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Abstract

The prior estimate and decay property of positive solutions are derived for a system of quasilinear elliptic
differential equations first. Then, the nonexistence result for radially nonincreasing positive solutions of the sys-
tem is implied. By using this nonexistence result, blow-up estimates for a class of quasilinear reaction—diffusion
systems (non-Newtonian filtration systems) are established to extend the result for semilinear reaction—diffusion
systems (Fujita type).
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1. Introduction

The structure of positive solutions for quasilinear reaction—diffusion systems (nonlinear Newtonian
filtration systems) and semilinear reaction—diffusion systems (Newtonian filtration systems) is a front
topic in the study of static electric fields in dielectric media, in which the potential is described by the
boundary value problem of a static non-Newtonian filtration system, called the Poisson—-Boltzmann
problem. This kind of problems also appears in the study of the non-Newtonian or Newtonian
turbulent filtration in porous media and so on, which have extensive engineering background.
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In recent years, the reaction—diffusion systems of Fujita type
u, = Au+u"o™,
vy =Av+u"™, (x,1)eQ x(0,T) (A)
as well as the related elliptic system
—Au=u"v",
—Av=u"v", xeQ (B)

with Q C RN, m;,n; >0, i = 1,2 were studied by a number of authors [2-6,8,9,11-15,17,18]. The
problems concerning system (A) include global existence and global existence numbers, blow-up,
blow-up rates, and blow-up sets, uniqueness or nonuniqueness, etc. For system (B) there are problems
such as existence or nonexistence, uniqueness or nonuniqueness, and so on. Meanwhile, it seems
that very little is known about blow-up rate estimates for quasilinear reaction—diffusion systems.

The aim of this paper is to derive some estimates from the above near the blow-up point for
radially symmetric positive solutions of a class of quasilinear reaction—diffusion systems:

u, = div(|Vu| P72 Vu) + uwvPrw,

v, = div(| V|72 Vo) + w202 wn,

w; = div(|Vo|""2V0) + uBoPw”,  (x,1) € Q x (0,T) (1.1)
as well as the nonexistence of positive solutions of the related elliptic systems:

—div(|Vu|P72Vu) = u vPrw,

—div(|Vu|T2Vu) = uoPw,

—div(|Vu|"2Vu) = u™vPw” xecQ, (1.2)
where Q C RN, oy > p— 1,0 > ¢ — 1,73 >m — 1 with p,q,m > 1,05,03, By, B3, 71,72 = 0. For p=
g=m =2, (1.1) is the classical reaction—diffusion system of Fujita type. If p£2,q#2,m+#2,
(1.1) appears in the theory of non-Newtonian fluids [1,10] and in nonlinear filtration theory [7].
In the non-Newtonian fluids theory, the pair (p,q,m) is a characteristic quantity of the medium.
Media with (p,q,m) > (2,2,2) are called dilatant fluids and those with (p,q,m) < (2,2,2) are called
pseudoplastics. If (p,g,m) =(2,2,2), they are Newtonian fluids.

The main result of the present paper is the natural extension of the results given by Weissler et
al. [18,2,17], which concern the single equation

u(x,t) = Au+u"(x,t), (x,t)€B(0,R) x (0,T)
and the system of equations

u(x,t) = Au(x,t) + v"(x, 1),

v(x, 1) = Av(x, 1) + u"(x, 1)
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or

u(x,t) = Au(x, t) + u?' v,

vi(x, 1) = Av(x, t) + uP?v?.

Throughout this paper let Q = B = {x € RN: |x| < R}(R > 0) since we only deal with radially
symmetric positive solutions of systems (1.1) and (1.2) here. In Section 2, we give sufficient condi-
tions under which the nonexistence of positive solutions of the elliptic system (1.2) holds in RN for
N = 3. Then, in Section 3, by using the nonexistence result, we get the desired blow-up estimates
for the reaction—diffusion system (1.1) with some additional assumptions.

2. Nonexistence for system (1.2)

Consider radially symmetric solutions of the elliptic system (1.2), i.e., suppose that u = u(r),
v=1v(r),w =w(r) with » = |x|. We have the following theorems.

Theorem 2.1. Assume that oy > p—1 (or 2 >qg—1 or y3 >m—1) with p,q,m > 1,0,,03, 1, f3,
71,72 = 0.
If one of the following conditions is satisfied:

gl) N>pand p=g=m=2,

N/2<max{ o3+ B3+ 73 o+ P2+ 72 o+ 1+ }

w+Ps+yps—Dog+Po+y—1 0+ B +791—1

(g2) N> p and p=q=nm,

N/p<max{ a3 + B3+ 73 oy + fo + 72 o+ B+ }’

w—p+l+pf+pm—p+l+Po+yp’o—p+14+p+7

(g3) N > max{p,q,m},

pdi + p(oy—p + 1)ds + Pigds +mydy qdy + q(Br — q + 1)d3 + o pds + my,d,
(oy — p+ l)ds + pids + 11d> ’ (B2 — g + 1)d3 + aads + y2d,

