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Abstract

We generalize the notion of nuclear maps from functional analysis by de�ning nuclear
ideals in tensored ∗-categories. The motivation for this study came from attempts to gener-
alize the structure of the category of relations to handle what might be called “probabilistic
relations”. The compact closed structure associated with the category of relations does not gen-
eralize directly, instead one obtains nuclear ideals.
Most tensored ∗-categories have a large class of morphisms which behave as if they were part

of a compact closed category, i.e. they allow one to transfer variables between the domain and the
codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In
compact closed tensored ∗-categories, all morphisms are nuclear, and in the tensored ∗-category
of Hilbert spaces, the nuclear morphisms are the Hilbert–Schmidt maps.
We also introduce two new examples of tensored ∗-categories, in which integration plays the

role of composition. In the �rst, morphisms are a special class of distributions, which we call
tame distributions. We also introduce a category of probabilistic relations.
Finally, we extend the recent work of Joyal, Street and Verity on traced monoidal cate-

gories to this setting by introducing the notion of a trace ideal. We establish a close cor-
respondence between nuclear ideals and trace ideals in a tensored ∗-category, suggested by
the correspondence between Hilbert–Schmidt operators and trace operators on a Hilbert space.
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1. Introduction

This paper develops a new categorical structure, called a nuclear ideal, which comes
from two independent, seemingly unrelated, developments. These are Grothendieck’s
concept of nuclearity in functional analysis, see for example [57], and the usual
notion of binary relations. The original motivation for this investigation was the need
to generalize ordinary binary relations to probabilistic relations with an eye towards
certain applications in computer science. However, a satisfactory notion of what this
generalization should be comes from the concept of nuclearity in functional analysis.
This paper presents the new concept and gives several nontrivial examples of nuclear
ideals.
Relations form a basic and ubiquitous mathematical structure. There has been much

activity in formulating what relations are “abstractly”, so that one can generalize the
concept to new situations. Typical examples of such formulations are the concept of
cartesian bicategories [20] and allegories [28]. One of the key aspects of the cate-
gory Rel is the fact that one has “transfer of variables”, i.e. one can use the closed
structure and the involution to move variables from “input” to “output”. Intuitively
speaking, this reects the idea that the source and target of a binary relation are a
matter of convention and a binary relation is an inherently symmetric object. In many
situations that otherwise resemble relations, one �nds that the closed structure does
not exist and hence one loses the ability to transfer variables. A typical analogue of
binary relations are the “probabilistic” binary relations, described at length later in the
paper. Even in the absence of detailed de�nitions it ought to be clear that one cannot
(indeed should not) rearrange the inputs and outputs of a probabilistic relation because
there may be dependencies present among di�erent inputs. What remains then in lieu
of closed structure? We claim that it is precisely the nuclear ideals of the present
paper.
In these settings, there appears to be a tension between having identities and having

compact closed structure. If one looks only at the nuclear ideal, one has a compact
closed “category” without identities. On the other hand, the ambient category lacks
closed structure. Others have observed that there are “categories without identities”,
and given a wide range of examples and applications [5, 55]. However, the interplay
between the ideal and the ambient category is the point of the present work, not just
the lack of identities.
Another motivation for this work comes from considering Hilbert spaces. The ten-

sored ∗-category of Hilbert spaces and bounded linear maps (hereafter denoted Hilb)
shares much of the same structure as Rel. One of the goals of this paper is to measure
the extent of this correspondence. Like the category of relations, Hilb has a tensor
product and a tensor-preserving involution, which is the identity on objects. In the
case of Hilb, it is given by the adjoint operation. However, the category of Hilbert
spaces lacks the closed structure of Rel. The structure of Hilb has been axiomatized
as the notion of a tensored ∗-category [30, 24]. (In fact, it is a tensored C∗-category,
but we will not consider its normed structure here.)
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In this paper, we argue that a tensored ∗-category should be thought of as a cate-
gory of (generalized) relations. The category of relations is compact closed, and this
property is frequently taken to be fundamental in axiomatizing relational categories [2,
20]. However, the categories of relations which we consider are not compact closed,
but rather contain a large class of morphisms, in fact an ideal, which has the ba-
sic structure of a compact closed category. To axiomatize this notion, we introduce
the new notions of nuclear ideal and nuclear morphism. This idea is based on the
de�nition of a nuclear morphism between Banach spaces, due to Grothendieck [34],
which was subsequently axiomatized by Higgs and Rowe [38]. The concept of nu-
clearity in analysis can be viewed as describing when one can think of linear maps
as matrices. Of course, in the �nite-dimensional case one can always do this and it
will be the case that all maps between �nite-dimensional vector spaces are nuclear.
The Higgs–Rowe theory applies only to autonomous (symmetric monoidal closed) cat-
egories, while our de�nition applies to the somewhat di�erent setting of tensored ∗-
categories. In the case of a compact closed ∗-category, all morphisms are nuclear,
while in Hilb with its usual tensored ∗-structure, the nuclear morphisms are precisely
the Hilbert–Schmidt maps [43]. Note that since we are only considering Hilb with
the L2 tensored ∗-structure, the notion of nuclear map we obtain is di�erent from
Grothendieck’s notion arising from the category of Banach spaces (with, of course, the
L1 tensor product).
A further goal of this paper is to introduce two new examples of tensored
∗-categories, in which integration plays the role of composition. The �rst such cat-
egory is a category of generalized functions or distributions [7, 57]. Since a discrete
relation on X ×Y can be viewed as a function f :X ×Y →{0; 1}, it seems reasonable
to model a “smeared out” relation as a continuous function f :U ×V →R, where U
and V are open subsets of Euclidean space. However, the identity for such a category
would be the Dirac Delta which is not a function, but a distribution. We choose a
particular class of distributions, the tame distributions, which are su�ciently functional
to allow composition. We then present a nuclear ideal for this category. It will consist
of the tame distributions with functional kernel.
To build a category of probabilistic relations, one would like a category where the

objects are probability spaces, and a morphism is a measure on the product space.
The structure we eventually arrive at is the notion of conditional probability distri-
bution, described in Section 9. Categories of conditional probability distributions have
previously been studied by Giry [33] and Wendt [58, 59]. Our formulation di�ers
from theirs in that in our category, objects are equipped with measures and morphisms
are measures on the product space satisfying an absolute continuity property. To each
morphism, we are then able to associate a pair of conditional probability distribu-
tions. Again, in this case the nuclear ideal will consist of measures having a functional
kernel.
We also extend the recent work of Joyal, Street and Verity on traced monoidal

categories [41] to the present setting by introducing the notion of a trace ideal.
For a given symmetric monoidal category, it is not generally the case that arbitrary
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endomorphisms can be assigned a trace. However, one can often �nd ideals on which a
trace can be de�ned satisfying equations analogous to those of Joyal, Street and Verity.
Our abstract de�nition is suggested by the usual trace construction in the category of
Hilbert spaces, where there is a well-established relationship between maps in the trace
class and Hilbert–Schmidt maps. In this case, we obtain the usual notion of trace of a
bounded linear operator in the trace class.

2. Categorical preliminaries

We assume the reader is familiar with the notion of a symmetric monoidal 3 cat-
egory. A suitable reference is [44]. We now review some of the di�erent closed
structures such a category could have.

De�nition 2.1. A symmetric monoidal category is closed or autonomous if, for all
objects A and B, there is an object A( B and an adjointness relation

Hom(A⊗ B; C) ∼= Hom(B; A( C):

The unit and counit of this adjunction are the familiar morphisms:

ev :A⊗ (A( B)→B; coev :A→B( (A⊗ B):

Examples of autonomous categories include the category of vector spaces and the
category of relations. We obtain a pair of autonomous categories by considering Banach
spaces. We can either consider Ban∞, the category of Banach spaces and bounded
linear maps, or we can consider the category Ban1, of Banach spaces and maps of
norm less than or equal to 1. In either case, the internal Hom is the Banach space
of all bounded linear maps, and the tensor product is the completed projective tensor
product [57].

De�nition 2.2. A compact closed category is a symmetric monoidal category such that
for each object A there exists a dual object A∗, and canonical morphisms

� : I → A⊗ A∗;

 :A∗ ⊗ A→ I;

such that the usual adjunction equations hold:

3 We observe that the notation c :A⊗B→B⊗A is used for the symmetry, and I is used for the tensor unit.
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together with the dual diagram for A∗. In the case of a strict monoidal category, these
equations reduce to the usual adjunction triangles. It is easy to see that a compact
closed category is indeed closed and that A( B ∼= A∗ ⊗ B.

Compact categories could also be de�ned as ∗-autonomous categories [14, 16] with
the additional canonical isomorphism A∗ ⊗ B∗ ∼= (A ⊗ B)∗. ∗-Autonomous categories
provide the basic framework for the model theory of the multiplicative fragment of
linear logic [31].
We briey describe the prototypical example, the category of relations.

De�nition 2.3. The category of relations, Rel, has sets as objects, a morphism from
X to Y will be a relation on X ×Y, with the usual relational composition.

In what follows, X; Y; Z will denote sets, and x; y; z will denote elements. A binary
relation on X ×Y will be denoted xRy. The identity relation will be denoted ID,
and is de�ned as xIDx, for all x∈X. Given a relation R :X → Y , we let R : Y →X
denote the converse relation.
We verify that Rel is compact. The tensor product ⊗ is given by taking the products

of sets, and on morphisms, we have

R :X → Y; S :X ′→ Y ′;

(x; x ′)R⊗S(y; y ′) if and only if xRy and x ′Sy ′:

The unit for the tensor is given by any one point set. We de�ne the functor ( )∗ :
Rel→Rel by

X ∗=X; R∗=R:

The relation � : I → X ⊗ X ∗ is given by ∗�(x; x) for all x∈X and similarly for  .
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3. The tensored ∗-category of Hilbert spaces

Our notation for this section will be as follows. We will use brackets of the form
〈−;−〉 to denote the inner product, which will be linear in the �rst variable. The
associated norm will be denoted ‖−‖. If � is an element of the base �eld, then � will
denote its conjugate. If H is a Hilbert space, then H will denote the conjugate space.
An orthonormal basis will be denoted {ei}i∈I . A suitable reference for basic Hilbert
space theory is [43].
Let Hilb denote the category of Hilbert spaces and bounded linear maps, where

“bounded” always means bounded in the norm associated to the inner product. We
now discuss the structure of this category which is relevant to this paper. The �rst
structure we need is the adjoint function [43].

De�nition 3.1. Let H and K be Hilbert spaces, and f :H→K a bounded linear
map. Then the adjoint of f, denoted f∗, is de�ned to be the unique bounded linear
map f∗ :K→H such that, for all a∈H; b∈K, we have

〈a; f∗(b)〉= 〈f(a); b〉:

Lemma 3.2. The adjoint construction satis�es the following properties:
• (idH)∗= idH;
• (fg)∗= g∗f∗;
• f∗∗=f;
• (f ⊗ g)∗=f∗ ⊗ g∗. (The tensor product will be discussed below.)

These conditions tell us that the adjoint operation provides a contravariant, tensor-
preserving, involutive functor on Hilb which is the identity on objects. Given such a
functor, it is clear that the category Hilb is much closer in its categorical structure to
the category of relations than to the category of Banach spaces.

