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1. Introduction 

When factoring polynomials defined over Z[x], one computes the factors 

modulo m from the factors modulo p, where p is a suitable prime number and m 

a power of p, greater than rn, a bound on the absolute value of the coefficient of 

any factor of the polynomial. This is done using the Hensel lemma. We present a 

new way to perform this lifting process based on the idea of partial fraction 

decomposition (denoted by p.f.d. in the following). 

Section 3 contains a presentation of the classical Hensel’s method, Section 4 

presents Kung and Tong’s algorithm for p.f.d. and describes how Viry [6] suggests 

to use the p.f.d. for the lifting process. Section 5 describes the new algorithm 

based on Viry’s idea and Kung and Tong’s algorithm. An analysis of complexity is 

given and the advantages of the new algorithm are discussed. 

Computing times help us to compare the new algorithm to the two different 

ways of performing the Hensel’s lifting, the serial one and the parallel one. These 

measurements show that the new algorithm is more efficient. 

2. Preliminaries 

Let a be a primitive squarefree univariate polynomial defined over Z[x], the 

bound m, is defined by 

mO= 2” * lb,,l. H(a), if a = e bi . xi, then H(a) = 2 ]bi] 
i=l i=l 

We set n = deg(n) the degree of the polynomial, and b, is the leading coefficient 

of the polynomial. 

Let p be a prime number which does not divide the resultant of a and its 

derivative, m = pk > 2. m,,, and we suppose that a = b, fl;=r rj (mod p) where the 

rj are the r manic factors of the polynomial modulo p. They are irreducible and 

pairwise prime and they may be computed by Berlekamp’s algorithm for example. 
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3. The Hensel lemma 

We present only the quadratic version of the Hensel’s lemma which is faster 

than the linear one in the general case. The Hensel lemma computes the factors 

modulo q* from the factors modulo q and this step is repeated until the bound m 

is reached. We have two versions of this lifting process, the serial one and the 

parallel one. 

Serial Hensel Eemma. We lift one factor at a time and this is repeated for each 

factor (r - 1 times because the two last factors are lifted together). We do not 

present further this well known method, see Kaltofen (2) for details. 

Parallel Hensel lemma. All the factors are lifted together, then the early 

detection of the true factors is allowed. 

Actually the bound m is often too big and it is worthwhile to test for true 

factors as soon as a lower heuristic bound is reached, as shown by Wang [8]. Here 

we have chosen m” = m ‘lr. 
For example 

a = (2x+5)(2x-31)(2x + 19), m = 1 771 561, m”= 121. 

We present now the parallel algorithm as designed by Wang except for a slight 

modification. This algorithm computes the new approximation ri + q . ri modulo 

q* of the factors from the approximation modulo q which is ri. 

The parallel Hensel’s lifting algorithm 

(1) Initialization: 

4 +-P? rl + b, * rl, Wi = JJ rj. 

Compute ai s.t. 

2 ai ’ Wi = 

(2) While q <m 
begin 

jfl 

1 (mod PI, 

do: 

deg (a,) <deg (ri). 

s = (a -nri)/q, rl + b,’ . rl (mod q). 

For i=l,...,r do 

begin 

(correction step) r; +- ai . s (mod ri), ri c b;’ . r; 

(new factors) ri + ri + q . ri, rl + b, . r1 

(true factors) if q*s m”, then test for true factors. 

end 

(2.1) 

(2.1.1) 

(2.1.2) 

(2.1.3) 
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For i=l,...,r do 

begin 

(new Wi) wi t-n rj (mod q*) (2.1.4) 
ifi 

end 

For i=l,...,r do 

begin 

(correction step for coefficients) 

t = (1 - C ai * wi)/q, ai = ai . t (mod (ri, q)) 
(new coefficients) ai + ai + q . ai 

end 

(2.1.5) 

(2.1.6) 

4c-q2 (2.2) 

end 

Hence we lift two equations a = 6, . fl r, (mod q) and C ai * wi = I (mod q) 
The second equation is a Bezout type equality which allows us to perform the 

lifting process. This equation comes from the fact that the factors ri are pairwise 

prime. 

The coefficients such that c ai . Wi = 1 (mod p) are computed using the modular 

Euclid’s algorithm and solutions of diophantine equations. 