N<max{

mdy +m(y3 —m+ 1)dy + o3 pds + qP3d; }
(73 —m + 1)d, + oazdy + f3ds ’

where dy =(p —1)(q—1)(m —1),dy=(p—1)(g —1),d5=(p — 1)(m — 1),ds = (g — 1)(m — 1),
then system (1.2) has no positive radially symmetric solution.
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Theorem 2.2. Suppose that oy > p—1 (or fy >qg—1or y3 >m—1) with p,q,m > 1,0, 093, 1, B3,
71,72 = 0.
If one of the following conditions is satisfied:

(gl ) N>pand p=g=m=2,

2 2 12 2 1 2 2 1
N/2<max{ o3+ 203+ 73 + o+ P2 +2y+1 oy +26 + 2y + },

205 + 205+ 3 — 120 + fo+ 2y — 1oy + 281 + 2y — 1
(g2) N> pand p=q=m,

poz+ pPs+(p— 1)y + 1) poa+(p— DB+ 1)+ py
pi+ph+(p—D(3—p+1) po+(p—1)(fo—p+ 1)+ pyp’

N/p <max{

(p— D)oy + 1)+ pBi + pni }
(p—D(—p+ D)+ phi+pn )’

(g3) N > max{p,q,m},

PP(g—D)(m—1)+ p(oy — p+1)(g — D)(m — 1) + Pigp(m — 1) + my, p(q — 1)
(1 = p+1)(g = D)(m = 1)+ prp(m — 1)+ y1p(g — 1)

b

N<max{

P(p—D(m—1)+q(pr—q+ 1)(p—1)(m—1)+wpg(im — 1)+ my:(p — 1)g
(P2—q+1)(p—1)m—1)+aqg(m—1)+7y(p—1)g

b

m*(p—1)g—1)+m(ys —m+1)g—1)(p—1)+ a3 plg — )m~+ gf3(p — l)m}
(y3—m+1)g—1)p—1)+au(g—1)m+ B3(p—1)m ’

then system (1.2) has no positive radially symmetric solution.

To prove Theorems 2.1 and 2.2, system (1.2) can be written in radial coordinates as

(®,(u)) + ? @) +uvPw =0, (2.1)
(D,(0)) + ? ®,(v") + P W = 0, (2.2)
(D,,(W)) + ? ®,,(W) + uevPw’ =0, (2.3)
u(0) > 0,0(0) > 0,w(0) > 0/(0) = v'(0) = w'(0) =0 (2.4)

in RN with N > {p,q,m}, where @ ,(u) = |u|P~u, ®,(v) = |[v]?"?v, D, (W) = |w|"*w.
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Lemma 2.1. Let (u,v,w) be a positive solution of Egs. (2.1)—(2.4). Then for r > 0 we have

p p—1 \"!
uocl*p-ﬁ-l(r)vﬁl(r)w’/l(r) < (p — 1) N (OCl—p—I—l) r P, (2.5)
q—1 -1 g—1
o0 Pr—q+1 72 < q qi -9 26
e (r)\<q—1) N(ﬁz—q+1> ' =0
and
m m—1 m— 1 m—1
Ma3(7')vﬁ3(i")wm_m+l(7') < (m_1> N <W> r ", (27)
Proof. Systems (2.1)—(2.4) can be written as
(D, YT = wr P N 2.8)
P
(@, (YT =y PN 2.9)
q
— (PN = ws PN (2.10)
with
u'(0)=1v(0) =w'(0)=0. (2.11)

Integrating Eq. (2.8) on (0,r), it follows that
_@p(u/)rN—l :/ u“](S)Uﬁl(S)WA"ISN_ldS, —ch(v/)rN_l :/ uaz(s)v/fz(s)w”/zsN—l ds
0 0
— @, (W N ! :/ u ()P (s)w sV 1 ds.
0

From the above equalities, u(r), v(r) and w(r) are decreasing functions in (0,00), which implies
1 1/(p—1) r 1/(p—1)
u/(r) < — ( Nl) uon/(pfl)(,.)Uﬁl/(pfl)(,,)ww/(p*l)(,,) </ V1 ds)
r 0

1 1/(p—1)
= _ <N> ,,1/(17—1)uocl/(p—l)Uﬂl/(p—l)w"/l/(p—l)’

1/(g—1)
> rl/(q—l)uaz/(q—l)Uﬂz/(q—l)w*yz/(q—l)’

Z|—

U'(r) < — (

1(m=1)
) SV Om=1), s (m=1) B/ = 1), 3/ (m—1).