3.1. Hilbert–Schmidt maps

We now discuss a crucial class of bounded linear maps, called the Hilbert–Schmidt
maps. The material in this section can be found in [43].

De�nition 3.3. If f :H→K is a bounded linear map, we call f a Hilbert–Schmidt
map if the sum

∑
i∈I

‖f(ei)‖2

is �nite for an orthonormal basis {ei}i∈I . The sum is independent of basis chosen.
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It is straightforward to see that:

Lemma 3.4. If f :H→K is a Hilbert–Schmidt map and g :H1→H; g′ :K→K1

are arbitrary bounded linear maps; then g′f and fg are Hilbert–Schmidt.

Thus, the Hilbert–Schmidt operators on a space form a two-sided ideal in the set of
all bounded linear operators. A proof of the following theorem may be found in [43].

Theorem 3.5. Let HSO(H;K) denote the set of Hilbert–Schmidt maps from H to
K. Then HSO(H;K) is a Hilbert space with

〈f; g〉=
∑

i∈I; j∈J

〈f(ei); e′j〉〈e′j; g(ei)〉:

Here, {ei}i∈I is an orthonormal basis for H and {e′j}j∈J is an orthonormal basis
for K.

3.2. The tensor product

It is standard to construct the tensor product of Hilbert spaces H ⊗K as the
completion of the algebraic tensor product with respect to the inner product:

〈x1 ⊗ y1; x2 ⊗ y2〉= 〈x1; x2〉〈y1; y2〉:

One then completes with respect to the L2 norm to obtain a Hilbert space. (Note
that it is also possible to give an equivalent presentation that emphasizes the universal
mapping property of the tensor. This involves the notion of a weak Hilbert–Schmidt
mapping. This is explained in [43, p. 132].)

Remark 3.6. We wish to emphasize that, in this paper, we will only be considering
the L2 tensor product. Furthermore, the category Hilb will always be the category of
Hilbert spaces with bounded linear maps, equipped with this tensored ∗-structure.
Thus, our notion of nuclearity will not coincide with the notion obtained by view-

ing Hilbert spaces as Banach spaces and applying Grothendieck’s de�nition, which of
course uses the L1 tensor.

For us, the most important property of the Hilbert tensor product is its relation to
Hilbert–Schmidt maps. This is given by the following theorem [43, p. 142]:

Theorem 3.7. We de�ne a linear mapping U :H⊗K→HSO(H;K) by U (x ⊗ y)
(u)= 〈x; u〉y, where x ⊗ y∈H⊗K. Then U is a unitary transformation of H⊗K

onto HSO(H;K). In particular; we note that the morphism U is a linear bijection.
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4. Tensored ∗-categories

The category Hilb, of Hilbert spaces and bounded linear maps, shares many of the
properties of a compact closed category, except for the closed structure. Hilb is in fact
an example of a tensored ∗-category. We now develop this theory.

De�nition 4.1. A category C is a ∗-category if it is equipped with a functor (−)∗ :
Cop→C, which is strictly involutive and the identity on objects. (Note that the strict
involution may be replaced with a coherent involution, but we will not require that level
of generality.) A ∗-category is tensored if it is symmetric monoidal, (f ⊗ g)∗=f∗ ⊗
g∗, and there is a covariant conjugate functor, ( ) :C→C, which commutes with the
∗-functor and has natural isomorphisms:
• A ∼= A (we will generally take this to be an equality),
• A⊗ B ∼=A⊗ B (we will generally take this to be an equality),
• I ∼= I ,
satisfying the usual monoidal equations, and the following equation. Suppose that
f : I→ I .

I
f∗

−−−−−→ I

∼=

y
x ∼=

I −−−−−→
f

I

In all of our examples except for those involving complex Hilbert spaces, conjugation
will simply be taken to be the identity. In this case, the previous diagram implies that
if f : I→ I , then f∗=f.

The notion of a tensored ∗-category is the �rst step towards de�ning a tensored
C∗-category, or multiobject C∗-algebra [30, 24]. This theory has been developed
quite extensively in the previously cited references. Among the results established is
a representation theorem stating that such categories have faithful structure-preserving
embeddings in Hilb. This should be thought of as a multiobject version of the Gelfand–
Naimark–Segal theorem.

Examples of tensored ∗-categories
• Rel.
• Hilb.
• Hilbfd, the category of �nite-dimensional Hilbert spaces.
• URep(G), the category of unitary representations of a compact group G.
• URepfd(G), the category of �nite-dimensional unitary representations of a compact
group G.
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Further examples can be found in [30, 24]. Note that Examples 2 and 4 are ten-
sored ∗-categories which are not closed. We will present other examples of tensored
∗-categories which are not closed.
Even though tensored ∗-categories are not compact closed, they share much of the

same structure. One of the goals of this paper is to introduce a structure for measuring
the extent to which such a category is closed.

5. Nuclearity

One of the characteristic features of compact closed categories is the ability to dis-
tribute the dual functor across the tensor product. This is represented by the equation
(A⊗ B)◦ ∼= A◦ ⊗ B◦. (A◦ denotes the dual object. We temporarily adopt this notation
to avoid confusion with the ∗-functor we will be discussing later. In the context of
tensored ∗-categories, one should keep in mind the equation A◦=A∗.) This allows one
to arbitrarily repartition the morphism or “interface” in the terminology of interaction
categories [2]. The categories we will encounter typically allow such repartitioning for
some maps, but do not meet all the requirements of being a compact closed category.
We now introduce the related notion of nuclearity in a symmetric monoidal closed

category, due to Rowe [51], and subsequently studied by Rowe and Higgs [38]. The
idea is suggested by Grothendieck’s work on topological tensor products and nuclear
spaces [34]. Grothendieck de�ned a continuous linear map f :A→B between Banach
spaces to be nuclear if it can be written as f(a)=�fi(a)bi where �fi ⊗ bi is an
element of the completed projective tensor product A◦ ⊗ B. We begin by noting that
in any symmetric monoidal closed category, there is a morphism of the form

’ :B⊗ A◦→A( B:

Here, A◦=A( I , where I is the unit for the tensor. This is constructed as the transpose
of the composite

B⊗ A◦ ⊗ A
id⊗ −→ B⊗ I

∼=−→ B:

De�nition 5.1. Let C be a symmetric monoidal closed category. Let ’ denote the
canonical morphism ’ :B⊗ A◦→A( B. If f :A→B in C, then let n(f) : I→A( B
be the name of f. We say that f is nuclear if there exists p(f) : I→B⊗A◦ such that
the following diagram commutes:
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We will refer to p(f) as a pseudoname for f. (We should point out that there are
some cases in which a pseudoname is not unique.) We say that an object of C is
nuclear if its identity map is nuclear.

Lemma 5.2. Suppose that f :A→B and g :C→D are nuclear; then so are:
• f◦ :B◦→A◦.
• f′f :A→E for any morphism f′ :B→E.
• fh :F→B for any morphism h :F→A.
• f ⊗ g :A⊗ C→B⊗ D.

All of the above can be obtained by straightforward diagram chasing. For example,
in the third item, one can choose p(fh)=p(f); (id⊗h◦). It is not in general the case
that if f; g are nuclear, then so is f ( g. However, if C is ∗-autonomous with unit
as dualizing object, then f ( g will also be nuclear [38, p. 70].
In a compact closed category, the map ’ is an isomorphism, and thus every map is

nuclear. Furthermore, we can see the following:

Theorem 5.3 (Higgs and Rowe [38, Theorem 2.5]). For an arbitrary object A in C;
a symmetric monoidal closed category; the following are equivalent:
• A is nuclear.
• The morphism ’ :A⊗ A◦→A( A is an isomorphism.
• The morphism ’ :B⊗ A◦→A( B is an isomorphism; for arbitrary objects B.

Theorem 5.4. For any symmetric monoidal closed category; the full subcategory of
nuclear objects is compact-closed.

Proof. Suppose that A is a nuclear object. Then, choosing a pseudoname for the identity
gives a morphism of the form I → A⊗A◦. It only remains to show that the adjunction
triangles commute. We will consider one of the two adjunction triangles.

It is standard that the lower leg of the diagram is the identity. The upper leg of the
diagram corresponds to the adjunction triangle. The upper triangle in the above square
is the de�nition of pseudoname. The lower triangle is a straightforward exercise.

In Ban∞ or Ban1, we recover Grothendieck’s original de�nition of nuclearity. The
nuclear objects are the �nite-dimensional Banach spaces. In the category of vector
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spaces, a morphism is nuclear if and only if its image is �nite-dimensional. Again,
a vector space is nuclear if and only if it is �nite-dimensional. In [38], the authors
explore the notion of nuclearity in the category of complete join semilattices CJSL. It
is well known that this is a symmetric monoidal closed category, in fact ∗-autonomous
[42]. The authors completely characterize nuclearity in this case (This result is closely
related to Raney’s notion of a tight morphism [49].):

Theorem 5.5 (Higgs and Rowe). A morphism f :A→B in CJSL is nuclear if and
only if there exists g :B→A such that for all a∈A; f(a)= sup{b | a 6≤ g(b)}. An
object is nuclear if and only if it is completely distributive.

Remark 5.6. Following the recent work of Joyal et al. [41] on traced monoidal cat-
egories, one can now observe that, in a symmetric monoidal closed category, it is
possible to de�ne a trace on the nuclear morphisms as follows, under the assump-
tion that pseudonames are unique. If f :A→A is nuclear, then tr(f) : I→ I is
given by

tr(f)=p(f); ev : I→A⊗ A◦→ I;

where ev :A⊗A◦→ I is the usual evaluation map. Then given h :A→B a nuclear map,
and g :B→A arbitrary, one can verify the usual trace equation tr(gh)= tr(hg). This is
seen by the following diagram:

The right-hand diamond is the usual (di)naturality of evaluation. The two triangles
on the left are the equations for p(gh) and p(hg).

While this theory is satisfactory when considering symmetric monoidal closed cat-
egories, there are nonclosed categories which exhibit similar structure. For example,
the category of Hilbert spaces is not closed, but the class of Hilbert–Schmidt maps
seem to have something like a nuclearity property. We will soon exhibit other such
categories. One of the goals of this paper is to extend the above notions to a larger
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class of categories, speci�cally to ∗-categories. We now introduce a new notion, that
of a nuclear ideal.

De�nition 5.7. Let C be a tensored ∗-category. A nuclear ideal for C consists of the
following structure:
• For all objects A; B ∈ C, a subset N(A; B)⊆Hom(A; B). We will refer to the union
of these subsets as N(C) or N. We will refer to the elements of N as nuclear
maps. The class N must be closed under composition with arbitrary C-morphisms,
closed under ⊗, closed under ( )∗, and the conjugate functor.
• A bijection � :N(A; B)→Hom(I; A ⊗ B). If f :A→B is a nuclear morphism, note
that we can use the bijection � and the ∗-functor to construct morphisms of the
form

1. �(f) : I→A⊗ B.
2. �(f)∗ :A⊗ B→ I .
3. �(f∗) : I→B⊗ A.
4. �(f∗)∗ :B⊗ A→ I .

