KdV-soliton is obtained through solution 
of the Marchenko equation: 

K(x, y; t) + F(x+y; t) +e/mdzK(x. z; t)F(z+y, t) =0 (58) 
x 

with 

F(x+y; t) = + f u,’ exp[ -$kj(x +y) + kjt] = +($(_Y, t),+(x, t)), 
j-1 

and c$~(x, t) = aj exp+( -kjx + LTt), by taking K(x, y; t) on the diagonal x =y and by 
considering: q(x, t) = 2~3,K(x, x; t). Yet, the solution K(x, y; t) has the form: K(x, y; t) 

= $(+(y, t),h(x, t)) with 

]h(x, r) ) = - I+fe/=dr]+(r. t) )($(z, [)I]-‘I$+, 1)). 
1 x 

so that 

K(x, x; t> = -4(+(x, t), (I+ ‘AJ’Q(X, t)), 

-&=t 
/ 

md+#+, t) >( +(z, 01. 
X 

(59) 

The N-soliton solution of the KdV equation takes than the familiar form: 

[N/N]q= -CaXTr[(l+eA,)-‘]+(x, t) )( +(x, r)~] =2a,Z logdet(~+d,). 

(60) 

Hence, the existence of an interaction matrix A, as it arises in the form (42) with the padeon 
approach, hints at the existence of a Marchenko equation of type (58) underlying the KdV 
dynamics. 

On the other hand, we remark that for soliton equations with a higher nonlinearity ( p = 2), 
such as the MKdV equation and the Sine-Gordon equation, the [l/2] fraction which results 
from taking E times the squared padeon has the particular form [6]: 

(61) 

In fact it turns out [7] that also their N-padeons [N - l/NIV are such that the related 
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[2N - 1/2N] fractions: [2N - 1/2N]l* = c{[N - l/NIV}* can be expressed in the remarkable 

form 

[2N-I/2N]V2=a,2~ lOg(1 +Ci,Z). (62) 

i=l 

For dipadeons (N = 2) with p = 2, which can be expressed with a 2 X 2 interaction matrix A, a 
formula of type (62) can only hold if (Y,* takes the special form 

a12 = w, + ww, + k212. (63) 

Indeed, identification of the first two orders in 6 of: 

[3/4] V2 = a,z i log(1 + GI’) with v*=~[~/~Z+~~V,V,+~‘(V,Z+~V,V*)+ .--I 
I=1 

leads to the relations: Vz = 8,’ Tr( 2’) 

2V,V, = +a:( 2 det( Z’) - [Tr( Z*)]*). (64) 

According to the expression V, = exp 9, + exp Y2 and the form (16) of I’,, we get for det( Z*) 
the expression: 

det(Z*) = ’ 

[ 

1 

(k, + k2)4 + =k:kf - 

ff12 

2(k, + k,)* 1 exp(2Y, + 2Y2) 

1 
+ 

(1 + 4kh2) 

2k;( k, + k,)* - 2k;(3k, + k,)* 1 exp(39’, +Y2) + id(1 f 2). 

(65) 

Comparison with the former expression (50) of det Z shows that the coefficient of exp(3cY; +Y2) 
should vanish. This determines c+ as it is given by formula (63). 

This means that the interaction matrix for expressing N-soliton solutions which correspond to 
N-padeons with the property (62) should be real symmetric, 

Finally, it is worth noticing that when (Y,* takes this particular form, the N-padeons: 

[N-l/NIV=@, (r+eA*)-I$), 

where $I and A are given by the relations (54), correspond precisely to the form of the 
reflectionless Schrijdinger potentials which arise from the two-component inverse method [4] 

6. Complex padeons and the cubic Schriidinger equations 

Setting 1c/ = Xq in the nonlinear Schrijdinger equation 

#,, + i#, + 2 I # I *# = 0 

we obtain the scaled version 

$,, + i?, + 2~ I$1 ‘J = 0 with 6 = 1 X ( *. 