Z| =

w'(r) < — (



42 Z. Yang, Q. LulJournal of Computational and Applied Mathematics 150 (2003) 37-56
Using these three inequalities leads to

d _ _ —1) vl

7[,/[(%1 p+D/(p 1)(,,)Uﬁ1/(p Dyyri/p 1)]

dr

_ AT P L 2= 01 ) =Dy =Dy ()
p—1
+ pi w1 = PEDP=D Gy Br=p+DIp=1) () 1/ (= 1)/ (41
p—1
= p D= Dy BN = 1 (1= P D= D)1 )
p—1
_ AT P a2 ) = =Dy =1 1 V=)
p—1
o =12 /(p=1) 1 /(p=1) i/ (p=1)
— — (1/N)V=D (“1 —p 1> PHP=D) (g o1 =P+ D=1 yfr/(p=Dyn/(p=1) Y2
p—1
Solving this inequality, we have
1 1
u(=p+D/(p=D(0)wbr/(P=D(0)w/(P=1(0) N u(=pED/(p=D ()b (p=D(pywn/(p=1)

1/(p—1)
< — 1N m —p+1 p_l,,p/(p—l)
N p—1 P

or
1
u(xl7p+l)/(p*l)(r)Ulh/(p*1)(r)w>'1/(p*1)(r)
- 1
=y =pED(p=D(0)ph1/(P=D(0)wn/(P=1)(0)
. <1>1/(p—1) <(oc1 —p+1)(p-— 1)> )
N p(p—1)

then

U =P P=D () BE=D ey (=D () < (1’
p

) NPl i,
—1

o —p+1

Similarly, we can prove inequalities of Eqgs. (2.6) and (2.7). This completes the proof of
Lemma 2.1. O
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Lemma 2.2. If u(r), v(r) and w(r) are positive solutions of Eqs. (2.1)—(2.4) in (0,00), then
(p— Dl () + (N = pu(r) 20, (q—Drd(r)+(N —qu(r) =0 for r>0
and
(m—1Drw @)+ N —mw(r) =0 forr>0
Proof. Systems (2.1)—(2.4) can be rewritten as
—(p— D772 + (1 = N)rd () = uvP'w” for r > 0,
—(g — DWTH" + (1 = N)rd (V) = u2oPw?  for r > 0,

—(m — D)W "2 + (1 = N)frd, (W) = uvPw”  for r > 0,

hence
rualvﬂlwyl
_Vu//"‘(l_N)ul/(p_l):W’ (2.12)
ruaZUﬁZW"/Z
—rv”+(1—N)U//(q—1):W: (2.13)
" , rus oPwr
We put
N — N — N —
My(r)=ru + P, Mp(r)=r'+ 4., Mc(r)=m' + ™ .
p—1 qg—1 m—1
From (2.12)—(2.14), we have
d d d
7MA(F)<05 7MB(F)<05 7MC(F)<O, (215)
dr dr dr

on (0,400). It follows that M,(r) is nonincreasing on (0,+oc0). Now it is shown that M,(r) is
nonnegative for » > 0. Otherwise, suppose that M,(r;) < 0 for some »; > 0. Then we would have

W)+ (N = p)/(p—Dr u@r) <r 'My(r) forr>r.
Since u is nonnegative, we obtain
W'(r) <r 'My(r)) forr>r. (2.16)

Integrating Eq. (2.16) from »; to », we obtain

u(r) — u(r) < MA(r1)1n<:> for r > r,
1
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hence lim,_,,u(r) = —oo, which is a contradiction. Thus the functions M,(r) is nonnegative.
Similarly, we can prove that the functions Mz(r) and Mc(r) are also nonnegative.
Then, we have

My(r) =0, My(r)=0, Mc(r)=0. (2.17)

Since ' <0, vV <0 and w < 0, we deduce from (2.17) that

fu(r), -’ < -

m—1

el o(r), —mw' <

/
- <
ru |

w(r) forr > 0. |
From Pokhozhaev’s identity (see [14]), we have

Lemma 2.3. Let u(r) be a solution of (2.1) in (r1,r;) C (0,00) and a be an arbitrary constant.
Then, for each r € (r1,r,) we have

S a1+ P + © w2}
=rV[NF(r,u) — auf(r,u) + (a+ 1 — N/p)lu/|"],
where F(r,u) = fou f(s,v)dv= fou(z“”vﬁlwyl)dz.

Proof of Theorem 2.1. Let (u,v,w) be a nontrivial positive and radial solution of Egs. (2.1)—(2.3).
By Lemma 2.2,

(NP )Y = PP ) — D () + (N = plu(r)] = 0, (2.18)
we have

u(r) = cr~W=pr=D)

v(r) = ar VD@D and w(r) = e N mm=D for r > 1. (2.19)
By Lemma 2.1 and Eq. (2.19),