We shall frequently refer to these morphisms as transposes of f. It will always be
clear from the context which transpose is being considered. The bijection � must also
satisfy the following properties:
1. Preservation of tensored ∗-structure. The bijection � must preserve all of the
tensored ∗-structure. In other words,
(a) If f :A→B and g :C→D are nuclear, then �(f ⊗ g)= �(f) ⊗ �(g). More

precisely, the map �(f ⊗ g) : I→A⊗ C ⊗ B⊗ D is given by the composite:

I ∼= I ⊗ I→A⊗ B⊗ C ⊗ D ∼=A⊗ C ⊗ B⊗ D=A⊗ C ⊗ B⊗ D:

Furthermore, the transposes of a map of the form f : I→A are given by
composition with the evident isomorphism.

(b) �(f)= �(f∗)= �(f). Again, more precisely, we would say

�(f)= c ◦ �(f∗)= �(f) ◦ �;
where c is the symmetry and � is the isomorphism � : I→ I .

2. Naturality. For any f :A→C and g :B→D, the following diagram commutes:

N(A; B)
�−−−−−→ Hom(I; �A⊗ B)

N(f∗ ; g)

y
y Hom(I; �f⊗g)

N(C;D)
�−−−−−→Hom(I; �C ⊗ D)

Note that since the class of nuclear morphisms is closed under composition with
arbitrary C-morphisms, the function N(f∗; g) is well de�ned.
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3. Compactness. Let f :A→B and g :B→C be nuclear. Then the following should
commute.

A
∼=−−−−−→ I ⊗ A

�(g)⊗idA−−−−−−−−−−−−→ �B⊗ C ⊗ Ay gf c

y
C ←−−−−−∼=

C ⊗ I ←−−−−−−−−−−−−
idC⊗�(f∗)∗

C ⊗ �B⊗ A

This completes the de�nition of nuclear ideal. In the case where A is a nuclear object
and f= g= idA, then this last equation reduces to the usual adjunction equation for a
compact closed category. We will see that it is also related to the “yanking” axiom of
[41].

Given a category C and a nuclear ideal N, we say that an object A of C is
N-nuclear if we have that N(A;−)=Hom(A;−). Note that by the ideal property,
this is equivalent to saying that the identity map for A is nuclear. Typically, this no-
tion of nuclear object is capturing the “�nite-dimensional” subcategory. It should not
be thought of as describing Grothendieck’s much richer theory of nuclear spaces.
Note that we are not claiming that the transposition map is in any way unique;

di�erent choices of � could conceivably give di�erent nuclear ideal structures. The
usual uniqueness arguments, see for example [44, pp. 80–82], do not apply here in that
we may not transpose the identity map. Thus it is possible that several distinct nuclear
structures may exist on a given category. We are still pursuing this question. However,
we know of no such examples. In the examples presented in this paper, the choice of
the transpose is obvious and canonical, given the structures under consideration.
One of the consequences of the above de�nition is the “sliding” equation of Joyal

et al. [41]:

Lemma 5.8. Suppose f :A→B and g :B→A are nuclear. Then the following diagram
commutes for any nuclear ideal:
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This equation is a straightforward consequence of the axioms. We will see in
Section 8 that it corresponds to the familiar trace equation tr(fg)= tr(gf).

Theorem 5.9. Let (C;N) be a nuclear ideal for which all objects are nuclear; then
C is a compact-closed category.

Proof. If A is an object of C, then the transpose of the identity will be a morphism
of the form I→A⊗ �A. The commutativity of the adjunction triangles follows from the
compactness requirement of the de�nition.

Theorem 5.10. The set of Hilbert–Schmidt maps forms a nuclear ideal for Hilb.

Proof. Let H and K be Hilbert spaces, and let N(H;K) be the set of all Hilbert–
Schmidt maps from H to K. It is evident that Hom(I; �H ⊗K) ∼= �H ⊗K. So the
morphism U , de�ned in Theorem 3.7, will act as a transpose operator. We saw in
Section 3 that this map was a linear bijection. It only remains to check the equations.
These are a straightforward consequence of linearity and properties of the adjointness
operator.

The nuclear objects in this case are precisely the �nite-dimensional Hilbert spaces.
Thus, we recover the familiar compact closed subcategory. The same program can be
carried out for categories of representations such as URep(G).

5.1. Partial injective functions

De�ne a category PInj as follows. Its objects will be sets, and morphisms will be
partial injective functions, that is to say partial functions which are monomorphic when
restricted to the domain. These partial functions were used by Danos in his modeling
of the geometry of interaction [22].
If f :X → Y is a morphism, let Dom(f) be its domain, i.e. Dom(f)= {x∈X |f(x)

is de�ned}. This category has an evident ∗-structure, and if we choose the cartesian
product of sets as a tensor, then we evidently have a tensored ∗-category. We now
demonstrate that this category has an evident nuclear ideal. De�ne

N(X; Y )= {f :X → Y |Dom(f) has cardinality 0 or 1}:
Then one can see that we have an obvious bijection between Hom(I; X ⊗ Y ) and

N(X; Y ).

Theorem 5.11. The above construction de�nes a nuclear ideal for PInj.

5.2. Crossed M -sets

The following is based on Freyd and Yetter’s notion of a crossed G-Set, which they
use in their work on braided compact closed categories [29]. In this paper, we will
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only consider a commutative monoid, which gives a symmetric monoidal category. We
hope to explore the nonsymmetric and braided versions of this construction in future
work, as well as the connections to topological quantum �eld theory [12].

De�nition 5.12. Let M be a commutative monoid with identity e. De�ne a crossed
M-set to be a (left) M-set X, together with a function ‖ :X →M such that |mx|= |x|.
(This formula is more complicated in the nonabelian case. With a nonabelian group,
we would require that |gx|= g−1|x|g.)
Now de�ne a category XRel as follows. Objects are crossed M-sets, and maps are

relations R :X → Y such that
• xRy⇒mxRmy;
• xRy⇒|x|= |y|:

Freyd and Yetter construct a category where the objects are functions satisfying
precisely these requirements. They use a nonabelian group and the braiding is the
symmetry adjusted appropriately by the action of G. They then use this category to
develop knot invariants [29]. In subsequent work, Yetter uses crossed G-sets to con-
struct topological quantum �eld theories [60]. See also [48].
If X and Y are crossed M -sets, de�ne X⊗Y as cartesian product with componentwise

action, and |(x; y)|= |x||y|. The unit is the one element set I = {∗}. De�ne |∗|= e.

Theorem 5.13. XRel is a tensored ∗-category.

Note that XRel is not compact. The counit of the adjunction would be required to
satisfy ∗R(x; x) for all x∈X, but this would hold if and only if |x|2 = e. This will be
our de�nition of nuclear object.
Now for all X; Y, de�ne N(X; Y )⊆Hom(X; Y ) by

R :X → Y is nuclear if and only if xRy⇒|x|2 = |y|2 = e:

Theorem 5.14. This de�nes a nuclear ideal for XRel.

6. Distributions as relations

In this section, we introduce a generalized category of relations based on the idea
of distributions. The guiding intuition is that composition should be determined by an
integral of the form

’(x; y);  (y; z)=
∫

’(x; y) (y; z) dy:

The viewpoint here is that the notion of integration generalizes the existential quan-
ti�cation that appears in the de�nition of relational composition. We will refer to this
formula as the “convolution formula”. We now introduce a framework in which this
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makes sense. A naive approach is to view ’(x; y) and  (y; z) as real-valued functions.
However, for such a “category” to have identities would require an equation of the
form∫

’(x; y)�(y; y′) dy=’(x; y′)

and similarly for left composition. The “function” playing this role is in fact the Dirac
� which is not a function but a generalized function or distribution in the sense of
Schwartz [53, 57, 7]. Unfortunately multiplication of distributions is not always well-
de�ned. Formulas like the one above are sensible only for certain limited kinds of
distributions. In the rest of this section, we review basic facts about distributions and
then develop a theory of what we call “tame” distributions for which the above integral
formula makes sense.
Tame distributions are mentioned in the extant literature (see, for example, Dieudon-

n�e’s “Treatise on Analysis”, vol. 7, Ch. 23, Sections 9 and 10 in [23]), but are not
given a name.

6.1. Basics of distributions

Let 
 denote a nonempty open subset of Rn. Let E(
) denote the set of C∞

(smooth) functions on 
 and D(
) denote the smooth (complex-valued) functions of
compact support on 
. We will refer to the elements of D(
) as test functions. In
what follows, we use Greek letters such as �;  ; � as test functions. D(
) is given
the structure of a topological vector space as follows. This structure is described for
example in [7, 57].
We begin by considering a compact subset K ⊆
, and letting D(
;K) be the set

of continuous functionals on 
 with support contained in K . Then we de�ne a family
of seminorms on D(
;K) by the following formula, where @xi

1 ::: x
j
n denotes the partial

derivative with respect to the listed variables:

|’|m= sup{|@xi
1 ::: x

j
n’(x)|: x∈K and i + · · ·+ j ≤ m}:

We then give D(
;K) the least topology such that each of these seminorms is
continuous. The existence of such a topology is proved on p. 12 of [7]. With this
topology, D(
;K) is a Fr�echet space, i.e. it is locally convex, metrizable and complete.
Now observe that

D(
)=
⋃
{D(
;K) |K ⊆
 and K is compact}:

We then give D(
) the �nest locally convex topology such that the inclusions
D(
;K)⊆D(
) are continuous for every compact K . This is known as the inductive
limit of the topologies on D(
;K).

Theorem 6.1 (Al-Gwaiz [7, p. 25]). The topology that D(
;K) inherits as a sub-
space of D(
) is the same as its original topology for every compact K . A linear
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functional on D(
) is continuous if and only if the restriction to D(
;K) is contin-
uous for every compact K.

With this topology, D(
) is not metrizable. However it is an LF space (locally
Fr�echet) in the sense of [57, p. 126]. As such, it is locally convex, Hausdor� and
complete.
Then we de�ne a distribution on 
 to be a continuous, linear (complex-valued)

functional on D(
). Let D′(
) denote the set of all distributions on 
. Let D′(
) be
given the weak topology, [7, p. 45], or [57, p. 197]. This is equivalent to the topology
of pointwise convergence, and D′(
) is locally convex, Hausdor� and complete. We
will also have need of the following extension theorem [57, p. 39].

Theorem 6.2. Let E;F be two Hausdor� topological vector spaces; with A a dense
subset of E and f a continuous linear mapping of A into F. If F is complete; then
there is a unique continuous linear mapping f from E into F which extends f.

