
Discrete Mathematics 56 (1985) 217-225

North-Holland

217

FAST HENSEL’S LIJTING IMPLEMENTATION
USING PARTIAL FRACTION DECOMPOSITION

D. LUGIEZ

LIFIAIIMAG, Grenoble, France

Received December 1984

1. Introduction

When factoring polynomials defined over Z[x], one computes the factors

modulo m from the factors modulo p, where p is a suitable prime number and m

a power of p, greater than rn, a bound on the absolute value of the coefficient of

any factor of the polynomial. This is done using the Hensel lemma. We present a

new way to perform this lifting process based on the idea of partial fraction

decomposition (denoted by p.f.d. in the following).

Section 3 contains a presentation of the classical Hensel’s method, Section 4

presents Kung and Tong’s algorithm for p.f.d. and describes how Viry [6] suggests

to use the p.f.d. for the lifting process. Section 5 describes the new algorithm

based on Viry’s idea and Kung and Tong’s algorithm. An analysis of complexity is

given and the advantages of the new algorithm are discussed.

Computing times help us to compare the new algorithm to the two different

ways of performing the Hensel’s lifting, the serial one and the parallel one. These

measurements show that the new algorithm is more efficient.

2. Preliminaries

Let a be a primitive squarefree univariate polynomial defined over Z[x], the

bound m, is defined by

mO= 2” * lb,,l. H(a), if a = e bi . xi, then H(a) = 2]bi]
i=l i=l

We set n = deg(n) the degree of the polynomial, and b, is the leading coefficient

of the polynomial.

Let p be a prime number which does not divide the resultant of a and its

derivative, m = pk > 2. m,,, and we suppose that a = b, fl;=r rj (mod p) where the

rj are the r manic factors of the polynomial modulo p. They are irreducible and

pairwise prime and they may be computed by Berlekamp’s algorithm for example.

0012-365X/85/$3.30 0 1985, Elsevier Science Publishers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82048356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

218 D. Lugiez

3. The Hensel lemma

We present only the quadratic version of the Hensel’s lemma which is faster

than the linear one in the general case. The Hensel lemma computes the factors

modulo q* from the factors modulo q and this step is repeated until the bound m

is reached. We have two versions of this lifting process, the serial one and the

parallel one.

Serial Hensel Eemma. We lift one factor at a time and this is repeated for each

factor (r - 1 times because the two last factors are lifted together). We do not

present further this well known method, see Kaltofen (2) for details.

Parallel Hensel lemma. All the factors are lifted together, then the early

detection of the true factors is allowed.

Actually the bound m is often too big and it is worthwhile to test for true

factors as soon as a lower heuristic bound is reached, as shown by Wang [8]. Here

we have chosen m” = m ‘lr.
For example

a = (2x+5)(2x-31)(2x + 19), m = 1 771 561, m”= 121.

We present now the parallel algorithm as designed by Wang except for a slight

modification. This algorithm computes the new approximation ri + q . ri modulo

q* of the factors from the approximation modulo q which is ri.

The parallel Hensel’s lifting algorithm

(1) Initialization:

4 +-P? rl + b, * rl, Wi = JJ rj.

Compute ai s.t.

2 ai ’ Wi =

(2) While q <m
begin

jfl

1 (mod PI,

do:

deg (a,) <deg (ri).

s = (a -nri)/q, rl + b,’ . rl (mod q).

For i=l,...,r do

begin

(correction step) r; +- ai . s (mod ri), ri c b;’ . r;

(new factors) ri + ri + q . ri, rl + b, . r1

(true factors) if q*s m”, then test for true factors.

end

(2.1)

(2.1.1)

(2.1.2)

(2.1.3)

Fast Hensel’s lifting implementation 219

For i=l,...,r do

begin

(new Wi) wi t-n rj (mod q*) (2.1.4)
ifi

end

For i=l,...,r do

begin

(correction step for coefficients)

t = (1 - C ai * wi)/q, ai = ai . t (mod (ri, q))
(new coefficients) ai + ai + q . ai

end

(2.1.5)

(2.1.6)

4c-q2 (2.2)

end

Hence we lift two equations a = 6, . fl r, (mod q) and C ai * wi = I (mod q)
The second equation is a Bezout type equality which allows us to perform the

lifting process. This equation comes from the fact that the factors ri are pairwise

prime.

The coefficients such that c ai . Wi = 1 (mod p) are computed using the modular

Euclid’s algorithm and solutions of diophantine equations.