P > el AR IRl > A TP =l =N =p)oa = p+1)/(p=1)=F1(N =)/ (g=1) =71 (N =m)/(m—1)

and
cr 4> c12+ﬁz+vz—q+1r—ﬂz(N—P)/(P—l)—(N—Q)(ﬁz—fﬂrl)/(q—l)—"yz(N—Wl)/(m—l),
e > Byl sV = p) (= 1)~ (V =B/ (g—1)—(3—mt DN =m)/(m—1)
From conditions (gl) or (g2) or (g3) of Theorem 2.1, the above inequalities lead to a contradiction

for large r. Hence Egs. (2.1)—(2.4) have no positive solution in (0, c0), and thus the theorem follows.
U
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Proof of Theorem 2.2. Suppose that our conclusion is not true, and u(»), v(r), w(r) are the positive
solutions of Egs. (2.1)—(2.4) in (0,00). Egs. (2.5) and (2.19), lead to

yA =P By = BN =)/ (g=1) =1 (N =m)/(m—1) < ual—pﬂ(r)vﬁl(,,)wm
p—1 - p—1
<(-2 ) wn(2=l \
p—1 o —p+1

w(r) < cr—PA= D= D4R =DV =gt (N=m)/(g=Dm=1)oa=p+1), (2.20)

which implies that

Using Lemma 2.3 for Eq. (2.1) with a = (N — p)/p, we have

——— ) (" () |+ (N = p)/pr ||

NI =1/ p)l|?
r [( [P+

- / "W 1) — (V — p)/p ()0 (5w (5)] ds

0
or
—Lv W/ (MIP~ ((p — Drd (r) + (N = plu(r)) + - M P w ()
p o + 1
Np—(N—p)ou+1) [7

_ N—1, a1+1 i 71
o+ 1) i ST ()" (s)w (s) ds. (2.21)

It follows from Egs. (2.19) and (2.20) that

PN P P () < eV [ P 0P (! () JuP ()

< NP PR =)t (N =m)(g—1)= plg=D(m=1)]/(g=Dm=1@—p+1) _, () a1 — 0.

Thus, by Lemma 2.2, the left-hand side of Eq. (2.21) is less than any ¢ > 0 for large r, but the
right-hand side is greater than a positive number. This is a contradiction. Thus our conclusion follows.
U

Remark 2.1. From the proof of Theorems 2.1 and 2.2, we know that o;, f;,7; (i=1,2,3) must satisfy
gy >p—lorfy>g—1lorys;>m—1 with wp, 03, f1,3,71,72 = 0.

Then, from Theorems 2.1 and 2.2, for p=¢g=m =2 and o, = a3, f = f3,71 =2 =73 =0, we have

o + f o + B
oy +Po—1" 01+ 1 — 1

N/2 < max {

2 1 2 1
}or N/2<max{ ptfot ] oo 425+ },

20(2+ﬁ2—1’061+2ﬁ1—1
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or equivalently,
N > (N —2)min(a; + f1,00+ f2) or N +2> (N —2)min(o; + 20, fr + 20),

which is just the nonexistence condition obtained by Shaohua Chen and Guozhen Lu [16] for this
special case.

From Theorem 2.2, for p=g=m=2,1=91=0,00=9,=0,03=3=0,01 = =93 =k > 1,
we have

k+1
N2 < ——,
/ k—1
which is equivalent to the well-known critical condition
N +2
k< ——.
N -2
Remark 2.2. Consider the parameters p=g=m=3,N=4,01=p,=y3=7, 00 =03=p1=F3=71=72=0,
which satisfy inequality (g2) of Theorem 2.1; hence Theorem 2.1 asserts the nonexistence of positive
radial solution of system (1.2) in RN. On the other hand, consider the parameters p=g=m=3,N =
4,00 = B, = y; = 11 which do not satisfy condition inequality (g2) of Theorem 2.1. In this case,
system (1.2) can be written as

div(|Vu|Vu) +u'' =0, div(|Ve|Vo) + 0! =0, div(|[Vw|Vw)+w!' =0,
which has the following radially symmetric positive solution in RN:

u(r) =v(r)=w(r)=(1+r¥*)"15

3. Blow-up estimates for system (1.1)

Motivated by Weissler [18], Caristi and Mitidieri [2] and Sining Zheng [17], we use the nonexis-
tence result of the elliptic system (1.2) obtained in Section 2 to establish the blow-up estimates for
the quasilinear reaction—diffusion system (1.1). We impose the following initial and boundary value
conditions to Eq. (1.1):

u(x,0) =up(x), v(x,0)=1vo(x), w(x0)=wp(x), x€Q=BgC R, (3.1)

u=v=w=0, (x1)€0Qx(0,7). (3.2)

Theorem 3.1. Let (u,v,w) be a solution of Egs. (1.1), (3.1) and (3.2). Assume that

(1) u(-,t), v(-,t) and w(-,t) are nonnegative, radially symmetrical and nonincreasing as functions
of r = I,
(i) u,(-, 1), v,(-,t) and w,(-,t) achieve the maximum at 0 for any t € (0,T),
(ii1) w,o,w = 0 u, v, w; =0 for (x,t) € Or = Br x (0,T),
(iv) u, v and w have a blow-up time T < + oo,
(V) o+ pi+ 7y >max{p—1,g— l,m— 1} with o;, p;,7; = 0,i =1,2,3, p,q,m > 1,
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(Vi) gy >p—Tlor fr>qg—1o0ry3>m—1with p,gm>1,0,03,p1,p3,71,72 = 0,