We now describe some examples.
1. Let Lloc(
) denote the space of locally integrable functions. Suppose that

f∈Lloc(
). De�ne a distribution Tf by

Tf(’)=
∫


f(x)’(x) dx:

Note that two locally integrable functions determine the same distribution if and only
if they are equal almost everywhere [57]. A distribution of this form is called regular,
and the function f is called the kernel of the distribution. A distribution which does
not arise in this way is called singular. Regular distributions are fundamental examples,
in fact there are a number of strong results regarding the approximation of distribu-
tions by regular distributions [57]. This justi�es thinking of distributions as generalized
functions.
2. As a special case of the previous example, we observe that every test function is

itself locally integrable, and so induces a regular distribution. Thus we have a canonical
inclusion

� :D(X ) ,→ D′(X )

given as follows:

�(x) 7→
[
 (x)∈D(X ) 7→

∫
�(x) (x) dx

]
:

There are similar inclusions for the set of locally integrable functions or smooth func-
tions.
3. For any point x∈
, let �x(’)=’(x). If 0∈
, we denote �0 simply as � and

refer to it as the (one-variable) Dirac delta. One can show that this distribution is
singular, see for example [7, 57].
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4. If 
⊆R, we may also “di�erentiate” the previous distribution via the formula

�′x(’)= − ’′(x):

This distribution is also singular. More generally, if 
⊆Rn and T ∈D′(
), we have
the formulas

@
@xi
(T )(’)=−T

(
@
@xi
(’)
)

;

@xi
1 ::: x

j
n (T )(’)= (−1)i+···+jT (@xi

1 ::: x
j
n (’)):

These formulas allow one to “di�erentiate” nondi�erentiable functions, and are one of
the many advantages of distributions. See, for example [7, Ch. 2.3].
5. When considering 
×
, we have the trace distribution [40, Example 5.2.2]

given by

’∈D(
×
) 7→
∫


’(x; x):

6.2. The Schwartz kernel theorem

One is often interested in distributions on product spaces, especially in the theory of
di�erential equations and their associated Green’s functions. In this situation the analogy
between distributions and “in�nite-dimensional matrices” is quite striking. The theory
of kernel distributions can be seen as a formalization of this analogy. In the analysis
literature, the notion of “kernel distribution” is studied at length, see for example the
massive treatise of Dieudonn�e [23] or the book by Treves [57]. When considering
a space of test functions of the form D(X ×Y ), there is a canonical subspace of
fundamental importance. Consider the tensor product D(X )⊗D(Y ). A typical element
of this space is of the form

n∑
i=1

’i⊗  i where ’i ∈D(X ) and  i ∈D(Y ):

There is a canonical inclusion of D(X )⊗D(Y ) into D(X ×Y ) given by

’⊗  7→ [(x; y) 7→ ’(x) (y)]:

The result we will have use for is:

Proposition 6.3. The space D(X )⊗D(Y ) is sequentially dense in D(X ×Y ).

Now we have a chance of de�ning functions on D(X ×Y ) as the unique continuous
extension of functions de�ned on D(X )⊗D(Y ) using Theorem 6.2.
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One of the fundamental results in the theory of distributions is the Schwartz kernel
theorem, which gives conditions under which maps from D(X ) to D′(Y ) can be real-
ized as distributions on X ×Y. We need the following notations to state the theorem. If
f is a distribution on X ×Y and �∈D(X ) then f∗(�) will be the function from D(Y )
to the base �eld given by  ∈D(Y ) 7→ f(�⊗  ) and f∗( ) is given by the evident
“transpose” formula. We have not yet said that f∗(�) and f∗( ) are distributions; that
is part of the content of the kernel theorem.
The Schwartz kernel theorem states:

Theorem 6.4. Let X and Y be two open subsets of Rn and Rm.
1. Let f be a distribution on X ×Y . For all functions �∈D(X ) the linear map

f∗(�) is a distribution on Y . Furthermore; the map � 7→ f∗(�) from D(X ) to D′(Y )
is continuous; when D′(Y ) is given the weak topology.
2. Let f∗ be a continuous linear map from D(X ) to D′(Y ). Then there exists a

unique distribution on X × Y such that for �∈D(X ) and  ∈D(Y ) the following
holds:

f(�⊗  )=f∗(�)( ):

Evidently, by symmetry, the same result applies for f∗. In light of the kernel theo-
rem, we may now state the following de�nition.

De�nition 6.5. Suppose that f is a distribution on X ×Y ; then we obtain the following
continuous maps (supposing that �∈D(X );  ∈D(Y ) are arbitrary):
1. f∗ :D(X )→D′(Y ) is given by f∗(�)( )=f(�⊗  ):
2. f∗ :D(Y )→D′(X ) is given by f∗( )(�)=f(�⊗  ):

6.3. Tame distributions

To pass from the “discrete” category of ordinary relations to a category of “contin-
uously varying” relations, we should replace the usual notion of morphism in Rel, a
function X ×Y → 2, with an integrable function X ×Y →R, where X and Y are now
open subsets of some Euclidean space. We have already seen, however, that functions
do not su�ce. One must pass to a class of generalized functions or distributions. While
distributions satisfy many properties of functions, they cannot be multiplied and hence
the composition formula that we had proposed does not make sense. Thus our goal is
to introduce a class of distributions which are su�ciently “functional” as to allow us
to compose them using the integral formula discussed above.
We will use a notion de�ned by Dieudonn�e in [23]. It will provide the �rst step

towards de�ning a composable class of distributions. Note that E(X ) is the space
of all smooth complex-valued functions on X (not necessarily of compact support).
Unfortunately, Dieudonn�e uses the term regular which conicts with the terminology
above. We therefore use the term Dieudonn�e-regular.
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De�nition 6.6. We say that a distribution f∈D′(X ×Y ) is Dieudonn�e-regular if
1. For all functions �∈D(X ), f∗(�) is in E(Y ), that is to say there exists �̂∈E(Y )

such that the distribution f∗(�)∈D′(Y ) is de�ned by

f∗(�)( )=
∫
Y
�̂(y) (y):

2. Similarly, for all functions  ∈D(Y ), f∗( ) is in E(X ).

An equivalent statement is that the function f∗ :D(X )→D′(Y ) speci�ed by the
kernel theorem factors through the inclusion E(Y ) ,→ D′(Y ), and similarly for f∗.
We would like to de�ne our composition as follows. Given distributions f∈

D(X ×Y ); g∈D(Y ×Z) which are Dieudonn�e-regular, we try to de�ne a distribution
f; g∈D(X ×Z) using the following formula (with �∈D(X ); ∈D(Z)).

f; g(�⊗ )=
∫
Y
�̂̂:

Here �̂ is the element of E(Y ) associated to the distribution f∗(�), and ̂ is the
element of E(Y ) associated to the distribution f∗().
However, the above integral may well be in�nite. Thus we must add an additional

assumption which assures the �niteness of this integral. One possibility is to require
not only that the two kernels be smooth, but that they have compact support. 4 Thus,
we have the following:

De�nition 6.7. A tame distribution on X ×Y is a distribution f on X ×Y such that
each of f∗ and f∗ factor continuously through the appropriate �, where � is the inclusion
of the space of test functions into the space of distributions. Explicitly, there exist
continuous linear maps

fL :D(X )→D(Y );

fR :D(Y )→D(X ):

such that for every �∈D(X ) and  ∈D(Y ), we have

f∗(�)( )=f∗( )(�)=f(�⊗  )=
∫

fL(�) dy=
∫

�fR( ) dx:

Note that we are not saying that fL and fR have functional kernels and certainly not
that f has a functional kernel. But rather that f∗ and its adjoint f∗ map test functions to
distributions with test functions as kernels. In some sense, tame distributions are allowed
to be mildly singular, in that composing with a test function “tames” the singularity.

4 In fact, one could use a more general class of functions, such as the square integrable functions, but we
prefer the symmetry of the present de�nition.
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Dieudonn�e, in [23, p. 77], examines the question of when the operators f∗ and f∗
map test functions to test functions, and he derives the following theorem.

Theorem 6.8. Let f be a Dieudonn�e-regular distribution on X ×Y. The following are
equivalent:
1. The operator f∗ extends to a continuous linear map from the Fr�echet space

E(X ) to the Fr�echet space E(Y ).
2. The operator f∗ maps D(Y ) to D(X ).
3. The operator f∗ maps E′(Y ) to E′(X ); where E′(Y ) is the space of distributions

of compact support (see [7] for the de�nition of support of a distribution).

6.4. Examples

• Let X be an open subset of Rn. The trace distribution on X ×X is given by
Tr(�)=

∫
�(x; x) dx where �(x; x′)∈D(X ×X ). From this de�nition it follows that

Tr∗(�)( )=Tr∗( )(�)=Tr(�⊗ )=
∫
�(x) (x) dx. Thus, we clearly have TrL(�)

= TrR(�)=�, which shows that � is tame. This tame distribution will act as the
identity in our category.
• Suppose that T is a regular distribution on X ×Y with a test function �(x; y) as its
kernel, that is to say

T (�(x; y))=
∫
X×Y

�(x; y)�(x; y):

Then T is tame with its associated functions being given by

TL(�)=
∫
X
�(x; y)�(x);

TR( )=
∫
Y
�(x; y) (y):

We write T(X; Y ) for the tame distributions on X ×Y.

6.5. Composing tame distributions

Given tame distributions we can de�ne the following operation which will serve
as composition. Suppose that f∈T(X; Y ); g∈T(Y; Z). We de�ne f; g∈T(X; Z) as
follows. Given that f is tame, we have a continuous function fL :D(X )→D(Y ).
Applying the �rst part of the Schwartz kernel theorem to g, we obtain a morphism
g∗ :D(Y )→D′(Z). Composition gives a continuous map D(X )→D′(Z). By the sec-
ond part of the kernel theorem, we obtain a distribution on X × Z .
Alternatively, we could use the extension theorem, Theorem 6.2. Let �∈D(X );  ∈

D(Z). We set

(f; g)(�⊗  )=
∫

fL(�)gR( ) dy:
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This, of course, only de�nes f; g on D(X )⊗D(Z) rather than on D(X ×Z). We then
use the fact that the tensor product is a dense subspace to extend composition to all of
D(X ×Z). One observes that f; g is tame as can be seen by an elementary calculation,
noting (f; g)L=fL; gL and (f; g)R= gR;fR and the tameness of f and g.

6.6. The category DRel

De�nition 6.9. The category DRel has as objects open subsets on Rn, and, as mor-
phisms, tame distributions. Composition is as described above.

Theorem 6.10. DRel is a tensored ∗-category.

Proof. Evidently we can verify properties of the composition f; g by carrying out
calculations on the distribution de�ned on D(X )⊗D(Z) and appealing to continuity
and the density of D(X )⊗D(Z) in D(X ×Z). We have already noted above that
f; g is tame. A simple calculation shows that the trace distribution is the identity for
composition.
To verify associativity we calculate as follows. Let f∈D(X ×Y ); g∈D(Y ×Z)

and h∈D(Z ×W ) be tame distributions. Then we have

((f; g); h)(�(x)⊗ �(w)) =
∫
(f; g)L(�)hR(�) dz

=
∫

gL(fL(�))hR(�) dz

=
∫

fL(�)gR(hR(�)) dy

= (f; (g; h))(�⊗ �):

Thus we have shown that DRel is a category. The tensor product is given as follows.
Given objects X and Y we de�ne X ⊗Y as the cartesian product space X ×Y. Given
morphisms in DRel f :X → Y and g :X ′→ Y ′ we can de�ne f⊗ g :X ⊗X ′→ Y ⊗Y ′

as follows. We �rst de�ne f⊗ g as a distribution on D(X )⊗D(X ′)⊗D(Y )⊗D(Y ′)
by the formula (f⊗ g)(�(x)⊗�′(x′)⊗  (y)⊗  ′(y′))=f(�⊗  )g(�′⊗  ′). It is rou-
tine to verify that this is tame. We extend f⊗ g to all of D(X ×X ′×Y ×Y ′) as
above. The one-point space, written I = {∗}, is the unit for the tensor (with measure
�({∗})= 1).
Finally, the ∗-structure is the identity on objects. On morphisms, the only thing that

changes is the role of fL and fR. The conjugate functor is taken to be the identity.