When q > m” we test for true factors, but if b, the leading coefficient is greater

than mrr the test may fail. Wang [9] suggests a way to avoid this failure. When true

factors are detected, we compute the new bound related to the new polynomial to

be factored and if the current modulus q is greater than this bound the lifting

process is terminated and we go to the step of the reconstruction of the factors.

But if it does not happen, we have to restart the algorithm at the very beginning

or to compute the new coefficients ai using an ad-hoc algorithm which terminates

when C ai . wi = 1 (mod q).
According to Wang [7] this parallel Hensel’s lifting appears to be faster than

the serial one in most cases although a proof of this statement remains to be

given.

4. Partial fraction decomposition and the Hensel’s lifting

We present Kung and Tong’s algorithm to solve the p.f.d. problem. We have to

compute the polynomials ri such that b/n. ri = 1 rf/ri and deg (ri) <deg (ri), where

the ri are pairwise prime polynomials, b is a polynomial such that deg (b)<
Cdeg (ri). All the polynomials are polynomials over K[x], with K a field. The

algorithm is as follows.

Algorithm for partial fraction decomposition

(1) wi =Q+i rj, di = wi (mod ri),

220 D. Lugiet

(2) compute ai and e, s.t.: ai . di + ei . ri = 1, with deg (a,) <deg (ri),

(3) ki = b (mod ri),

(4) rl,= ai * ki (mod ri).

The coefficients ai and ei may be computed by Euclid’s algorithm for instance.

Viry suggests to realize the Hensel’s lifting using this algorithm as follows. The

polynomial to be factored is supposed to be manic until the end of this section.

We start from a = n ri (mod q) and we are looking for ri such that a =

n (ri + q . ri) (mod 9’). This leads to the equation

where b = (a -n r,)/q.

As a is manic, and as the ri are pairwise prime the ri are the solutions of the

p.f.d. of the fraction b/n ri; then Viry suggests to use Kung and Tong’s algorithm

to solve this equation, using modular arithmetic to avoid rational arithmetic. As

the ri are manic the divisions by r, do not cause any difficulty, but the Euclid’s

algorithm may raise some, as Z, is a ring and not a field. Thus problems of

divisors of zero appear. Moreover this algorithm needs a to be manic and

performs the costly Euclid’s algorithm at each step. The new algorithm proposed

avoid these difficulties.

5. The improved algorithm

5.1. The algorithm

The polynomial a is not necessary manic. We start from a factorization modulo

q, a = n ri with ri manic for i > 1 and pldcf (ri) = pldcf (a) (mod q2), and we are

looking for r! such that a = n (ri + q . ri) (mod 4’). This leads to the equation

b/n ri = rtlri (mod q), where b = (a --n ri)/q

We have deg (ri) <deg (ri) because pldcf (a) = pldcf (rJ (mod 9’). To solve this

equation we use Kung and Tong’s algorithm. But we use a modular version of

Kung and Tong’s algorithm, because this p.f.d. (mod q2) is strongly related to the

preceeding p.f.d. (mod q). We now describe the improved algorithm.

The improved algorithm

(1) (Initialization) q + p, rI +- b, . rl (mod p). For i > 1 wi =nliiti ri (mod p),

di = wi (mod (ri, p)). Compute ui and ei s.t.: ui . di + ei . ri = 1 (mod p), deg (ai)<

deg (ri).
(2) (Lifting Process) While q < m do:

begin

(2.1)

Fast Hensel’s lifting implementation 221

For i>l do

begin

ki = a, (mod ri)

r{= ai . ki (mod ri)

ri+ri+q.ri(modq2)

end

a = (&+I rj)rl+ 0,

(true factors) if q > rn”, then test for true factors.

(termination) if q > m, then return.

For i>l do

begin

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

(2.3)

Wi +-flj+i r, (mod q2), di + wi (mod (ri, q2))

ci = (1 - (ai * di + ei * r,))/q (mod q)

ai = ai . ci (mod (ri, q))

(new coefficient) ai t ui +q . al, (mod q2)

ei + (1 - Ui . di) (mod (ri, q2))

end

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

end

q*q2 (2.4)

The following comments must be made concerning this new method.

The coefficients ui are the coefficients ai related to the p.f.d. using Kung and

Tong’s algorithm. At each iteration they satisfy ui * di + ei . r, = 1, with di = wi

(mod ri), hence we can compute ri using these coefficients as in Kung and Tong’s

algorithm.

If deg (di) = 0, then we set ui = di (mod q), ei = 0. We know that di exists. If not,

then d, = 0 (mod p) and then ri divides wi which is impossible as the r, are

pairwise prime and as wi is set as njzi rj.