(vii)
min{ga, + mby,(poy + (p — 2)q)a + (poz + (p — 2)m)b; } > max{ p, p(e; — 1)}y,
min{ pa; + mby, (qf1 + (¢ — 2) paz + (g3 + (¢ — 2)m)b2} > max{q,q(f> — 1)}c2

and

min{gas + pbs,(my, + (m — 2)q)az + (my; + p(m — 2))b3} > max{m,m(y; — 1)}c3

or

max{ga; + mby,(poay + (p — 2)q)ay + (pos + (p — 2)m)b; } < min{ p, p(a; — 1)}y,
max{ pa; + mby, (g + (¢ — 2)p)az + (qPs + (g — 2)m)by} < min{q,q(fr —1)}c,

and
max{qaz + pbs,(my, + (m — 2)q)az + (my, + p(m — 2))b3} < min{m, m(y; — 1)}cs,

where ay =pi(y3 —m+1) =13, =p1(fo—qg+ D) —nfr,ci=3 —m+1)(fa—q+1)—72ps,

a=0(y3 —m+1)—o3p,ba =y — p+1) =10, c=(01 — p+1)(y3 —m+1) =103, and

as=p3( —p+1)=proz,bs=03(fo —g+ 1) —wfscs=(p—qg+ 1)1 — p+ 1) = proa,
(viii) There are positive constants ki, ky, k3, ky and w < T such that

k2u(09 t)52/51 < U(Oa t) < klu(oa t)éz/éla
kqu(0, )% < w(0,1) < ksu(0,0)™°" for t€(n, T).
If one of the following conditions is satisfied:

(gl) N =2 and p.q.m = 230€iaﬁi>% = 0: i= 1:2,3~
(g2) N> pand p=gq=m=2,

N/2<max{ o3 + B3+ 73 ’ oy + P2+ 2 , o+ P1+ 7 }
o3+ ps+ys—1l ow+po+yp—1a+pi+y—1

or N>pand p=q=m=2,

203+ 2f3+ 3+ 1 200+ P+ 22+ 1 o + 201 + 2y + 1
N/2 < max ,

20+ 205+ 13— 1 200+ fo+ 2y, — oy + 2B + 2y — 1

(g3) N> pand p=qg=m,

o3 + B3+ 73 o+ o+ 7 o+ pi+mn
N/p < max , ,
wm—p+l+pf+yp —p+tl+tph+yp u—p+l+pi+n
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or N>pand p=qg=m,

pos + pPs+(p—1)(y; +1) poo+ (p— 1)+ 1)+ py
piz+ph+(p—D(3—p+1) po+(p—1)(fo—p+ 1)+ pyp’

N/p <max{

(p— 1) + 1)+ ppi+ pn }
(p—D(u—p+D+ppi+pnl’

(g4) N > max{p,q,m} =2,

pdi + p(oay—p + )ds + Pigds +mydy qdy + q(Br — g+ 1)d3 + oy pds + myd;
(ay — p+ D)ds + prds + 71d, ’ (B2 — g + 1)d3 + aady + y2d,

N<max{

mdy + m(y3 — m+ 1)dy + o3 pdy + qP3d; }
(73 —m+ 1)dy + ozdy + 3d, ’

where di=(p —1)(q—1)(m —1),dy=(p—1)(g—1),ds=(p—1)(m—1),ds=(q—1)(m—1) or
m, p,q > 1 and

b

N <max{p2(q— D(m—1)+ plog — p+1)(g— )(m— 1)+ Bigp(m — 1)+ my; p(g — 1)
(v —p+1)g—1)(m—1)+ pipim—1)+y1p(qg—1)

P(p—1Dm—1)+q(pr—q+1)(p—1)m—1)+wpgim— 1)+ my(p— 1)q
(Po—q+1)(p—1)m—1)+og(m—1)+7p(p—1)gq ’

m(p—1)(g—1)+m@ys —m+1)qg—1)(p—1)+azsp(qg— )m+qp3(p — l)m}
(y3—m+1)(g—1)(p—1)+ou(g—1m+ ps(p—1)m '

Then there are positive constants cy, ¢z, ¢z and t; € (0,T) such that

u(x,t) <u(0,¢) < ei(T — 1)~
v(x,1) < v(0,1) < eo(T — 1), (3.3)

w(x, 1) < w(0,1) < e3(T — 1)~ (3.4)

for all (x,t)€ Qr \ Q,,, where
5= qa, + mb; — pcy
' ai(paa+q(p —2)) + bi(pas + (p— 2)m) — p(ay — Dey’

5 — pa, + mby — qc;
27 w(gh + (g —2)p) + ba(gPs + (g — 2)m) — q(fr — ez’

