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Abstract

In this paper we show that the answer to problem 3.9 in [Duke Math. J. 69 (1993) 593] is
positive when n = 2 and negative when n � 3.
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1. Introduction

In [5], Jorgensen obtained a very useful inequality in SL(2, C) which is known
as Jorgensen’s inequality. As Gilman pointed out in [2] that it is important to obtain
Jorgensen’s inequality in higher dimensions. Recently, different forms of Jorgensen’s
inequality in space have been obtained, see [4,6,10] and references therein. They are
very useful, see [8,9] and references therein. In [1], Friedland and Hersonsky have
generalized Jorgensen’s inequality into normed algebras.
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As in [1], let Mn(C) = {A = (aij )
n
1: aij ∈ C} and GLn(C) = {A ∈ Mn(C):

det(A) /= 0}. Denote by �(A) = {λ1, . . . , λn} the n eigenvalues of A counted with
their multiplicity and let ρ(A) = max1�i�n |λi | be the spectral radius of A. Denote
by AT the transposed matrix of A and A∗ the conjugate transpose of A. A matrix
A ∈ Mn(C) is called normal if AA∗ = A∗A.

We shall use [3] as a general reference for basic facts concerning the matrix
theory.

For a matrix A = (aij )
n
1 ∈ GLn(C), we define the following operator on Mn(C),

Â(Z) = AZA−1 − Z, (1.1)

where Z = (zij )
n
1 ∈ Mn(C).

Let | · | be a vector norm on Mn(C) (not necessarily submultiplicative). The norm
of operator Â is defined by

‖Â‖ = sup
|Z|�1

|Â(Z)|. (1.2)

In order to generalize Jorgenson’s inequality into matrix algebra, Friedland and
Hersonsky [1] considered the following iterations,

X1 = [A, B], Xk+1 = [A, Xk] (k = 1, 2, . . .), (1.3)

where A, B ∈ GLn(C). Then the question of when Xk+1 = I becomes very impor-
tant. In particular, they raised the following conjecture.

Conjecture. Let n be a positive integer. Then there exists an integer s(n) so that the
following condition holds. Assume that A, B ∈ GLn(C) and consider the iteration
(1.3). Then either X(s(n)) = I or Xm /= I (m = 0, 1, 2, . . .).

In [7], we constructed counterexamples to show that the answer to the above con-
jecture is negative when n � 2.

When they discussed the sharpness of their inequalities, Friedland and Hersonsky
proved the following.

Theorem FH. Let A ∈ GLn(C). Then

max
1�i,j�n

∣∣∣∣ λi

λj

− 1

∣∣∣∣ � ‖Â‖. (1.4)

If A is diagonable, then there exists an operator norm on Mn(C) such that the equal-
ity holds in the inequality (1.4). If A is not diagonable then for any ε > 0 there exists
an operator norm on Mn(C) such that the right-hand side of (1.4) minus its left-hand
side is less than ε.

In this paper we let ‖A‖ to be the spectral norm |A|2 := √
ρ(AA∗) = √

ρ(A∗A).
Then ‖Â‖ is the operator norm induced by | · |2. Friedland and Hersonsky proposed
the following problem in [1].
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Question 1. For a diagonal matrix A = diag(λ1, . . . , λn) ∈ GLn(C) does equality
in (1.4) holds?

In Section 2, we construct counterexamples to show that the answer to Question 1
is negative when n � 3. Also we prove that, when n = 2, for any A ∈ GL2(C), the
equality in inequality (1.4) holds if and only if A is normal (Theorem 2.1). In Section
4, two conditions are obtained to guarantee that the equality or the strict inequality
holds for a diagonal matrix A ∈ GLn(C) in inequality (1.4) (Theorems 4.1 and 4.2).
By using Theorem 4.2 or Corollary 4.1, more counterexamples to Question 1 can
be constructed. The proofs of Theorems 4.1 and 4.2 are relied on the three lemmas
proved in Section 3.

2. Counterexamples to Question 1

In this section, we will construct counterexamples to Question 1 for the case n �
3, and then we prove that, for A ∈ GL2(C), the equality in inequality (1.4) holds if
and only if A is normal.