Remark 6.11. As an example, we will describe Hom(I; X ), where X is an arbitrary
object. Clearly, D(I) is isomorphic to the base �eld. We must have two functions:

fL :D(I)→D(X );

fR :D(X )→D(I);
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such that, for all  ∈D(X ),∫
X
fL(1) =

∫
I
1fR( ):

But evidently
∫
I 1fR( )=fR( ). So the function fR is uniquely determined by the

function fL. Hence, we may conclude that Hom(I; X ) is in bijective correspondence to
test functions on X.

We now display a nuclear ideal for DRel. We remarked that not all tame distributions
can be viewed as integral operators with functions as kernels. In particular, the identity
morphisms do not have this property. However, we will see that tame distributions
with functional kernels form a nuclear ideal.

De�nition 6.12. Given objects Y and Z of DRel we de�ne the set of nuclear mor-
phisms, written N(Y; Z), as the collection of tame distributions g : Y → Z such that
∃�(y; z)∈D(Y ×Z) with the property that for every �(y; z)∈D(Y ×Z):

g(�)=
∫

�(y; z)�(y; z) dy dz:

Note that the test function �(y; z)∈D(Y ×Z) associated to the tame distribution g
is unique. Thus, the set N(Y; Z) is in bijective correspondence to D(Y ×Z).

Theorem 6.13. The sets N(Y; Z) form a nuclear ideal for DRel.

Proof. As already remarked, if g∈N(Y; Z) and if � is its kernel, then

∀ ∈D(Y ); gL( )=
∫

�(y; z) (y) dy:

To verify that we have an ideal, we have to show that for any f∈T(X; Y ) the
composite f; g is nuclear and symmetrically for composition on the other side of g.
In order to verify this we need to �nd a kernel for f; g. We claim that this kernel
is �(x; z)=df fR(�(y; z)) where we interpret this formula as follows. For each �xed
z ∈Z; �(y; z) is a smooth function of compact support in Y ; fR acts on this function
to produce a function of compact support in X. The function �(x; z) evidently has
compact support, and its smoothness is a consequence of the continuity of fR. It
su�ces to prove this for functions � of the form �(y; z)= a(y)b(z) where a∈D(Y )
and b∈D(Z). This follows from Proposition 6.3 which implies that arbitrary � can be
written:

�(y; z)= lim
n→∞

mn∑
i=1

ai; n(y)bi; n(z):

The general result then follows from the linearity and continuity of fR.
Now observe that for a �xed z:

fR(�(y; z))=fR(a(y)b(z))=fR(a)(x)b(z):
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Now we calculate as follows, again letting �(y; z)= a(y)b(z) and relying on linearity
and continuity for the general result:

(f; g)(�(x)⊗  (z)) =
∫
Y
fL(�)(y)gR( )(y) dy

=
∫
Y
fL(�)(y)

[∫
Z
�(y; z) (z) dz

]
dy

=
∫
Z

[∫
Y
fL(�)(y)�(y; z) dy

]
 (z) dz

=
∫
Z

[∫
Y
fL(�)(y)a(y)b(z) dy

]
 (z) dz

=
∫
Z

[∫
Y
fL(�)(y)a(y) dy

]
b(z) (z) dz

=
∫
Z

[∫
X
�(x)fR(a)(x) dx

]
b(z) (z) dz

=
∫
X
�(x)

[∫
Z
[fR(a)(x)b(z)]  (z) dz

]
dx

=
∫
X

∫
Z
�(x)�(x; z) (z) dx dz:

It follows that f; g is an integral operator with � as its kernel. The veri�cation for
composition on the other side of g is very similar.
To complete the proof, we need to show that Hom(I; X ⊗Y )∼=N(X; Y ). This iso-

morphism is described in Remark 6.11. It remains to verify the equations. Naturality
requires an argument similar to the previous calculation. Compactness is quite straight-
forward.

7. The category PRel

In this section, we de�ne a category of probabilistic relations, and describe a nuclear
ideal for it. We will see that we indeed get most of the important properties of the
category of relations, i.e. we have a tensored ∗-category with a nuclear ideal. Thus one
may think of this category as representing relations “smeared out probabilistically”.
Once again, as in DRel we have a situation where the identity maps are too singular
to be in the nuclear ideal. The nuclear ideal can be thought of as functions but the
ambient category has to be described in terms of measures.

7.1. Basic de�nitions of measure theory

We assume the reader is familiar with the basic concepts of measure theory. We
recall the basic de�nitions for completeness. A reader who remembers these de�nitions
can skip to the start of the next section without loss of continuity.
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De�nition 7.1. A �-�eld � on a set X is a collection of subsets of X which
1. includes the whole space X ,
2. is closed under complementation, and
3. is closed under �nite and countable unions.
A measurable space is a set together with a �-�eld. A measurable function from a
measurable space (X; �X ) to (Y; �Y ) is a function from X to Y such that for all B∈�Y

we have f−1(B)∈�X .

Given a measurable space (X; �X ), we call the members of �X measurable sets. If
B is a measurable set then the characteristic function of B is denoted �B and is clearly
measurable.

De�nition 7.2. A measure � on a measurable space (X; �X ) is a function � :�X →
[0;∞] such that
1. �(∅)= 0;
2. if {Ai | i∈ I} is a pairwise-disjoint family of measurable sets, with I countable,
then

�

(⋃
i∈I

Ai

)
=
∑
i∈I

�(Ai):

If we have a measure taking values in [0; 1] we call it a sub-probability measure
and if the measure (“mass”) of the whole space is 1 we say that it is a probability
measure. A �-�eld equipped with a measure is called a measure space and equipped
with a probability measure it is called a probability space.

Sets of measure zero play an important role. The phrase almost everywhere is fre-
quently used to assert that a certain property holds everywhere except on a set of
measure zero. If there is confusion about which measure is intended we might say, for
example, P-almost everywhere.
The set of real numbers and the closed unit interval [0; 1] play a central role in the

subsequent discussion. As measurable spaces, each has two �-�elds which are often
used, the Borel �-�eld and the Lebesgue �-�eld. Any collection of subsets of a set X
generates a �-�eld, namely the least �-�eld containing all the sets of the given collec-
tion. If we take the open sets of any topological space and generate a �-�eld we get
the Borel �-�eld. In particular, we get the Borel �-�eld on the reals. This �-�eld on the
reals can be given a measure in such a way that the measure of an interval is its length.
The resulting measure space has the property that there are subsets of sets of measure
zero that are not measurable. There is a canonical “completion” procedure which yields
an extended �-�eld and measure, such that any previously measurable set has the same
measure and all subsets of sets of measure 0 are measurable (and have measure 0).
When applied to the Borel subsets of the reals with the Lebesgue measure one gets
Lebesgue measurable sets (with the Lebesgue measure). In our discussion we always
mean Borel measurable whenever we talk about a measurable subset of the reals.
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In some older books [36, 52], a measurable function from the reals to the reals is
de�ned to be a function where the inverse image of an open set has to be a Lebesgue
measurable set rather than a Borel measurable set. This has the unfortunate e�ect that
the composite of two measurable functions need not be measurable. A suitable reference
for the above discussion is [45], but any good book on probability theory such as Ash
[8], Billingsley [15], or Dudley [26] covers this material.

7.2. A category of stochastic kernels

Probability theory has been examined in the past from a categorical perspective. For
example, Giry [33] has given the following construction, based on hints in unpublished
notes of Lawvere. Wendt has examined this construction extensively [58, 59].
Let Meas denote the category of measurable spaces and measurable functions. We

will now describe a triple T on the category Meas. In what follows, when we talk about
measurable functions into [0; 1], we always mean the Borel �-�eld on [0; 1], denoted
B. If (X; �) is an object of Meas, then we de�ne T (X; �) to be the set of probability
measures on (X; �) equipped with the least �-algebra making the evaluations

eB : T (X )→ [0; 1] de�ned by eB(P)=P(B)

measurable, where B ranges over the measurable sets of X. T acts on maps by the
formula:

T (f)(P)(B′)=P(f−1(B′))

where f :X → Y and B′ ∈�Y .
The unit for the triple � : id→ T is de�ned by the formula

�X (x)(B)= �B(x);

where x∈X and �B is the characteristic function of B.
The multiplication � : T 2→ T is de�ned as follows. If P′ ∈T 2(X ), then P′ de�nes a

measure on T (X ), and we use it to form the following integral:

�X (P′)(B)=
∫
T (X )

eB dP′:

With these de�nitions, one can then prove [33]:

Theorem 7.3. (T; �; �) form a triple on Meas.

To understand the structure of the Kleisli category, we require the following de�ni-
tion.

De�nition 7.4. If (X; �) and (X ′; �′) are measurable spaces, then a stochastic kernel
on X ×X ′ is a function

� :X ×�′→ [0; 1]
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that is measurable in its �rst argument, for each �xed measurable set and a probability
measure in its second argument for each point in X. Stochastic kernels are closely
related to regular conditional probability distributions [8, 26].

If � is a stochastic kernel on X ×Y and � is a stochastic kernel on Y ×Z , then
we can compose � and � to obtain a stochastic kernel � ◦ � :X ×�Z→ [0; 1], using the
following formula:

� ◦ �(x; C) :
∫
Y
�(−; C) d�(x;−) for all x∈X; C ∈�Z:

Note that in the above formula �(−; C) is acting as the measurable function, and
�(x;−) as the measure. The associativity of this composition follows easily from the
monotone convergence theorem.
So we obtain a category Stoch, whose objects are measurable spaces, and whose mor-

phisms are stochastic kernels. The identity for this category is given by the
�-formula:

�(x; A)=

{
1 if x∈A;

0 otherwise:

One can now derive [33]:

Theorem 7.5. The Kleisli category for the triple T is equivalent to Stoch.