5 — qas + pb; —mc3
> as(mys + (m = 2)q) + bs(my + p(m —2)) — m(y3 — ey’
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Remark 3.1. Conditions (i)—(iii) in Theorem 3.1 are reasonable if we impose appropriate assump-
tions on the initial data ug(x), vo(x) and wy(x), such as positivity, radial symmetry, and a suitable
decreasing property with

div(| Vo P2 Vup) + uZ o) wit =0, div(|Vue| P72V ug) + u2 ol wit = 0,

div(|Vwo|P"2Vwp) + ul ol wi = 0.
Remark 3.2. Clearly, condition (viii) seems too strong. If p=qg=m=2,0, =03, fr=p3,72="73, 01 +
P1 =02+ P2 (in this case, (1.1) reduces to two equations), from Lemma 3.2 in [17], we know that
kou(x, )20 < o(x,t) < kyu(x, )%/ If p#£2,q#2 or oy + fi # oy + o, we do not know whether or

not condition (viii) holds. We hope this condition can be substantially improved in the future. This
is an open problem.

Remark 3.3. From the definitions of 0, 0, and d3, we see that the conditions «; + f5; + 7; > max
{p—1,9—1,m—1} with o, f;,7; >0, i=1,2,3 and

min{ga, + mby,(poa + (p — 2)q)ar + (pos + (p — 2)m)bi } > max{ p, p(a; — 1)}er,

min{ pa, + mby, (qf1 + (q — 2) p)az + (gf3 + (¢ — 2)m)br} > max{q,q(f> — 1)}ca,

min{qgas + pbs,(my, + (m — 2)q)as + (my, + p(m — 2))b3} > max{m,m(y; — 1)}c;
or

max{ga; + mby,(puz + (p — 2)q)a1 + (px3 + (p — 2)m)bi} <min{p, p(a — D)}e1,

max{ pa; + mby, (qf1 + (¢ — 2) p)az + (¢f3 + (g — 2)m)br} < min{g,q(B, — 1)}c2,

max{qas + pbs,(my> + (m — 2)q)az + (my1 + p(m — 2))bs} < min{m,m(y3 — 1)}c3),

where a1 = fi(p3 —m+ 1) —p1Bs,bi=n(Ba—g+ 1) —nfra=0s —m+1)(Pa—g+ 1) — 025,
ay=0(y3 —m+ 1) —o3y2,bp =200 — p+ 1) = piog,ca = (o1 — p+ 1)(y3 —m+ 1) — y03,
asy = ﬂg(O(] — p+ 1) — ﬁ]O(3,b3 = O(3(ﬁ2 — l]+ 1) — d2ﬂ3,03 = (ﬁz — (]+ 1)(0(1 — p+ 1) — ﬁlotz, are
natural for the discussion of the blow-up rate estimate.

Lemma 3.2. Assume that condition (vii) in Theorem 3.1 holds. Then

min(él, 52, 53) > 0.

Proof. In fact 6, = (qa; + mby — pci)/[ai(poa + q(p — 2)) + bi(pas + (p — 2)m) — p(oq — ey,
if min{ga; + mby,(poy + (p — 2)q)a; + (pas + (p — 2)m)b1 } > max{ p, p(o; — 1)}cy, then §; > 0.
The others are similar to prove. [

Proof of Theorem 3.1. Define the functions u(¢),0(¢),(¢) for t € (0,T) as follows:

w(t) = u(0,0)V,  0(t)=v(0,0)"2,  5(t) = w(0,1)"",
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where

_ pci — qa; — mb,
(y3 —m+ 1)c3 — yaa3 — 1bs”

T

- gcy — pay — mby
(ay — p+ D)ey — a3by — pay

and
e — mcs — qas — pbs
T (Bs—q+ Der— fiby — fray’
By putting
_u(r/p(t),1) _u(r/p(2),1) _w(r/p(e),t)
hl(rst)_ W7 hZ(r7t)_ p(f)fz 5 ]’l}(V,f)— p(t)r3 r= |.X|,

p(1) = pu(t) + 0(¢) + 6(2).

Since u(-,t), v(-,¢) and w(-,¢) achieve their maximum at » =0 by assumption (iv), it is clear that

0 <mrnn < @D <y (3.5)
p(1)"
v(0,¢)
0 < hy(r,t) < <1, (3.6)
’ p(0)"
w(0,t)
0 < hsy(r,t) < < (3.7)
’ p(0)"
Since
ut + i tnua=p+(p—Du, wnu+phn+tna=q+(@- Do,
03T + P32 + y313 =m+ (m — 1)73
and taking into account assumptions (i) and (iv), it follows that
0 < div(|Vh(r,t)|P 2V hy(r,t)) + hflhg‘ hi'(r,1)
ut(oat) Ut(oat) W[(O, t) 3 8
= p(t)PHp—hu p(t)rtla=Drn — p(gym+m=1)s’ (3-8)
0 < div(|Viy(r, )9 >V hy(r, 1)) + hj@hg%gz(r, t)
u(0,1) v,(0,¢) wy(0,1) 3.9
= p(t)pr(p=Du L p(p)ata=Dn T p(pymtHim=Ds” (3.9)
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0 < div(|Vhs(r,0)|7 2Vhs(r, 1)) + BERE R (r, 1)

u,(0,1) v(0,7) wi(0,1)
S p(t)PHp=hu p(t)q-k(qfl)‘tz p(t)m+(m—1)r3

(3.10)

for any t €(0,7) and r €[0,Rp(1)).
Using the symmetry assumption (i), we can rewrite inequalities (3.8)—(3.10) in radial coordinates
and get