For A = (aij )
n
1, B = (bij )

n
1 ∈ Mn(C), the Hadamard product of A and B is de-

fined as

A � B = (aij bij )
n
1 . (2.1)

For A = diag(λ1, . . . , λn) ∈ GLn(C), let �A = ((λi/λj ) − 1)n1 ∈ Mn(C). It fol-
lows from (1.1) and (2.1) that

Â(Z) = �A � Z. (2.2)

For convenience, we let σij = (λi/λj ) − 1 and σ = maxi,j |σij |. Then, by Theo-
rem FH, it is equivalent to consider the following question.

Question 2. For any Z = (cij )
n
1, is |�A � Z|2 � σ if |Z|2 � 1?

When n = 3, we will construct a counterexample to show that the answer to Ques-
tion 2 is negative.

Remark 2.1. By using Theorem 4.2 or Corollary 4.1 in Section 4, more counterex-
amples can be constructed.

Let A = diag(1, 4, −2). Then

�A =

 0 − 3

4 − 3
2

3 0 −3
−3 − 3

2 0


 .

Obviously, σ = 3.
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Let

Z =



4
5 0 − 3

5
3
5 0 4

5
0 1 0


 .

Then

Â(Z)Â(Z)∗ =



81
100 − 54

25 0
− 54

25 9 0
0 0 9

4


 .

The maximal eigenvalue of Â(Z)Â(Z)∗ is the maximal solution of the following
quadratic equation(

λ − 81

100

)
(λ − 9) = 2916

625
.

A straightforward computation shows that |Z|2 = 1 and ‖Â‖ � |Â(Z)|2 = |�A �
Z|2 = 3.0878 > 3. This shows that when n = 3, the answer to Question 2 is negative.

Lemma 2.1. Let A = diag(λ1, λ1, λ2, . . . , λn) ∈ GLn+1(C) and B = diag(λ1, . . . ,

λn) ∈ GLn(C). Then ‖Â‖ � ‖B̂‖.

Proof. Let α = (0, λ1
λ2

− 1, . . . , λ1
λn

− 1) and β = (0, λ2
λ1

− 1, . . . , λn

λ1
− 1)T. Then

�A =
(

0 α

β �B

)
.

For any Z ∈ Mn(C), let ZA =
(

0 0
0 Z

)
∈ Mn+1(C). Then |�A � ZA|2 =

|�B � Z|2. Lemma 2.1 follows. �

By Lemma 2.1 and the above counterexample for the case n = 3, we can construct
counterexamples for the cases n > 3. For example, A = diag(1, . . . , 1, 1, 4, −2) ∈
GLn(C) will satisfy our requirement. This shows that when n > 3, the answer to
Question 2 is also negative.

Since |A|2 = |UAU∗|2 for any unitary matrix U (UU∗ = I ) it follows that ‖Â‖ =
‖B̂‖ for B = UAU∗ and U unitary. Use Schur’s theorem to deduce that we may
choose A to be an upper triangular matrix. Furthermore ‖Â‖ = ‖B̂‖, where A = kB

and k any nonzero complex number. Thus without loss of generality we assume that
A is an upper triangular matrix with having an eigenvalue λ1 = 1. Furthermore for

n = 2 we may assume that A =
(

1 t

0 λ

)
where t is a real nonnegative number.

We first assume that t > 0.
Let

Z =
(

0 1
ei(θ+π) 0

)
.
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Then a straightforward computation shows that

Â(Z)Â(Z)∗ =
(

t2 + |( 1
λ

− 1) + t2

λ
eiθ |2 �

� |λ − 1|2 + t2

)
,

where � = t
[
λ̄ − 1 + t2

λ

]
+ t

(
1
λ

− 1
)

e−iθ .

Since t > 0, we can choose a θ such that
∣∣∣( 1

λ
− 1

) + t2

λ
eiθ

∣∣∣2 =
[∣∣ 1

λ
− 1

∣∣ + t2

|λ|
]2

.

For this Z,

|Â(Z)|2 � max




√
t2 +

(∣∣∣∣1

λ
− 1

∣∣∣∣ + t2

|λ|
)2

,

√
|λ − 1|2 + t2


 ,

i.e., ‖Â‖ > max{| 1
λ

− 1|, |λ − 1|}.
If t = 0, obviously, the equality in inequality (1.4) holds. For more discussions in

this direction, see Theorem 4.1 and Corollary 4.1.
Since a square matrix is diagonalizable under a unitary matrix if and only if it is

normal, we can state the above as follows.

Theorem 2.1. For any matrix A ∈ GL2(C), the equality in inequality (1.4) holds if
and only if A is normal.