When q > m” we test for true factors, but if b, the leading coefficient is greater 

than mrr the test may fail. Wang [9] suggests a way to avoid this failure. When true 

factors are detected, we compute the new bound related to the new polynomial to 

be factored and if the current modulus q is greater than this bound the lifting 

process is terminated and we go to the step of the reconstruction of the factors. 

But if it does not happen, we have to restart the algorithm at the very beginning 

or to compute the new coefficients ai using an ad-hoc algorithm which terminates 

when C ai . wi = 1 (mod q). 
According to Wang [7] this parallel Hensel’s lifting appears to be faster than 

the serial one in most cases although a proof of this statement remains to be 

given. 

4. Partial fraction decomposition and the Hensel’s lifting 

We present Kung and Tong’s algorithm to solve the p.f.d. problem. We have to 

compute the polynomials ri such that b/n. ri = 1 rf/ri and deg (ri) <deg (ri), where 

the ri are pairwise prime polynomials, b is a polynomial such that deg (b)< 
Cdeg (ri). All the polynomials are polynomials over K[x], with K a field. The 

algorithm is as follows. 

Algorithm for partial fraction decomposition 

(1) wi =Q+i rj, di = wi (mod ri), 
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(2) compute ai and e, s.t.: ai . di + ei . ri = 1, with deg (a,) <deg (ri), 

(3) ki = b (mod ri), 

(4) rl,= ai * ki (mod ri). 

The coefficients ai and ei may be computed by Euclid’s algorithm for instance. 

Viry suggests to realize the Hensel’s lifting using this algorithm as follows. The 

polynomial to be factored is supposed to be manic until the end of this section. 

We start from a = n ri (mod q) and we are looking for ri such that a = 

n (ri + q . ri) (mod 9’). This leads to the equation 

where b = (a -n r,)/q. 

As a is manic, and as the ri are pairwise prime the ri are the solutions of the 

p.f.d. of the fraction b/n ri; then Viry suggests to use Kung and Tong’s algorithm 

to solve this equation, using modular arithmetic to avoid rational arithmetic. As 

the ri are manic the divisions by r, do not cause any difficulty, but the Euclid’s 

algorithm may raise some, as Z, is a ring and not a field. Thus problems of 

divisors of zero appear. Moreover this algorithm needs a to be manic and 

performs the costly Euclid’s algorithm at each step. The new algorithm proposed 

avoid these difficulties. 

5. The improved algorithm 

5.1. The algorithm 

The polynomial a is not necessary manic. We start from a factorization modulo 

q, a = n ri with ri manic for i > 1 and pldcf (ri) = pldcf (a) (mod q2), and we are 

looking for r! such that a = n (ri + q . ri) (mod 4’). This leads to the equation 

b/n ri = rtlri (mod q), where b = (a --n ri)/q 

We have deg (ri) <deg (ri) because pldcf (a) = pldcf (rJ (mod 9’). To solve this 

equation we use Kung and Tong’s algorithm. But we use a modular version of 

Kung and Tong’s algorithm, because this p.f.d. (mod q2) is strongly related to the 

preceeding p.f.d. (mod q). We now describe the improved algorithm. 

The improved algorithm 

(1) (Initialization) q + p, rI +- b, . rl (mod p). For i > 1 wi =nliiti ri (mod p), 

di = wi (mod (ri, p)). Compute ui and ei s.t.: ui . di + ei . ri = 1 (mod p), deg (ai)< 

deg (ri). 
(2) (Lifting Process) While q < m do: 

begin 

(2.1) 
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For i>l do 

begin 

ki = a, (mod ri) 

r{= ai . ki (mod ri) 

ri+ri+q.ri(modq2) 

end 

a = (&+I rj)rl+ 0, 

(true factors) if q > rn”, then test for true factors. 

(termination) if q > m, then return. 

For i>l do 

begin 

(2.1.1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 

(2.3) 

Wi +-flj+i r, (mod q2), di + wi (mod (ri, q2)) 

ci = (1 - (ai * di + ei * r,))/q (mod q) 

ai = ai . ci (mod (ri, q)) 

(new coefficient) ai t ui +q . al, (mod q2) 

ei + (1 - Ui . di) (mod ( ri, q2)) 

end 

(2.3.1) 

(2.3.2) 

(2.3.3) 

(2.3.4) 

end 

q*q2 (2.4) 

The following comments must be made concerning this new method. 