N-1 B
0 < (@) + ——— () + i By 1Y

u(0,1) v,(0,¢) w(0,¢)

S ()Pt Du T p(pyatahn T p(pymHm=Dz (3.11)
N —1 ”
0 < (@y(Hy)) + = @) + h iy h;
u(0,¢) v,(0,¢) w(0,¢) (3.12)
= op(t)prp=Du  p(p)ata=Dn T p(fymtim=Ds” ‘
N -1 ,
0 < (PulHy)) + —— Py(li) + B2l b
U[(O,t) U[(O,l‘) W[(O,t) (3 13)
= p(t)l”‘(p*l)fl p(l‘)lﬁ-(q*l)‘fz p(t)m—}—(mfl)m : .
Multiplying (3.11) by A ,, we get
N-—1
(@ () = |+ S B <0,
d p a1 B
3, (P = D/plhis]?) + B by b5 By < 0. (3.14)

Integrating (3.14) on (0,7), we obtain

-1 1 ,
el e B R 0 )

1
OCI—|—1

R0, 0)REY (0, )R (0, 1) — B1/(oy + 1) / WA T b dr
0

— /(o + 1)/ KRR T dr < 0. (3.15)
0
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From (3.15), and h, ,(7,t),h3 ,(r,t) <0, it follows that
2p 1/p
hl < 3.16
el < (i) (310)
for and 1 €(0,7),r €[0,Rp(t)). Similarly, we get
2q >]/q < 2m >l/m
nh ) <|——— , < — 3.17
Vool <(q—1)(ﬁz+l) A\ =D D 17
for any t €(0,7),r €[0,Rp(1)).

Now, we proceed by contradiction as in [2]. If

ut(oat) Ut(oat) Wt(Oat)
T(p—1) Tg—1)c mtm—) | 0,
p()PHr=im p(eyatta=in = p(z) :

lim inf (

t—T

(3.18)

then there exists a sequence {z,} C (0,7) with #, — T such that

< ut(O, tm) U,(O, tm) Wl‘(oa tm) ) — 0

lim inf p(Zm )p+(P_1 Yo, p(lm )q+(q— 1973 p(tm )M+(m— 1)t

tn—T
Since inequalities (3.5)—(3.7) and (3.16)—(3.17), {m(-,tw)}, {h2(-stw)} and {hs3(-,1,)} are equi-
bounded and Lipschitz continuous with the Lipschitz constant less than or equal to (2p/(p — 1))V,
(2q/(g — 1)4 and (2m/(m — 1))"/", it follows from the Ascoli-Arzela theorem that there exists a
subsequence (still denoted by {#,}) such that

hi(stwm) = hi(-) as m — +oc, (3.19)
ho(eyty) — ha(-)  as m — 400, (3.20)
h3(-,tn) — h3(-)  as m — 400 (3.21)

uniformly on compact subsets of [0,+00). Moreover, i, hy, h; € C([0,+00), RT), 1;(0) = 7y (0) =
h_3(0) =1, and hy,hy, hy are decreasing on [0,+o00). Further, taking into account that hy, hy, by are
Lipschitz continuous, we conclude that they are absolutely continuous on [0, +oc0). Considering that
hy,hy, hsy as distributions, it also follows that (3.16) and (3.17) holds in the sense of distributions,
and hence, in the distributional sense we have

BipCotm) = () (@p(hr)Cotm))r = (Pp(h1 (), as m — 400, (3.22)
h2,r('>tm) - ﬁZ,r('): ((pq(hZ,r)(':tm))r - (Qq(EZ,r(')))r as m — +00, (323)
h3,r(‘atm) - };3,r(')a (ém(hlr)('atm))r - (ém(ﬁlr(')))r as m — +0o0. (3.24)

Now, (3.22)—(3.24) imply that

=/ N —1 =/ 7o 71 771
(D, (h)) + — D ,(hy)+ hy hy by =0, (3.25)
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=/ N - 1 =/ —0r = =
(Py(hy)) + —— Dy(hy) + hy'hy B =0, (3.26)

Ne1l_ % cwopom
@, (75) + KRR =0 (3.27)

7

(®,(hy)) +

on (0,400) in the sense of distributions. From Eqs. (3.25)—(3.27), it also follows that hy, hy, by are
C1(0,+oo) and, by local existence and uniqueness of the initial value problem for Egs. (3.25)—
(3.27), we conclude that iy, /1,713 > 0 on (0,400) with /1;(0) = /15(0) = /3(0) = 0.