Remark 2.2. It follows from Theorem 2.1 that the answer to Question 1 is positive
when n = 2.

3. Three lemmas

For x = (x1, . . . , xn)
T ∈ Cn, let |x|2 = (

∑n
i=1 |xi |2)1/2. From the well known

characterization:

|Z|2 = max
x,y∈Cn,|x|2,|y|2�1

|x∗Zy|,

it follows

Lemma 3.1. Let Z = (zij )
n
1 =

(
Z1 Z2
Z3 Z4

)
∈ Mn(C) and Z1 ∈ Mt(C). If |Z|2 �

1, then

|Zi |2 � 1, i = 1, . . . , 4.

Lemma 3.2. Let D =
(

a 0
c b

)
∈ M2(C) and the set
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M =
{
Z =

(
cos θ − sin θ

sin θ cos θ

)
: −π � θ � π

}
,

where |b| � |c| and |a| � |c|. Then,

(i) if |a|2 + |b|2 � |c|2, we have, for any Z ∈ M, |D � Z|2 � |c|. The equality
holds if and only if cos θ = 0;

(ii) if |a|2 + |b|2 > |c|2, we have

max
Z∈M

|D � Z|2 � 2|ab|√
4|ab|2 − (|a|2 + |b|2 − |c|2)2

|c| > |c|.

Furthermore, if |c|2(|a|2 + |b|2 − |c|2) � |ab|2, then for any Z ∈ M, |D � Z|2
� |c|, the equality holds if and only if cos θ = 0, and if |c|2(|a|2 + |b|2 − |c|2) <

|ab|2, then for all θ (∈ [−π, π]) which satisfy

0 /= cos2 θ <
|c|2(|a|2 + |b|2 − |c|2)

|ab|2 ,

we have |D � Z|2 > |c|.

Proof. For any Z =
(

cos θ − sin θ

sin θ cos θ

)
, a simple computation shows that

B = (D � Z)(D � Z)∗ =
( |a|2 cos2 θ ac̄ sin θ cos θ

āc sin θ cos θ |b|2 cos2 θ + |c|2 sin2 θ

)
.

The characteristic polynomial of B is

λ2 − (|a|2 cos2 θ + |b|2 cos2 θ + |c|2 sin2 θ)λ + |ab|2 cos4 θ = 0.

Obviously, the maximal eigenvalue of B is

λmax = 1
2 |c|2 + 1

2 (|a|2 + |b|2 − |c|2) cos2 θ

+ 1
2

√
[|c|2 + (|a|2 + |b|2 − |c|2) cos2 θ]2 − 4|ab|2 cos4 θ.

If |a|2 + |b|2 � |c|2, then√
[|c|2 + (|a|2 + |b|2 − |c|2) cos2 θ]2 − 4|ab|2 cos4 θ � |c|2.

It follows that

λmax � 1
2 |c|2 + 1

2 (|a|2 + |b|2 − |c|2) cos2 θ + 1
2 |c|2 � |c|2.

This implies that |D � Z|2 � |c| holds for any Z ∈ M2(C). This proves (i).
We now come to consider the second case |a|2 + |b|2 > |c|2.
Let T 2 = |a|2 + |b|2 − |c|2 and

L = (|c|2 + T 2 cos2 θ)2 − 4|ab|2 cos4 θ − (|c|2 − T 2 cos2 θ)2.
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Then

L = 4 cos2 θ(|c|2T 2 − |ab|2 cos2 θ).

If |c|2T 2 � |ab|2, then for any Z ∈ M , L � 0, i.e.,

λmax � 1
2 |c|2 + 1

2T 2 cos2 θ + 1
2 (|c|2 − T 2 cos2 θ) = |c|2.

Hence |D � Z|2 � |c|.
If |c|2T 2 < |ab|2, we can choose a θ in the interval [−π, π] such that

0 /= cos2 θ <
|c|2T 2

|ab|2 .

For this θ , we know L > 0. This implies that λmax > |c|2.
We now come to find the maximal value of λmax in the set M .
Let

f (θ) = 1
2 |c|2 + 1

2T 2 cos2 θ + 1
2

√
(|c|2 + T 2 cos2 θ)2 − 4|ab|2 cos4 θ.