(66) 

(67) 
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A complex iteration series $ = Cz=,, c”#~ can now be constructed by taking the following 
solution of the linearized equation: 

$,,=exp 9, 0= -kx+ik2t, ksQ= (68) 

and by choosing for JI,, the particular solution of the n th iteration equation: 
n-1 

+,.X.X + tcIi7.r = - 2 c ~,WC (69) 
j.l.m-O.j+m+l=n-I 

which is proportional to the exponential in the r.h. side: exp(8 + 2n Re 0). The resulting series: 

’ 
4(Re k)* 

exp(2 Re 8) 1 (70) 

is geometrical and generates the regular [O/l] solitary wave solution of (67) 

NV1 J = 
exp 0 

1 + E/(2 Re k)2 exp(2 Re 0) . 
(71) 

Since (67) has a complex [O/l] solitary wave whose absolute value has the typical padeon 
structure: 

1 ij 1 = - 2z,/(l + CZ’), z = (l/2 Re k) exp(Re 0) (72) 

it is reasonable to look for complex dipadeons in the form 

[1/215=~+~ =ji(1+cz2)-‘p 
il 2 

(73) 

where p denotes a C-vector with components F,.~, such that 1 pLi I2 = - 2z;..,. and Z* stands for 
the real diagonal matrix 

z2= z: 0 

l I 0 2’ z2 

(74) 

Let 0 be a complex orthogonal 2 x 2 matrix and Q = 0~; it provides an equivalent representa- 
tion: 

[l/2] $ = +‘( I + eS2)-‘+ with S2 = OZ’O’. (75) 

According to the polar decomposition [2] of complex symmetric matrices. S2 = Ai, where A 
denotes a regular complex_ 2 x 2 manic. Now, in order to be interpretable as a (complex) 
two-soliton solution, [l/2]+ should be expressible in terms of an ‘interaction matrix’ A, such 
that, when restricted to the one-component case (N = 1). the expression (75) reduces to the 
former (complex) padeon-expression (71). This requires: 

and Aii = (2 Re ki)-’ exp(Re 9;). (76) 

Yet, det S2 > 0 and det A is real, so that A = A +. 
In order to determine A,, we must go back to the iteration series which arises from taking 

+,, = exp Y; + exp 9,. Solving the first iteration equation (69) 

i+i., + #l,XX = WIG (77) 
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with 

we get 

where 

#1 = i aij, exp(q +Y;. +Y;*), 
i.J.l==l 

-+, = (2 Re k,)-2 exp(29, +Sq*) + c,~ exp( y, +yt* + 5Z2) 

+Z,2 exp(2y1 +sPT) + id(l * 2), 

Cl2 = a121 + a2,, = (Re k,)-‘(k; + k,)-‘, 

Cl2 = a112 = (k, + /kg-*. 

247 

(78) 

(79) 

Let us now compare the expression (79) with the first-order ‘sandwich’ that arises from 
formula (75) 

-4, = #AA*+. tw 
Setting A,, = A,2~,$~, with A,, = A$,, one readily obtains 

A,, = (k, + k2*)_’ 

and thus 

A,, = (k, + kz) exp +(y, +yT). 

Generalizing to an N x N hermitean interaction matrix Ajj = +iA,j+,F with & = exp 
A;, = (ki + kf)-i, we recover the N-soliton solutions of the scaled cubic Schrodinger 
[7] in the form of N-padeons: 

[N-l/N]?= ($, (1+4A*)-‘+) 

(81) 
{z and 
equation 

(82) 

where $I denotes the C N-vector with components: & = exp +Sq. 

7. Degenerate case: the Burgers equation 

With a first order mixing coefficient (Y,~ = (k, + k,)/4k,k,, the condition (23) is no more 
satisfied: the Burgers equation fails to produce (N 2 2)-padeons. Yet, &2 still satisfies the 
condition (26). In fact, starting from the linearized Burgers equation with a solution V, = 0: 
exp 8, + - e - +a; exp t3,, the iteration series remains purely geometrical: the corresponding 
solution of the Burgers equation is a [l/l] fraction: 

[l/l] V= -2a,log 4, # = 1 + cig, &exp 0,. (83) 
, 

This particular relation between solutions $J of the linearized equation and [l/l] solutions of the 
full equation indicates the existence of the Cole-Hopf transformation V= -2&log 4 which 
linearizes the Burgers equation [7]. Clearly, the l-pole solutions (83) cannot describe the 
interaction of N solitons: the Burgers solitary wave (kink) is no soliton. However, it is easy to 
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check that for N = 2 such l-pole solution splits up, at large negative times, into two separated 
kinks, only one of which (the smaller one determined by k,) corresponds to the pole. The other 
one is not the solitary wave determined by k,: it travels with velocity k, + k,. After some time 
the latter will catch up the former and absorb it: the remaining kink is the solitary wave 
determined by k2. 

The Burgers equation corresponds to a degenerate case for which the rank of the N X N 

interaction matrix equals 1: it possesses degenerate N-padeons, N - 1 poles of which coincide 
with N - 1 zeros. 