Given a morphism f :X → TY in the Kleisli category, one obtains a stochastic kernel
via the formula:

F :X ×�Y → [0; 1] is de�ned by F(x; B′)=f(x)(B′):

7.3. Probabilistic relations

While the category Stoch allows valuable insights into probability theory – for
example, the Chapman–Kolmogorov equation is simply functoriality [33] – it lacks
some of the structure one requires of a category of relations; notably the ability to take
the converse. To pass to a category which is more relational in nature, we will use
measures on the product space. Unfortunately one cannot compose measures in any
simple way. Given measures on the product space, there is no obvious sense in which
one can integrate them to compose as in the category Stoch. The idea is to rely on a
basic theorem which says that given such product measures, on suitable spaces, one
can construct a pair of stochastic kernels – which, together with the marginal distribu-
tions, determine the original measure on the product space – and then compose them
in the manner described for Stoch.
We now give the details of the construction. First suppose that we have a pair of

measurable spaces (X; �X ) and (Y; �Y ), a probability measure PX on (X; �X ), and a
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stochastic kernel h(x; B) :X ×�Y → [0; 1]. Then we have a unique measure P on the
product such that for all A∈�X :

P(A×B)=
∫
A
h(x; B) dPX (x):

Thus, if we have a pair of stochastic kernels h :X ×�Y → [0; 1] and k : Y ×�X → [0; 1]
and probability distributions PX on (X; �X ) and PY on (Y; �Y ) – satisfying an evi-
dent compatibility condition – we can reconstruct a unique probability measure on the
product space.
Conversely, given a measure P on the product X ×Y we can construct a measure on

each of the factor spaces by setting PX (A) :=P(A×Y ) and PY (B) :=P(X ×B). These
are called the marginals. Knowing one of the marginals and the appropriate stochastic
kernel is equivalent to knowing the product measure. Clearly, the pair of stochastic
kernels does not uniquely determine the product measure; it does not even determine
the marginals. We now need to show how to go from the product measure to the
stochastic kernels.
The situation we have is: a pair of measure spaces (X; �X ; �X ) and (Y; �Y ; �Y ) and

a measure, say �, on the product space equipped with the product �-�eld, �X ⊗�Y .
We want to construct a stochastic kernel h :X ×�Y → [0; 1]. The product space is a
product in the category Meas and is equipped with the usual projections �1 and �2 to
X and Y, respectively. We want to construct h :X ×�Y → [0; 1] as in the diagram

such that∫
A
h(x; B)�X = �(A×B)

where h is the morphism (of the category Stoch) that we are trying to construct and
�1; �2, the projections, are morphisms of the category Meas. However, this construction
requires some assumption on the spaces involved.
More precisely, we require that the spaces are Polish spaces. 5 Recall that a Polish

space is the topological space underlying a complete separable metric space. This
assumption is quite common in probability theory and allows the construction of regular
conditional probability distributions [8, 15, 26]. We will not invoke these general
concepts here.

5 We could have more general spaces, for example analytic spaces [39].
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We state a slightly more general theorem from which the construction of h in the
preceding paragraph follows immediately.

Theorem 7.6. Suppose that (U;�U ; P) is a probability space; V is a Polish space
with the Borel �-�eld; written �V ; and (W;�W ) is a measurable space. Suppose that
f is a measurable function from U to V and that g is a measurable function from
U to W. Then there exists a Stoch morphism; i.e. a stochastic kernel; Q :W →V as
shown in the diagram

such that for all A∈�W ; B∈�V :∫
g−1(A)

Q(g(u); B) dP(u)=P(g−1(A)∩f−1(B)):

This Q is unique in the sense that if Q′ is another stochastic kernel satisfying the
same equation then for P-almost all u∈U Q(u; ·) and Q′(U; ·) are identical.

Roughly speaking, this says that Q composed with g agrees with f at least when
evaluated on the measures P. In probability texts this theorem is stated in terms of
existence of regular conditional probability distributions relative to a sub �-�eld. We
have essentially the same situation since the set of inverse images under g of the
W -measurable sets forms a sub-�-�eld of �U . With this identi�cation, Theorem 7.6 is
equivalent to Theorem 10.2.2 of [26].
We are now ready for the corollary of chief interest.

Corollary 7.7. Given Polish spaces X and Y with their Borel �-�elds and a proba-
bility measure � on the product space; there is a stochastic kernel Q1(x; B) (i.e. a
Stoch morphism from X to Y ); where B∈�Y and a stochastic kernel Q2(y; A) (i.e.
a Stoch morphism from Y to X ); where A∈�X ; such that∫

A
Q1(x; B) d�X = �(A×B)=

∫
B
Q2(y; A) d�Y :

Proof. We use Theorem 7.6 with X ×Y as U; X as W and Y as V and the projection
maps as f and g. Now we immediately get Q1. To see that the equation is satis�ed
we check as follows:

�(�−1
1 (A)∩ �−1

2 (B))= �(A×B):
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On the other hand, the left-hand side of the equation asserted in Theorem 7.6 is, in
this case,∫

A×Y
Q1(�1(〈x; y〉); B) d�:

This can be rewritten as∫
A
Q1(x; B) d� ◦ �−1

1 =
∫
A
Q1(x; B) d�X

which is the desired result. One gets the result for Q2 similarly.

Here are two simple example applications of Corollary 7.7. For the �rst we take the
product measure � to be �⊗ �. In this case the stochastic kernel h :X ×�Y → [0; 1]
is h(x; B)= �(B), i.e. it is independent of x. If we take the product X ×X with the
measure � de�ned by �(A×B)= �(A∩B), we get the usual Dirac delta �(x; A).
Finally, to de�ne morphisms in our category, we proceed as follows. Given two mea-

sures, � and �, on a measurable space we say � is absolutely continuous with respect to
�, written �� �, if for any measurable set A, �(A)= 0 implies that �(A)= 0. We now
assume that the marginal �X is absolutely continuous with respect to �. By applying
the Radon–Nikodym theorem [15], we obtain a measurable function h(x) :X →R such
that

�X (A)=
∫
A
h(x) d�(x);

from which it follows that∫
A
Q(x; B) d�X (x)=

∫
A
Q(x; B)h(x) d�(x):

We refer to the function F(x; B)=Q(x; B)h(x) as the stochastic kernel associated
to �.

De�nition 7.8. We de�ne a category PRel as follows. The objects of PRel are triples
(X; �; �), where X is a Polish space, � the associated � �eld and � is a probability
measure on (X; �). A morphism � : (X; �; �)→ (X ′; �′; �′) is a probability measure on
�⊗�′ whose marginals are absolutely continuous with respect to � and �′.

To compose morphisms � :X → Y and � : Y → Z , we calculate their associated
stochastic kernels F(x; B) and G(y; C) and compose as in the above Kleisli category to
obtain a stochastic kernel H (x; C). We then obtain a measure on X ×Z via the formula

(A×C)=
∫
A
H (x; C) d�(x):

Theorem 7.9. PRel is a category.
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Proof. The only thing remaining to consider is the identity. If (X; �; �) is an object, its
identity is given by �(A×A′)= �(A∩A′), with the associated conditional distribution
given by the Dirac �.

Theorem 7.10. PRel is a tensored ∗-category.

Proof. The ∗-structure of PRel is evident, and the tensor product on objects is given
by the product in the category Meas, that is, one takes the product of the 2 sets,
the tensor of the �-algebras, and the product measure. The necessary equations are all
straightforward to verify.

It is worth understanding the nature of isomorphisms in PRel in order to get a
better sense of the role of the measures on the PRel objects. We consider �rst objects
with the same underlying Polish space and hence �-�eld. We will show that two such
objects are isomorphic exactly when they de�ne the same ideal of sets of measure
zero.

Proposition 7.11. Consider two PRel objects X1 and X2 where X1 = (X; �; �) and X2 =
(X; �; �). They are isomorphic in PRel if and only if �� � and �� �.

Proof. Suppose �rst that � � � and � � �. We de�ne an isomorphism H :X1 → X2
and K :X2 → X1 as follows. 6 We set H (A×B)= �(A∩B) and K(A×B)= �(A∩B).
The marginals are

H1 =H2 = � and K1 =K2 = �:

By the absolute continuity assumptions these are PRel morphisms. The associated
stochastic kernels are just the Dirac delta distributions and the composite of these
distributions are again Dirac delta distributions. As we have observed before the Dirac
delta distribution is the stochastic kernel associated with the identity morphism. Thus
H and K form an isomorphism.
Conversely, suppose that we have an isomorphism H :X1→X2 and K :X2→X1.

Suppose that �(A)= 0 for some A∈�. Let h′ be the stochastic kernel from X2 to X1
associated with H, then we have∫

X2
h′(x; A) d�(x)=H (A×X )=H1(A)= 0;

where the last equality follows from H1 � � as required for H to be a PRel morphism.
We are writing integrals over X2 and X1 rather than over X in order to avoid confusion;
of course X1 and X2 are both X as sets. Since h′ is always nonnegative we have that
it is �-almost everywhere 0. Let k be the stochastic kernel from X1 to X2 associated

6 As usual we de�ne measures on product spaces by specifying them on the semi-ring of “rectangles” and
then relying on the standard extension theorems [15] to obtain the unique extension to the whole space.
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to K. Since H and K form an isomorphism, we have∫
X2

h′(x′; A)k(x; dx′)= �(x; A):

Integrating both sides of this equation over X1 using �, we get∫
X1

[∫
X2

h′(x′; A)k(x; dx′)
]
d�(x)=

∫
X1

�(x; A) d�(x)= �(A):

It can easily be shown, using the monotone convergence theorem, that we can rewrite
the left-hand side as∫

X2
h′(x′; A)

[∫
X1

k(x; dx′) d�(x)
]
;

where the integral in square brackets de�nes the measure used for the outer integration.
This measure is absolutely continuous with respect to � since it is de�ned by k. Since
the integrand h′(x′; A) is �-almost everywhere 0, the whole integral is 0. Thus �(A)= 0
and �� �. Similarly �� �.

Observation 7.12. Similarly, given two Polish spaces and a Borel isomorphism between
them, one can show that the two objects are isomorphic if and only if the Borel
isomorphism preserves and reects sets of measure zero.

In view of Proposition 7.11 and Observation 7.12 the following important theorem of
classical measure theory (see, for example, Theorem 13.1.1 in [26]) almost completes
the analysis of isomorphisms in PRel.

Theorem 7.13. If X and Y are Polish spaces; then X and Y are Borel isomorphic if
and only if X and Y have the same cardinality. Moreover; this cardinality must be
either �nite; countable or the cardinality of the continuum.

Now we can state the main theorem about isomorphisms in PRel.

Theorem 7.14. Let X and Y be two objects in PRel. Then X and Y are isomorphic
if and only if there is a Borel isomorphism between them and that isomorphism
preserves and reects sets of measure 0.

Proof. In view of Theorem 7.13, it remains to show that isomorphic objects in PRel
always have the same cardinality. First note that for �nite or countable objects in PRel
the stochastic kernels are just stochastic matrices. Thus an elementary rank argument
su�ces.
In the case that one of the objects has an uncountable underlying set we argue

as follows. It is easy to see that in an uncountable set, with any �-�eld and with
any probability measure, say P, there can be at most countably many points, x, with
P({x}) 6=0.
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Now suppose that (X; �X ; �), with X a countable set, and (Y; �Y ; �), with Y uncount-
able, are PRel objects. Suppose, for the moment, that �({x}) is nonzero for every x∈X.
Now suppose that we have an isomorphism H :X → Y with inverse K : Y →X. Thus,
we have stochastic kernels as follows:

h+; k− :X ×�Y → [0; 1] and h−; k+ : Y ×�X → [0; 1]:
Since these are isomorphisms, we obtain the equation∫

X
k−(x; B)h−(y; dx)= �(y; B):

Since X is countable, this reduces to∑
x∈X

k−(x; B)h−(y; {x})= �(y; B):

Let B= {y}, where {y} is a set with �-measure zero. Now observe that k− must
satisfy∫

X
k−(x; {y}) d�=K(X ×{y})=KY ({y})= 0;

where the last equality is a consequence of the absolute continuity requirement. But∫
X
k−(x; {y}) d�=

∑
x∈X

k−(x; {y})�({x}):

By assumption, for every x∈X, we have that �({x}) 6=0. Thus, for every x∈X , it is
the case that k−(x; {y})= 0. So we conclude∑

x∈X

k−(x; {y})h−(y; {x})= 0 6= �(y; {y}):

This is a contradiction.
Finally, recall that the stochastic kernels are uniquely de�ned only almost every-

where. In particular, for a countable probability space, the set of all points of measure
zero itself has measure zero. Thus, at points where �({x})= 0, we can de�ne k−(x; B)
to be 0, and the above argument still applies.