After the detection of true factors, we go back to the reinitialization step if the

current modulus is not big enough. The new variables are identified with capital

letters, and the old one with small letters. Then we compute Wi and Di defined as

previously and we must compute the new coefficients Ai and Ei. We have Ri = ri ;

and Wi = w,/ur where ur is the product of the factors yet found.

We get Di = 41. ri + di from the previous equality between Wi and wi.

Asui~di+ei~ri=landAi~di+Ei~Ri=lwefindthat

Aiadi+(Ei-q:*Ai).ri=u,, with deg (Ai) < deg (ri)

Then Ai may be computed as the solution of this diophantine equation because

we know the ui and the di such that ui * di + ei . r, = 1

222 D. Lugiez

Finally we find that the reinitialization of the new algorithm is much easier than

the reinitialization of Wang’s algorithm.

All the divisions in Z,[x] are done with a manic divisor and do not raise any

difficulty. The Euclid’s algorithm is performed only one time for each factor in

Z,[x] with p a small prime and then it is not too costly.

5.2 Complexity analysis

We do not use techniques as the Fast Fourier Transform. Thus the product of

two polynomials of respective degree p and q requires pq . (log d)’ operations

where d is a bound on the absolute value of the coefficients. The average

computing time to divide such polynomials is also of the same order

O(pq . (log d)‘). We suppose that all the factors have the same average degree n/r.

At each iteration the coefficients are bounded by the current modulus q, and it

can be shown that the most consuming time iteration is the last one, see Musser

[5] for details. Then the complexity of the whole algorithm is the complexity of

this last iteration when we have q = m. Under these hypothesis the most impor-

tant computation is the computation of the product jj ri.
We perform: n/r(n/r + 2nlr +. . - + n(r - 1)/r) G n2 multiplications of coefficients.

Then the average computing time is O(n* log q2). The computation of either wi or

di requires also O(n* log q*) because both the division and the multiplication of

polynomial have the same complexity. All the other computations involve polyno-

mials of lower degree and do not affect this complexity analysis. Then because at

the last iteration q = m, with m = 2” . d, the complexity of the new algorithm is

0(n4 log d’). We recall that the complexity of the Hensel lemma, both serial and

parallel, is O(n410g d*).
Then the complexity analysis gives the same results for both algorithms.

6 Comparison and measurement

The new algorithm is a parallel one with all the advantages related to this

feature. No useless computation is done and the early detection of the true factors

is allowed which is a crucial point to speed up the factorization of polynomials.

The improved algorithm and the original parallel Hensel lemma seem to be very

similar. This is not surprising because the Hensel lemma and the p.f.d. are

equivalent, but the important point is that we use Kung and Tong’s algorithm.

Indeed the theoretical results are the same for both of them and only measure-

ments will show us which of them is the fastest. Moreover the new algorithm will

be very efficient when we have a good decomposition modulo p, i.e., no extrane-

ous factors, because the true factors are readily detected and the step of

reconstruction of the factors is avoided. Therefore the result of the first part

(Berlekamp usually) is of basic importance for the lifting process. This raises the

Fast Hensel’s lifting implementation 223

problem of the dependance of the factorization of polynomials modulo p on the

selection of p a small or medium prime number.

The computations have been done using ALDES/SAC2 of Collins, Loos on a

CII-HB DPS 68 under MULTICS.

The tested polynomials are always dense and most of the coefficients have the

same average number of digits. In ALDES/SAC2 the Berlekamp’s algorithm is

performed for ten small primes to prevent from the occurrence of extraneous

factors. The Hensel lemma is the serial one denoted IUPQHL without the

possibility of the detection of extraneous factors.

Measurements show that the time for the Hensel lifting lies between 10% and

30% of the total time required for the factorization. The parallel Hensel lemma

implemented is the previously described one.

In what follows a is the polynomial to be factored, T is the time spent for the

Berlekamp’s algorithm, ti is the time spent for the lifting process plus the

reconstruction step;

i = 1, for the serial algorithm,

i = 2, for the parallel Hensel lemma,

i = 3, for our proposed algorithm.

We include the time spent in the reconstruction step

detection of true factors and also because the time spent

step may be neglected in practice (less than 1% of the total

number of digits of the coefficients of the polynomial a.

All the times are given in milliseconds.

6.1. Example of 2 factors modulo p (r=2)

because of the early

in this reconstruction

time) d is the average

(i) a is irreducible over Z[x]: It is the worst case for the parallel algorithm as no

early detection of factors is done. Our improved algorithm is comparable to the

Hensel lemma.