8. Conclusion 

The present analysis shows that if N-padeons are expressible in terms of a regular hermitean 
N X N interaction matrix they possess the particular asymptotic properties which characterize an 
N-soliton solution; i.e. the existence of such padeons guarantees the existence of solitons. Such 
padeon-solitons are easily detected: necessary conditions for their existence can be readily 
checked on the first two iterated solutions that arise from a superposition of two exponential 
solutions of the linearized equation (positivity condition, consistency conditions, separability 
condition). These conditions can be used to discuss the precise status of candidate soliton 
equations and of non-integrable padeon equations whose solitary waves do not enjoy the full set 
of stability properties which characterize the soliton. 

Though the present framework represents only a first attempt to characterize solitons from a 
direct point of view (generalizations of the padeon should also be considered) it produces the 
solitons of the familiar IST-solvable equations as well as the corresponding multisoliton 
formulas. By considering only symmetric (hermitean) interaction matrices we did not cover the 
entire positivity interval to which the first mixing coefficients (Y,~ must belong for the existence 
of dipadeons. We restricted our analysis to padeon equations for which (~i~ belongs to a 
sub-interval, the end-point of which coincides with the KdV (MKdV)-case. Extensions will be 
treated elsewhere. 

By producing multisoliton interaction matrices the padeon approach can give some insight 
into the hidden IST-properties of the equation. In particular, it can tell whether a given soliton 
equation can be associated with a familiar scattering problem. 

Appendix 

The N x N interaction matrix A has nondiagonal elements: A,, = @,,,A,,,@: with A,,,,, = 
(k +k -ia 
(l/m2k jk eIi)i 

‘, and a,,, = exp(f~~ + is,,,). From the form of its diagonal elements A,, = 
it follows that the first generalized trace condition (31). with n = 0, is 

automatically satisyied. The second trace condition (n = 1) implies 

2(k, + k,) = (A,,)-’ + (A,,)-’ and thus a,,,, = -a,,,,. 

The third trace condition (n = 2) can be written: 

c A,,,,A,,[(k,-- k,, - 24., + 2i4.,)A.,-- 11 exdcp,+ ‘P, + cp,) = 0. 

(Al) 

642) 



F. Lambert. M. Musette / Solitons 249 

According to the property (Al) the contributions with two equal indices vanish identically. Thus, 
the equation (A2) reduces to: 

C exp(cp,+ cp, + q&,,, + 0,” + a,,) * ImhdL,4,) = 0. (A3) 
I<m<n 

This implies that either of the two following conditions must be satisfied: 

(i) olrn + a,, + a,,, = 0, which, together with the property (Al), requires the separability of 
a,, = a( k,, $): 

U ,,=Y,-Y, with u,=y(k,). (A4) 

(ii) Im(A,,,A,,A.,) = 0, which means that the related Zjj = (k, + k,)-‘~,~ must satisfy the 
condition: 

--- 
;lj + a/, + 61, = a,,uplr, 645) 

or that 

‘i, = tg( y, - v,) with Y, = v( k,), 646) 

requiring thus the separability of the parameters p,, = tg-‘( ujj/k, + kj). 
In both cases one verifies that the further trace conditions are automatically satisfied for all n. 

In particular, it is easy to see that the fourth trace condition (n = 3) amounts to the equation: 

C exP~~~+~j+~/+~~~~(1m~A~~A~~A~~A~~i~~uij+u~/+u/~+u~~~ 
i<J~lCrn 

+Im(A,,A,,A,JAj;)(o,,+U/,+u~j+Uj,) 

+Im(A,,A,jA,m”m,)(u;, + u/j + ajm + urni)) 

+4 C 
i<l<m 

exP(% + ‘PI+ CP,> * ~Im(A;,~~,,,A,,,i)(ui,+ olrn +u,i) ~0. (A71 
I 

In the first case, this condition is clearly satisfied as a result of condition (A4). In the second 
case, Im(A,jAj,A,,A,i) vanishes as a result of the relation 

--- --- 
uij + aJ, + G,m + a,, = uiJuj,u,m 

- - 
+ uj,u,,u,; + lY,,a,,ai, + a,,UijUJ, 

which is itself a consequence of (A6) and the property that as A + B + C + D = 0, 

tg A + tg B + tg C + tg D = tg A - tg B . tg C + tg B . tg C . tg D + tg C . tg D . tg A 

+tg D.tg A.tg B. 
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