7.4. A nuclear ideal for PRel

To determine a nuclear ideal for PRel we must consider the set Hom(I; X ⊗Y ). By
de�nition, this consists of measures � which are absolutely continuous with respect
to the product measure �× �′. By Radon–Nikodym, we can construct a measurable
function f :X ×Y →R such that for all C ∈�X ⊗�Y :∫

C
f(x; y) d�×�′(x; y)= �(C):

As usual two measures are equal if and only if their associated functions agree almost
everywhere.
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Thus, we will de�ne N(X; Y ) to be the set of all measures on X ×Y for which there
exists a measurable function f such that the previous formula holds. It is immediate
that the marginals associated to such a measure are absolutely continuous with respect
to � and �′, respectively. While f itself is only unique almost everywhere, the measure
with which f is associated is easily viewed – in a canonical way – both as a member
of Hom(X; Y ) and as a member of Hom(I; X ×Y ). Thus, every element of the set
Hom(I; X ⊗Y ) is associated with a measure that has a functional kernel which is in
turn one of the members of the set N(X; Y ).
To see that we have a 2-sided ideal, suppose that �∈N(X; Y ). Hence, we have

a function f :X ×Y →R satisfying the above equation. Suppose �∈Hom(Y; Z). Let
G2 :�Y ×Z→R be the associated stochastic kernel. Then we de�ne a function h :X ×
Z→R by the formula

h(x; z)=
∫
Y
f(x; y)G2(−; z):

As usual, we are viewing f(x; y) as a measurable function of y for the �xed x, and
G2(−; z) as a measure on Y for the �xed z. The construction for right composition is
essentially identical. One can readily verify that the functions so constructed are indeed
functional kernels for the composite measures.
Finally, we observe that in the case when both � and � are nuclear, then there exist

functions f(x; y) and g(y; z) which act as functional kernels. The functional kernel of
the composite is given by∫

Y
f(x; y)g(y; z) d�(y):

We conclude:

Theorem 7.15. The above construction determines a nuclear ideal for PRel.

The veri�cation of the requirements for a nuclear ideal are routine. The calculations
involve computing transposes and can be done just the same way as proving associa-
tivity of composition in Stoch. We call this nuclear ideal MRel. One can generalize
the setting to analytic spaces [26] which are continuous (or measurable) images of ∞
in Polish spaces.

8. Trace ideals

In [41], Joyal et al. develop an abstract theory of trace operators in a monoidal
category. A trace is a function of the form

trA :Hom(A; A)→Hom(I; I)

satisfying appropriate equations. (In fact, the authors introduce a more general paramet-
rized trace which we discuss below.) The authors demonstrate that in a symmetric (in
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fact, braided) compact closed category, one obtains a trace via the formula (using the
notation of Section 2 and using c to represent the symmetry)

(h :A→A) 7→ (�; h⊗ id; c;  : I→ I):

For example, in the compact closed category of �nite-dimensional Hilbert spaces,
one obtains the usual notion of trace of an endomorphism. This notion of trace also
underlies such ideas as feedback in a computation and braid closure [41, 37].
When one passes from the category of �nite-dimensional Hilbert spaces to the cate-

gory of arbitrary Hilbert spaces, one �nds endomorphisms which do not have a trace,
for example the identity on an in�nite-dimensional space. However, each endomor-
phism monoid contains an ideal of endomorphisms which do have a trace. This ideal
is called the trace class and these trace maps are closely related to Hilbert–Schmidt
morphisms. After reviewing this relationship, we describe a general theory of trace
ideals for symmetric monoidal categories. We then show that if a tensored ∗-category
has a nuclear ideal satisfying certain additional structure, then one can recover a trace
ideal, as in the compact closed case.

8.1. Hilbert spaces

Appropriate references for this material are [50, 56].

De�nition 8.1. An operator B∈L(H), the space of bounded linear operators on H, is
called positive if 〈Bx; x〉≥ 0, for all x∈H. In this case, we write B≥ 0 and B≥A if
A− B≥ 0.

Note for example that AA∗ and A∗A are always positive.

Theorem 8.2 (Reed and Simon [50, p. 196]). Suppose A≥ 0. Then there exists a
unique B≥ 0 such that B2 =A.

De�nition 8.3. The unique operator B of the previous theorem is denoted
√
A. Let

A∈L(H). De�ne |A|=√A∗A:

Theorem 8.4. Let H be separable and {ei} an orthonormal basis. If A is a positive
operator; we de�ne tr(A)=

∑ 〈Aen; en〉. This is independent of orthonormal basis. It
has the following properties:
• tr(A+ B)= tr(A) + tr(B);
• tr(�A)= �tr(A); for all �≥ 0;
• If 0≤A≤B; then tr(A)≤ tr(B).

De�nition 8.5. An operator A is called trace class if tr(|A|)¡∞. The family of all
trace class operators is denoted by I(H) or just I.
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Theorem 8.6. I has the following properties:
• I is a vector space.
• It is a 2-sided ideal in the monoid Hom(H;H).
• If A∈I; then A∗ ∈I:

These last two conditions say that we have a ∗-ideal. We now extend the notion of
trace to arbitrary endomorphisms in the trace ideal.

Theorem 8.7 (Reed and Simon [50, p. 211]). If A∈I and {ei} is an orthonormal
basis; then

∑∞
n=1〈Aen; en〉 converges absolutely and is independent of the basis. (We

call this map the trace of A; tr(A):)

Using the notion of trace class, it is possible to give an equivalent formulation of
the notion of Hilbert–Schmidt map:

Proposition 8.8 (Reed and Simon [50, p. 211]). A mapping f :H →K is Hilbert–
Schmidt if and only if f∗f∈I(H).

The converse of this observation is also true:

Proposition 8.9 (Reed and Simon [50, p. 211]). If h is a bounded linear operator on
H; then h∈I if and only if there exist Hilbert–Schmidt operators f and g on H

such that h=fg.

Remark 8.10. Let H be a Hilbert space, and suppose we consider H as a Banach
space. Then H is an object in the category Ban∞, where we consider Ban∞ with
its usual L1 tensor product. Thus, we can apply Grothendieck’s original de�nition of
nuclear morphism, and we see that we recover precisely the trace class maps.

8.2. Trace ideals

The previous discussion suggests the following abstract de�nition. We suppose for
the remainder that C is a symmetric monoidal category.

De�nition 8.11. A trace ideal in C is a choice of subsets

I(U )⊆Hom(U;U ) for each object U in C

and a function

trU :I(U )→ Hom(I; I) for each U in C

such that
1. I(U ) is a 2-sided ideal in the monoid Hom(U;U ).
2. (Dinaturality or sliding) Suppose that f :U→V and g :V →U are such that gf∈

I(U ). Then fg∈I(V ), and trU (gf)= trV (fg).



S. Abramsky et al. / Journal of Pure and Applied Algebra 143 (1999) 3–47 39

3. (Vanishing) If f∈I(U ), then f⊗ idI ∈I(U ⊗ I) and trU⊗I (f⊗ idI )= trU (f).
Furthermore, we require that I(I)=Hom(I; I). If f : I→ I , then trI (f)=f.
4. (Tensor axiom) If f∈I(U ) and g∈I(V ), then f⊗ g∈I(U ⊗V ) and

trU⊗V (f⊗ g)= trU (f)trV (g).
5. Furthermore, if the category has a tensored ∗-structure, then we require that trace

maps are closed under tensored ∗-structure, and the trace operators respect this structure,
i.e.
• If f∈I(U ), then so is f∗, and trU (f∗)= trU (f)∗.
• If f∈I(U ), then f∈I(U ) and trU (f)= trU (f)∗.

An alternative approach to partial traces is presented in [17], which considers traces
on a linearly distributive category. The trace operator works on a certain subcategory,
the core, which has the same sort of “type degeneracy” as a compact closed category.
We would like to extend the relationship between compact closed categories and

traced monoidal categories to a relationship between nuclear ideals and trace ideals.
Keeping in mind the correspondence between Hilbert–Schmidt maps and the trace class,
we de�ne:

De�nition 8.12. Suppose that C is a tensored ∗-category equipped with a nuclear ideal.
Suppose also that A is an object in C. We de�ne the trace class of A to be

I(A) = {h :A→ A |there exists an object B; and morphisms f :A→ B;

g :B→A with f; g nuclear and h= gf}:

More generally, given two objects A; B∈C, one can de�ne

I(A; B) = {h :A→ B |there exists an object C; and morphisms f :A→ C;

g :C→B with f; g nuclear and h= gf}:

Lemma 8.13. I(A) is a 2-sided ideal in the monoid Hom(A; A). I(A; B) is a 2-sided
ideal in C.

While one can de�ne the notion of trace class for arbitrary morphisms in C as above,
note that the actual trace function only acts on I(A)=I(A; A). In other words, the
trace function acts only on the diagonal of the functor I(−;−). This is analogous to
the notion of dinatural transformation, which is the appropriate notion of naturality
for multivariate functors. These are families of morphisms between the two given func-
tors, instantiated along the diagonals, satisfying an appropriate commutative hexagon
[27, 25, 13, 16]. Hence, the alternate name “dinaturality” for the sliding axiom.
If h∈I(A), we would like to de�ne a morphism trA(h) : I→ I (or just tr(h) if there

is no confusion) by the formula (where ĝ; f̂ denote the evident transposes)

tr(h)= ĝf̂ : I → A⊗B→ I:
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However, there is no guarantee that if h is also equal to f′g′ that we will obtain the
same trace. Therefore we make the following de�nition:

De�nition 8.14. A nuclear ideal is traced if it satis�es the following uniqueness prop-
erty:
• If f :A→B; g :B→A; f′ :A→C; g′ :C→A are nuclear and gf= g′f′, then ĝf̂=
ĝ′f̂′ : I→ I .

Theorem 8.15. The above construction assigns a trace ideal to each traced nuclear
ideal.

The proof of this theorem is simply a matter of checking the necessary diagrams.
For example, Lemma 5.8 gives the sliding axiom. One can also check that:

Theorem 8.16. The canonical nuclear ideal in Hilb is traced.

8.3. Traces in DRel

We now examine the trace construction in our category of distributions.

Theorem 8.17. The canonical nuclear ideal in DRel is traced.