The coefficients ui are the coefficients ai related to the p.f.d. using Kung and 

Tong’s algorithm. At each iteration they satisfy ui * di + ei . r, = 1, with di = wi 

(mod ri), hence we can compute ri using these coefficients as in Kung and Tong’s 

algorithm. 

If deg (di) = 0, then we set ui = di (mod q), ei = 0. We know that di exists. If not, 

then d, = 0 (mod p) and then ri divides wi which is impossible as the r, are 

pairwise prime and as wi is set as njzi rj. 

After the detection of true factors, we go back to the reinitialization step if the 

current modulus is not big enough. The new variables are identified with capital 

letters, and the old one with small letters. Then we compute Wi and Di defined as 

previously and we must compute the new coefficients Ai and Ei. We have Ri = ri ; 

and Wi = w,/ur where ur is the product of the factors yet found. 

We get Di = 41. ri + di from the previous equality between Wi and wi. 

Asui~di+ei~ri=landAi~di+Ei~Ri=lwefindthat 

Aiadi+(Ei-q:*Ai).ri=u,, with deg (Ai) < deg (ri) 

Then Ai may be computed as the solution of this diophantine equation because 

we know the ui and the di such that ui * di + ei . r, = 1 
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Finally we find that the reinitialization of the new algorithm is much easier than 

the reinitialization of Wang’s algorithm. 

All the divisions in Z,[x] are done with a manic divisor and do not raise any 

difficulty. The Euclid’s algorithm is performed only one time for each factor in 

Z,[x] with p a small prime and then it is not too costly. 

5.2 Complexity analysis 

We do not use techniques as the Fast Fourier Transform. Thus the product of 

two polynomials of respective degree p and q requires pq . (log d)’ operations 

where d is a bound on the absolute value of the coefficients. The average 

computing time to divide such polynomials is also of the same order 

O(pq . (log d)‘). We suppose that all the factors have the same average degree n/r. 

At each iteration the coefficients are bounded by the current modulus q, and it 

can be shown that the most consuming time iteration is the last one, see Musser 

[5] for details. Then the complexity of the whole algorithm is the complexity of 

this last iteration when we have q = m. Under these hypothesis the most impor- 

tant computation is the computation of the product jj ri. 
We perform: n/r(n/r + 2nlr +. . - + n(r - 1)/r) G n2 multiplications of coefficients. 

Then the average computing time is O(n* log q2). The computation of either wi or 

di requires also O(n* log q*) because both the division and the multiplication of 

polynomial have the same complexity. All the other computations involve polyno- 

mials of lower degree and do not affect this complexity analysis. Then because at 

the last iteration q = m, with m = 2” . d, the complexity of the new algorithm is 

0(n4 log d’). We recall that the complexity of the Hensel lemma, both serial and 

parallel, is O(n410g d*). 
Then the complexity analysis gives the same results for both algorithms. 

6 Comparison and measurement 

The new algorithm is a parallel one with all the advantages related to this 

feature. No useless computation is done and the early detection of the true factors 

is allowed which is a crucial point to speed up the factorization of polynomials. 

The improved algorithm and the original parallel Hensel lemma seem to be very 

similar. This is not surprising because the Hensel lemma and the p.f.d. are 

equivalent, but the important point is that we use Kung and Tong’s algorithm. 

Indeed the theoretical results are the same for both of them and only measure- 

ments will show us which of them is the fastest. Moreover the new algorithm will 

be very efficient when we have a good decomposition modulo p, i.e., no extrane- 

ous factors, because the true factors are readily detected and the step of 

reconstruction of the factors is avoided. Therefore the result of the first part 

(Berlekamp usually) is of basic importance for the lifting process. This raises the 
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problem of the dependance of the factorization of polynomials modulo p on the 

selection of p a small or medium prime number. 

The computations have been done using ALDES/SAC2 of Collins, Loos on a 

CII-HB DPS 68 under MULTICS. 

The tested polynomials are always dense and most of the coefficients have the 

same average number of digits. In ALDES/SAC2 the Berlekamp’s algorithm is 

performed for ten small primes to prevent from the occurrence of extraneous 

factors. The Hensel lemma is the serial one denoted IUPQHL without the 

possibility of the detection of extraneous factors. 