For example: If a = x4+ 1 reducible modulo p for all prime number p,

T=2411ms, t,=881ms, t2=1080ms, t,=892ms.

(ii) a is reducible over Z[x]. The true factors are detected early by the parallel

algorithms which stop before the bound m is reached.

The following tables

degree polynomials.

Table 1 and Table 2, reproduce measurements for low

Table 1
deg (a) = 4

Table 2
deg (a) = 8

d 3 3 5
T 3937 7652 3681
t1 1698 1703 2053
tz 1613 1703 2552
t3 1594 1221 1414

d 4 4 4 4
T 21865 12483 17810 22856
h 3690 2469 3513 3427

t 2 2997 2391 2860 2751
t3 1946 1968 2246 2124

224 D. Lugiez

6.2. Example of more than two factors modulo p (r > 2)

When extraneous factors do not exist the true factors are detected and the
parallel algorithms stop.

But when the degree of a increases, the probability of getting extraneous
factors also increase. However parallel algorithms remain very efficient when true
factors and extraneous factors are mixed as it is usually the case. When it happens
we detect the true factors and after this detection is completed we often find that
the new bound computed is yet reached and we only have to perform the
reconstruction step. Therefore in Table 3 and in Table 4 we do not distinguish
between cases where extraneous factors are or are not found. It must be noted
that the parallel methods, although superior to the serial one, are even more
efficient when there is no extraneous factor. Table 3 and 4 show some typical
measurements with the same definitions for the ti’s. T and d as in the previous
table.

Table 3 Table 4
deg (a) = 8 deg (a) = 12

d 2 3 4 5 d 5 5 5
T 16 468 18 117 18785 17 860 T 53 584 47 371 52437
t1 5362 3317 4911 3154 t1 10765 17298 16942
tz 4438 1790 4579 2450 tz 7172 13 650 12484
t3 3217 1616 3341 1955 t, 5306 11804 10092

These measurements show that the two parallel algorithms are faster than the
serial one. This is strongly related to the early detection of true factors using the
heuristic bound of Wang.

The theoretical understanding of both methods, i.e., parallel and serial, is still
incomplete. In particular there is no proof that the parallel one is better than the
serial one. The use of heuristic bound, related to the early detection of true
factors, may in fact well be a decisive fact in the implementation used either here
or in other computer algebra systems. Despite this lack of proof there is a large
agreement that the parallel methods are more efficient.

This explains why we do not implement our new method in a serial algorithm.
This is straightforward and such an algorithm will be designed to have comparison
of methods using parallel, serial, heuristic and normal bound. These comparisons
will be found in Lugiez, These de 3” Cycle. Also we did not implement several
refinements of the new algorithm such as the computations of di without comput-
ing wi when the degree of ri is one.

However this algorithm appears to be more efficient than the usual parallel
Hensel lemma, both using the early detection of true factors. The fact that our
new algorithm can be easily restarted after the detection of a true factor is also an
important feature of our method.

Fast Hensel’s lifting implementation 225

Another one is that it can be extended to multivariate polynomials as it will be
shown in a forthcoming paper.

Acknowledgment

I am grateful to J. Calmet for suggesting this problem.

References

[l] E.R. Berlekamp, Algebraic Coding Theory (McGraw-Hill, New York, 1968).

[2] E. Kaltofen, Factorization of Polynomials, in: Buchberger et al., eds., Computer Algebra, Comput.

Supplementum.
[3] H.T. Kung and D.M. Tong, Fast Algorithm for partial fraction decomposition, SIAM J. Comput. 6

(1977) 582-592.
[4] M. Mignotte, An inequality about factors of polynomial, Math. Comp. 28 (1975) 1153-1157.
[51 D.M. Musser, Algorithm of factorization of polynomials, Ph.D. Thesis, University of Wisconsin,

Wisconsin (197 1).

[6] G. Viry, Polynomial’s factorization over the integers, unpublished paper.

[7] G. Viry, Factorisation des polynomes a plusieurs variables, RAIRO Inform. Theor. 14, 209-223.

[8] P.S. Wang, Parallel p-adic construction in the univariate Factoring Algorithm, in: V.E. Lewis, ed.,
MACSYMA User’s Conference (1979) 310-317.

[9] P.S. Wang, Early Detection of true factors in the factorization of unviariate polynomias, in: J.A.

Van Hulzen, ed., Proc. SAME Conf., London (1983).