Proof. Suppose that f :X → Y; g : Y →X; f′ :X → Z; g′ : Z→X are nuclear and gf=
g′f′. Since f is nuclear, we have a morphism f̂ : I→X ⊗Y, which has associated to
it f̂L :D(I)→D(X ×Y ). As already remarked, D(I) is isomorphic to the base �eld,
hence the map f̂L simply picks out an element of D(X ×Y ), which we denote by �f.
Similarly for f′; g; g′.
To verify the uniqueness property, recall that if �∈D(X ), then

fL(�)=
∫
X
�f(x; y)�(x):

Since gf= g′f′, we have that for �1; �2 ∈D(X ),∫
Y
fL(�1)gR(�2)=

∫
Z
f′
L(�1)g

′
R(�2):

After rearranging the order of integration one can conclude∫
X

∫
X

∫
Y
�f(x; y)�g(y; x′)�1(x)�2(x′)=

∫
X

∫
X

∫
Z
�f′(x; z)�g′(z; x′)�1(x)�2(x′):

The left-hand side corresponds to the distribution on X ×X with kernel
∫
Y �f(x; y)

�g(y; x′), and the right-hand side has kernel
∫
Z �f′(x; z)�g′(z; x′). We know that two

integrable functions induce the same distribution if and only if they are equal almost
everywhere, but since these are smooth functions on X ×X, we conclude∫

Y
�f(x; y)�g(y; x′)=

∫
Z
�f′(x; z)�g′(z; x′):
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Thus, we have∫
X

∫
Y
�f(x; y)�g(y; x)=

∫
X

∫
Z
�f′(x; z)�g′(z; x);

and we conclude tr(gf)= tr(g′f′):

Actually, there is a more succinct description of the trace operator in DRel. Since
h= gf is nuclear, it has a kernel, �(x; x′). Recall from Theorem 6.13 that the formula
for � is given by

�(x; x′)=fR(�g(y; x′))=
∫
Y
�f(x; y)�g(y; x′):

Hence, we may conclude that

trA(h)=
∫
X
�(x; x):

We leave the details of the following to the reader. The result is quite similar to the
case of DRel.

Theorem 8.18. The canonical nuclear ideal in PRel is traced.

8.4. The parametric trace operator

In [41], the authors actually have a parametrized trace operator. This means that
there is a function of the form

trU :Hom(A⊗U; B⊗U )→Hom(A; B)

which reduces to the usual trace when A=B= I . There is an evident generalization to
the ideal setting:

De�nition 8.19. We suppose again that C is a symmetric monoidal category. A ( para-
metric) trace ideal in C is a choice of a family of subsets, for each object U of C,
of the form

IU
A;B⊆Hom(A⊗U; B⊗U ) for all A; B in C

and functions

trUA;B :I
U
A;B → Hom(A; B)

such that the families are ideals in the sense that
• If f∈IU

A;B and h :U→U is arbitrary, then (id⊗ h) ◦f and f ◦ (id⊗ h) are in IU
A;B.

• If f∈IU
A;B and g :B→C; h :D→A are arbitrary, then (g⊗ idU ) ◦f ◦ (h⊗ idU )∈

IU
D;C .
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These are subject to the ideal-theoretic versions of the Joyal–Street–Verity axioms.
In particular, (dropping sub- and superscripts if there is no chance of confusion)
• (Vanishing)
1. II

A;B=Hom(A⊗ I; B⊗ I), and the trace is calculated in the evident way.
2. Suppose g :A⊗U ⊗V →B⊗U ⊗V. Then g∈IU⊗V

A;B if and only if g∈IV
A⊗U;B⊗U

and trVA⊗U;B⊗U (g)∈IU
A;B. Furthermore,

trU⊗V
A;B (g)= trUA;B(tr

V
A⊗U;B⊗U (g)):

• (Superposing) Suppose f∈IU
A;B and g :C→D is arbitrary. Then g⊗f∈

IU
C⊗A;D⊗B, and tr(g⊗f)= g⊗ tr(f).

• (Yanking) Suppose f :A→U and g :U→B. If cU;B ◦ (f⊗ g)∈IU
A;B, then

trUA;B(cU;B ◦ (f⊗ g))= gf :A→B:

• (Sliding) Suppose f :A⊗U→B⊗V and u :V →U. Then (id⊗ u) ◦f∈IU
A;B if and

only if f ◦ (id⊗ u)∈IV
A;B, and the two traces are equal.

• (Tightening) Suppose f∈IU
A;B and g :B→C; h :D→A are arbitrary. Then

tr((g⊗ idU ) ◦f ◦ (h⊗ idU ))= g ◦ tr(f) ◦ h:
• Furthermore, if C is a tensored ∗-category, then the trace must preserve this structure
in an evident sense.

Some discussion of our version of the Yanking axiom is in order. The Joyal–Street–
Verity version of this axiom is essentially the requirement that the trace of a symmetry
morphism is the identity. However, in our framework, one cannot make this requirement
since the symmetry map will generally not be in the trace class. In the forthcoming
thesis of Haghverdi [35], it is observed that the following requirement is equivalent to
the Joyal–Street–Verity version:
Generalized Yanking Rule: Suppose f :A→U and g :U→B. Then,

trUA;B(cU;B ◦ (f⊗ g))= gf :A→B:

8.5. U -nuclear ideals

As before, we would like to construct trace ideals from nuclear ideals. An analogous
construction can be carried out using the notion of a U -nuclear ideal. We now outline
this idea, but leave most of the details to the reader. The generalization amounts
to introducing the notion of a U -nuclear morphism. We will say that a morphism
f :A⊗U→B is U -nuclear, if it has a transpose f̂ :A→U ⊗B. More speci�cally, for
each object U , we introduce a family of morphisms NU (A⊗U; B)⊆Hom(A⊗U; B).
These families should be closed under all of the operations and furthermore an ideal
in the sense that if

f∈NU (A⊗U; B)
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and h :V →U is arbitrary, then

((id⊗ h);f)∈NV (A⊗V; B):

Similarly for the variables A and B.
Also there should be a natural bijection of the form

NV (A⊗V; B) ∼=NV (B⊗V; A)

satisfying appropriate equations. For example, the compactness requirement becomes:
• (Compactness) Suppose f :A→C ⊗B and g :B⊗D→E. Then we have

A⊗D
f⊗idD−−−−−→C ⊗B⊗D

idA⊗ĝ

y
y idC ⊗ g

A⊗B⊗E−−−−−→
f̂⊗idE

C ⊗E

If a tensored ∗-category is equipped with such structure, we will refer to it as a
parametrized nuclear ideal.
Given such a construction, one de�nes the U -trace class IU (A⊗U; B⊗U )⊆

Hom(A⊗U; B⊗U ) by saying that

h∈IU (A⊗U; B⊗U )

if and only if there exist

f∈NU (A⊗U;C); g∈NU (B⊗U;C) such that h= g∗f:

One then constructs the U -trace of h via the formula

trUA;B(h) :A→C ⊗U→B;

where the components are the evident transposes of f and h. Again, one must add
conditions to ensure that the trace satis�es appropriate equations. In particular, we note
that with the above axioms, we can only obtain the following weaker version of the
yanking axiom:

Lemma 8.20. Suppose that C is a tensored ∗-category equipped with a parametrized
nuclear ideal. If f :X →U and g :U→ Y are nuclear; then c ◦ (f⊗ g) :X ⊗U →
Y ⊗U is in the U -trace class; and

trUX;Y (c ◦ (f⊗ g))= gf:

This is a consequence of the compactness requirement of Section 5.
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8.6. Traces in PInj

We now discuss the traced structure of PInj. First it is evident that unlike in Hilb,
we have that I(A)=N(A; A) for all objects A. If f :A→A is a trace map, then we
have the following formula:

tr(f)=




id if |Dom(f)|=1; and f is the identity when
restricted to its domain;

∅ otherwise:

The parametrized trace also has a very simple description. We will say that a mor-
phism f :X ⊗U→ Y is U -nuclear if it satis�es

∀x∈X if (x; u)∈Dom(f) and (x; u′)∈Dom(f), then u= u′

Given this de�nition, there is an evident bijection N(X ⊗U; Y ) ∼=N(Y ⊗U; X ).
The class I(X ⊗U; Y ⊗U ) is described by having the above requirement for both

the domain and codomain. Then we can say that if f∈Tr(X ⊗U; Y ⊗U ); (x; u)∈
Dom(f) and f(x; u)= (y; u′), then

tr(f)(x)
{
unde�ned if u 6= u′;
y if u= u′.

9. Conclusions

Our investigations began with an attempt to de�ne probabilistic relations in analogy
with ordinary relations. Unexpectedly, ideas from functional analysis [34] were essen-
tial. The key idea, expressed in our abstract de�nition of nuclear ideals, is that certain
morphisms can be thought of as behaving like “matrices”.
Our work naturally follows on from the development of Higgs and Rowe [38], the

fundamental di�erence being that we have no closed structure. Crudely speaking, Higgs
and Rowe generalize Banach space theory while we generalize Hilbert space theory.
A key application of our work is that we can now work with structures that are not

categories but which are nuclear ideals inside some tensored ∗-category. For example,
the nuclear ideal MRel, described in Section 7, is of interest but is not a category.
(As an example of its possible applications, we note that MRel has partially additive
structure [46, 35].) However, MRel is indeed a nuclear ideal in PRel.
An important open question is the computational signi�cance of trace ideals. It is

already well-established that a trace structure can be used to model feedback in deno-
tational semantics [41, 37]. But what can be said when one only has these operations
on an ideal? A general construction for building a compact closed category from a
traced monoidal category is described in [41]. In [1,2], this is shown to yield a gener-
alized form of Girard’s geometry of Interaction [32]. It seems possible that a similar
construction applied to a category with a traced ideal will give a nuclear ideal.
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Another area of application of the theory of compact closed categories is topological
quantum �eld theory [9, 10], which evolved, in part, from Segal’s work on conformal
�eld theory [54]. In topological quantum �eld theory, one considers a compact closed
category of cobordisms in which composition is de�ned by gluing along boundaries.
Then a TQFT is given by a compact closed functor to the compact closed category of
�nite-dimensional Hilbert spaces. In Segal’s formulation of conformal �eld theory, one
works with arbitrary Hilbert spaces and a similar “category” of Riemann surfaces with
boundary. This structure is essentially a compact closed category, except that it fails to
be a category in that it lacks identity morphisms. Thus it seems reasonable to suspect
that it is a nuclear ideal in some larger ambient tensored ∗-category. One of our goals
in future work will be to �nd such a category. A conformal �eld theory would then
be a nuclear functor to the tensored ∗-category Hilb.
A related issue is the extension of our work to higher-dimensional categories. The

theory of n-Hilbert spaces [11], a higher-dimensional analogue of Hilbert space, has
become quite important in TQFT [12]. Baez has developed the theory of 2-Hilbert
spaces with this in mind, and extended some of the work of Doplicher and Roberts to
this setting [24].
Finally, the category DRel suggests several further topics of investigation. One pos-

sible extension of DRel is to the theory of noncommutative distributions [6]. Roughly
speaking, these are distributions which take values in a Lie group. They are useful in
the representation theory of gauge groups. Finally, we hope to take advantage of the
fact that distributions form a D-module, that is to say they provide representations of
the Weyl algebra [21]. It would be interesting to attempt to extend the work of Blute
and Scott [18, 19], where full completeness theorems in the sense of Abramsky and
Jagadeesan [4] are obtained by considering representations of the additive group of
integers and a noncocommutative Hopf algebra.
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