Then

�f

�θ
= −1

2

[
T 2 + T 2(|c|2 + T 2 cos2 θ) − 4|ab|2 cos2 θ√

(|c|2 + T 2 cos2 θ)2 − 4|ab|2 cos4 θ

]
sin 2θ.

A straightforward computation shows that all solutions to the equation

�f

�θ
= 0

are

cos θ = 0, cos2 θ = 1, cos2 θ = 2|c|2T 2

4|ab|2 − T 4
.

These imply that the maximal value of λmax is

λmax = 1
2 |c|2 + 1

2T 2 cos2 θ + 1
2

√
(|c|2 + T 2 cos2 θ)2 − 4|ab|2 cos4 θ

= 4|abc|2
4|ab|2 − T 4

= 4|abc|2
4|ab|2 − (|a|2 + |b|2 − |c|2)2

.

The proof of (ii) is completed. �

The following lemma can be established in a similar manner as above.

Lemma 3.3. Let D =
(

0 a

c b

)
∈ M2(C) and the set

M =
{
Z =

(
cos θ − sin θ

sin θ cos θ

)
: −π � θ � π

}
,
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where |b| � |c|, |a| � |c| and |a|2 + |b|2 > |c|2. Then

max
Z∈M

|D � Z|2 � 2|ab|√
4|ac|2 − (|a|2 + |c|2 − |b|2)2

|c|

= 2|ab|√
4|ab|2 − (|a|2 + |b|2 − |c|2)2

|c| > |c|.

Furthermore, if |b|2(|a|2 + |c|2 − |b|2) � |ac|2, then for any Z ∈ M, |D � Z|2 �
|c|, the equality holds if and only if sin θ = 0, and if |b|2(|a|2 + |c|2 − |b|2) < |ac|2,
then for all θ which satisfy

0 /= sin2 θ <
|b|2(|a|2 + |c|2 − |b|2)

|ac|2 ,

we have |D � Z|2 > |c|.

4. Main theorems

The counterexamples in Section 2 show that the equality in inequality (1.4) does
not always hold n � 3. In this section, first, we investigate the condition under which
the equality in inequality (1.4) holds; then we find some condition under which the
strict inequality in inequality (1.4) holds.

For A = diag(λ1, . . . , λn) ∈ GLn(C), if there are t different elements among λi’s
(i = 1, . . . , n), without loss of generality, we assume that they are λ1, . . . , λt . Then
we denote t by Card(A) and define Max(A) ∈ GLt(C) as follows

Max(A) = diag(λ1, . . . , λt ).

When Card(A) � 2, we will prove the following result which is a partly general-
ization of Theorem 2.1.

Theorem 4.1. Let A = diag(λ1, . . . , λn) ∈ GLn(C). If Card(A) � 2, then

‖Â‖ = max
1�i,j�n

∣∣∣∣ λi

λj

− 1

∣∣∣∣ .
Proof. If Card(A) = 1, then Â(Z) = 0 and ‖Â‖ = max1�i,j�n

∣∣(λi/λj ) − 1
∣∣ = 0.

Our equality follows.
If Card(A) = 2, then, without loss of generality, we may assume that the first r

diagonal entries of A are λ1 and the rest are λ2. Then

�A =
(

0 �1
�2 0

)
,
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where

�1 =
(

λ1

λ2
− 1

)


1 · · · 1
... · · · ...

1 · · · 1




is a r-by-(n − r) matrix and

�2 =
(

λ2

λ1
− 1

)


1 · · · 1
... · · · ...

1 · · · 1




is an (n − r)-by-r matrix.

Let Z = (zij )
n
1 =

(
Z1 Z2
Z3 Z4

)
, where Z1 ∈ Mr(C). Then

Â(Z) =

 0

(
λ1
λ2

− 1
)

Z2(
λ2
λ1

− 1
)

Z3 0




and

Â(Z)Â(Z)∗ =



∣∣∣λ1
λ2

− 1
∣∣∣2

Z2Z
∗
2 0

0
∣∣∣λ2
λ1

− 1
∣∣∣2

Z3Z
∗
3


 .

It follows from Lemma 3.1 that

‖Â‖ = sup
|Z|2�1

{∣∣∣∣λ2

λ1
− 1

∣∣∣∣
√

ρ(Z2Z
∗
2),

∣∣∣∣λ1

λ2
− 1

∣∣∣∣√ρ(Z3Z
∗
3)

}
� max

{∣∣∣∣λ2

λ1
− 1

∣∣∣∣ ,

∣∣∣∣λ1

λ2
− 1

∣∣∣∣
}

.