Measurements show that the time for the Hensel lifting lies between 10% and 

30% of the total time required for the factorization. The parallel Hensel lemma 

implemented is the previously described one. 

In what follows a is the polynomial to be factored, T is the time spent for the 

Berlekamp’s algorithm, ti is the time spent for the lifting process plus the 

reconstruction step; 

i = 1, for the serial algorithm, 

i = 2, for the parallel Hensel lemma, 

i = 3, for our proposed algorithm. 

We include the time spent in the reconstruction step 

detection of true factors and also because the time spent 

step may be neglected in practice (less than 1% of the total 

number of digits of the coefficients of the polynomial a. 

All the times are given in milliseconds. 

6.1. Example of 2 factors modulo p (r=2) 

because of the early 

in this reconstruction 

time) d is the average 

(i) a is irreducible over Z[x]: It is the worst case for the parallel algorithm as no 

early detection of factors is done. Our improved algorithm is comparable to the 

Hensel lemma. 

For example: If a = x4+ 1 reducible modulo p for all prime number p, 

T=2411ms, t,=881ms, t2=1080ms, t,=892ms. 

(ii) a is reducible over Z[x]. The true factors are detected early by the parallel 

algorithms which stop before the bound m is reached. 

The following tables 

degree polynomials. 

Table 1 and Table 2, reproduce measurements for low 

Table 1 
deg (a) = 4 

Table 2 
deg (a) = 8 

d 3 3 5 
T 3937 7652 3681 
t1 1698 1703 2053 
tz 1613 1703 2552 
t3 1594 1221 1414 

d 4 4 4 4 
T 21865 12483 17810 22856 
h 3690 2469 3513 3427 

t 2 2997 2391 2860 2751 
t3 1946 1968 2246 2124 
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6.2. Example of more than two factors modulo p (r > 2) 

When extraneous factors do not exist the true factors are detected and the 
parallel algorithms stop. 

But when the degree of a increases, the probability of getting extraneous 
factors also increase. However parallel algorithms remain very efficient when true 
factors and extraneous factors are mixed as it is usually the case. When it happens 
we detect the true factors and after this detection is completed we often find that 
the new bound computed is yet reached and we only have to perform the 
reconstruction step. Therefore in Table 3 and in Table 4 we do not distinguish 
between cases where extraneous factors are or are not found. It must be noted 
that the parallel methods, although superior to the serial one, are even more 
efficient when there is no extraneous factor. Table 3 and 4 show some typical 
measurements with the same definitions for the ti’s. T and d as in the previous 
table. 

Table 3 Table 4 
deg (a) = 8 deg (a) = 12 

d 2 3 4 5 d 5 5 5 
T 16 468 18 117 18785 17 860 T 53 584 47 371 52437 
t1 5362 3317 4911 3154 t1 10765 17298 16942 
tz 4438 1790 4579 2450 tz 7172 13 650 12484 
t3 3217 1616 3341 1955 t, 5306 11804 10092 

These measurements show that the two parallel algorithms are faster than the 
serial one. This is strongly related to the early detection of true factors using the 
heuristic bound of Wang. 

The theoretical understanding of both methods, i.e., parallel and serial, is still 
incomplete. In particular there is no proof that the parallel one is better than the 
serial one. The use of heuristic bound, related to the early detection of true 
factors, may in fact well be a decisive fact in the implementation used either here 
or in other computer algebra systems. Despite this lack of proof there is a large 
agreement that the parallel methods are more efficient. 

This explains why we do not implement our new method in a serial algorithm. 
This is straightforward and such an algorithm will be designed to have comparison 
of methods using parallel, serial, heuristic and normal bound. These comparisons 
will be found in Lugiez, These de 3” Cycle. Also we did not implement several 
refinements of the new algorithm such as the computations of di without comput- 
ing wi when the degree of ri is one. 

However this algorithm appears to be more efficient than the usual parallel 
Hensel lemma, both using the early detection of true factors. The fact that our 
new algorithm can be easily restarted after the detection of a true factor is also an 
important feature of our method. 
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Another one is that it can be extended to multivariate polynomials as it will be 
shown in a forthcoming paper. 
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