If N=2,p>2, we proceed as follows: from Egs. (3.25)—(3.27), it is inferred that rd)p(ﬁ/l ),
rcbq(ﬁ;) and r@m(h_g) are decreasing, and that there exist M < 0 and o > 0 such that

r(Dp(ﬁ/l) <M for r € (ry,+00).
The last inequality implies that

hi(s) > hi(s) — hi(t)
— (_M)l/(p—l) /t p V=1 45 — (_M)l/(p—l)(t(p—2)/(p—1) _ S(p—z)/(p—l)) (3.28)

for ry <s < t. Letting t — +o00 in (3.28), we obtain a contradiction.
If N =2, p=2 similar with the above method implies that

hi(s) > hi(s) = (1) > (=M)[In(1) — In(s)]

for rp < s < t. Letting t — 400 in the last inequality, we obtain a contradiction.
Finally, if N > max{p,q} > 2 holds, we know from Theorem 2.1 or 2.2 that system (3.25)—
(3.27) has no positive solutions. We conclude that Eq. (3.18) cannot hold: hence

liminf ( —4(%:0) 2(0,1) wl0.0) o, (3.29)
t—T p(H)pHp=hu = p(g)atla=Dn = p(gymtm=1s
It follows from Eq. (3.29) that there exists #; € (0, 7) such that for any 7 € (¢, 7) we have
ut(oat) Ut(()’[) W[(O, t)
S oyt e—n T p(nyata=m T gyt
u,(0,1) v,(0,¢) wy(0,1) 330
= u(0,£)1H00/01 T (0, £)(1+02)/02 T yp(0, £)(1403)/03 7 (3.30)
Integrating inequality (3.30) on (¢,5) C (#1,T) and then letting s — T, we obtain
(T — 1) < 01u(0,1) Vo 4+ 6,0(0,£) 1% 4 53w(0,1)~1/%, (3.31)

By using condition (viii) in (3.31) we have

(T — 1) < 310, + 8ok =200, )™ + 535 P u(0,1)
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and hence
u(x,t) < u(0,t) < ¢ (T — )"

for any (x,2) € B(0,R) x (0,T).
We have in the same way the blow-up estimate for v, w:

v(x, 1) < 0(0,¢) < (T — 1),
w(x, 1) < w(0,1) < e3(T — ).

The proof is completed. [J

Remark 3.4. For the special parabolic system
u, = Au + uPv?,
v, = Av + uPv?
with p; +¢; > 1, pi,q; = 0, Zheng [17] obtained the blow-up estimates

u(x,t) < M(X,O) < CI(T - t)_a:

v, 1) < u(x,0) < oo(T — )77,

where
oy — l+q1—q
paqr — (p1 = (g2 = 1)’
1+ pr— pi

T g —(pr—D(g2— 1)

Besides, for the special variational parabolic system
u; = Au + v",
v = Av+u’
with u,d > 1, Caristi and Mitidieri [2] obtained the blow-up estimates

u(x,t) < u(x,0) < (T — ¢)~WHD/wo=1),

v(x, 1) < v(x,0) < (T — 1)~ @D/ wo=1)
The single equation case was treated by Weissler [18] with

u(x,t) < u(x,0) < (T — )~ V=D,

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

Clearly, inequalities (3.32)—(3.36) agree with Theorem 3.1 if one takes p=g=m=2,0; = p1, 1 =
qg,0=prPh=q,1=n=03=0n=u,h=F o p=g=m=2,u=FH=0,fil=pun=97,
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Nn=12=73=0,00=03,fr=P3 or p=g=m=2,00=F1=0,01 =fr=py1=12=73=0,00=03, =3,
respectively. Therefore, this paper extends their results essentially.

Remark 3.5. For the special variational parabolic system

u, = div(|Vu|P~*Vu) + v*,
v, = div(|Vo|" 2 Vo) + u’

with u > p— 1,0 > g — 1, we [19] obtained the blow-up estimates

u(x,t) <u(0,¢) <ci(T — 1), wv(x,t) <v(0,1) < co(T — 1)~ (3.37)

for (x,t) € B(0,R) x (0,7T), where

5, = pg+(q—Dp 5, = Op+(p—1)
w(p0+q(p—2))— plg—1) Ogu+ p(g —2)) —q(p—1)

and T €(0,00) is the blow-up time.

The single Eq. (1.1) was treated in [20] with (3.36). Clearly, inequalities (3.37) and (3.36) agree
with Theorem 3.1 if one takes p,g=m > l,a;=0,=0,00=0,p1 =71 =y2=73=0,00 =03, fr =3
or pg=m>1,fi=y = =7=03=f3=0,00 = f =73 = u, respectively. Therefore, this paper
is also an extension of the above results.
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