By theorem FH, ‖Â‖ = max1�i,j�n

∣∣∣ λi

λj
− 1

∣∣∣ .
This completes the proof. �

Remark 4.1. When n = 2, Theorem 4.1 implies that the answer to Question 1 is
positive.

For A = diag(λ1, . . . , λn) ∈ GLn(C), we assume that Card(A) � 3 in the fol-
lowing.

From the definitions of �A and σ it follows that there exists a pair (p, q) such
that σ = |σpq | = |(λp/λq) − 1|. We denote the set of all such pair(s) by P(A). For
a pair (p, q) ∈ P(A), then there exists λt /= λp, λq since Card(A)� 3.

Let

A(t)pq = diag(λp, λt λq λi1 · · · λin−3)

be obtained from A by reordering its diagonal entries.
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In �A(t)pq
= (σij (t, p, q))n1, let

σ(t, p, q) = max{|σ21(t, p, q)|2 + |σ32(t, p, q)|2, |σ12(t, p, q)|2
+ |σ32(t, p, q)|2}.

Condition CW. For A = diag(λ1, . . . , λn), we say that A satisfies Condition CW if

max
t /=p,q,(p,q)∈P(A)

σ (t, p, q) > σ 2.

If A satisfies Condition CW, let

σ(A)1 = max
t /=p,q,(p,q)∈P(A)

2|σ21(t, p, q)σ32(t, p, q)|σ√
4|σ21(t, p, q)σ32(t, p, q)|2 − (|σ21(t, p, q)|2 + |σ32(t, p, q)|2 − σ 2)2

,

if |σ21(t, p, q)|2 + |σ32(t, p, q)|2 > σ 2, and

σ(A)2 = max
t /=p,q,(p,q)∈P(A)

2|σ12(t, p, q)σ32(t, p, q)|σ√
4|σ12(t, p, q)σ32(t, p, q)|2 − (|σ12(t, p, q)|2 + |σ32(t, p, q)|2 − σ 2)2

,

if |σ12(t, p, q)|2 + |σ32(t, p, q)|2 > σ 2.
Let σ(A) = max{σ(A)1, σ (A)2}.

Theorem 4.2. Let A = diag(λ1, . . . , λn) ∈ GLn(C). If Card(A) � 3 and A satis-
fies Condition CW, then

‖Â‖ > max
1�i,j�n

∣∣∣∣ λi

λj

− 1

∣∣∣∣ .
Proof. Since A satisfies Condition CW, without loss of generality, we may assume
that |σ21|2 + |σ32|2 > |σ31|2 = σ 2 or |σ12|2 + |σ32|2 > |σ31|2 = σ 2.

For the first case, let

Z =




0 0 0 · · · 0
cos θ − sin θ 0 · · · 0
sin θ cos θ 0 · · · 0

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0




.
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Then

Â(Z) =




0 0 0 · · · 0
σ21 cos θ 0 0 · · · 0
σ31 sin θ σ32 cos θ 0 · · · 0

0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0




.

For this Z, the spectral norm of matrix Â(Z) is equal to the spectral norm of
matrix(

σ21 cos θ 0
σ31 sin θ σ32 cos θ

)
.

By Lemma 3.2, we know

|Â(Z)|2 � 2|σ21σ32|σ√
4|σ21σ32|2 − (|σ21|2 + |σ32|2 − σ 2)2

> σ.

For the second case, by Lemma 3.3, we know

|Â(Z)|2 � 2|σ12σ32|σ√
4|σ12σ32|2 − (|σ12|2 + |σ32|2 − σ 2)2

> σ.

The discussions as stated above imply that

‖Â‖ � σ(A) > max
1�i,j�n

∣∣∣∣ λi

λj

− 1

∣∣∣∣ .
The proof is completed. �

For any B = (bij )
n
1 ∈ Mn(C), we define |B| = (|bij |)n1.

From Lemma 2.1 and Theorem 4.2 we deduce:

Corollary 4.1. Let A = diag(λ1, . . . , λn) ∈ Mn(C). If t = Card(A) � 3 and σ ap-
pears at least two times in some column or row of the matrix |�max(A)|, then

‖Â‖ > max
1�i,j�t

∣∣∣∣ λi

λj

− 1

∣∣∣∣ .
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