
F
ile

:6
83

J
15

94
01

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

39
53

Si
gn

s:
20

06
.L

en
gt

h:
50

pi
c

3
pt

s,
21

2
m

m
Journal of Multivariate Analysis � MV1594

journal of multivariate analysis 56, 333�350 (1996)

A Multivariate CLT for Local Dependence with
n&1�2 log n Rate and Applications to Multivariate

Graph Related Statistics

Yosef Rinott*

University of California, San Diego

and

Vladimir Rotar

Central Economic-Mathematical Institute, Russian Academy of Sciences, Moscow, Russia,
and University of California, San Diego

This paper concerns the rate of convergence in the central limit theorem for cer-
tain local dependence structures. The main goal of the paper is to obtain estimates
of the rate in the multidimensional case. Certain one-dimensional results are also
improved by using some more flexible characteristics of dependence. Assuming the
summands are bounded, we obtain rates close to those for independent variables.
As an application we study the rate of the normal approximation of certain graph
related statistics which arise in testing equality of several multivariate distribu-
tions. � 1996 Academic Press, Inc.

1. Introduction

This paper concerns central limit theorems (CLTs) for sums of depend-
ent random vectors, when the dependence structure is described in terms of
dependency neighborhoods. This type of dependence is given by indicating
for every term in the sum a set of other terms on which it ``essentially''
depends. Such a structure need not be associated with a linear ordering of
the summands. This may be compared with more classical CLTs in which
the dependence is specified in terms of an ordering (despite the fact that the
sum itself is invariant under permutations), such as Markov chains, mar-
tingales or various mixing models.
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Dependency neighborhoods were introduced by Stein [21, Corollary 2,
p. 110], in the study of normal approximations. Estimates of the rate of
such an approximation for nonsmooth functions and bounded random
variables were improved in Rinott [17], and a multivariate version for
smooth functions only, appears in Goldstein and Rinott [9]. These results
prove to be useful in applications in which the dependence is ``local'' in the
sense that the dependency neighborhoods are not too large. This occurs
typically for various counts on graphs, where parts of the graphs that are
disconnected are almost independent. For such applications, where the pre-
sent methods are relevant see, for example, [1, 8, 9] and references given
there.

The dependence structure in this paper is described in terms of two
types of sets, referred to as first-order and second-order dependency
neighborhoods. These sets may be random. See Theorem 2.2 and its discus-
sion. In the one-dimensional case, under this dependence structure, we
provide a more flexible and somwhat more transparent estimate of the con-
vergence rate in comparison to the above mentioned results, covering the
case of nonsmooth functions.

The main goal of this paper is the study of the approximation rates for
the same dependence structure in the multidimensional case. In general the
convergence rate for dependent random variables may be rather slow. We
assume here that the summands are bounded. This assumption enables us
to obtain a rate of convergence close to that for independent random
variables. The fact that boundedness diminishes the effect of dependence on
the convergence rate is well known (see, e.g., [6]).

The proofs in this paper are based on Stein's method. The extension of
these methods to nonsmooth functions in the multivariate case is rather
nontrivial. We proceed by the methodology developed by Barbour [3] and
Go� tze [10].

The main results and some discussions are given in Section 2. An
application to graph related statistics, motivated by hypothesis testing of
equality of multivariate distributions, is given in Section 3. The proof of
Theorem 2.1 is given in Section 4.

2. Results and Discussion

Let 8 denote the standard normal distribution in Rd, and , the corre-
sponding density function. Given a matrix (or a vector) A, let AT be the
transpose, and let |A| the be sum of the absolute values of its components.
Using this norm rather than Euclidean norm will simplify some notations
and the formulation of the results. This is only a matter of convenience
since the norms are equivalent.

334 RINOTT AND ROTAR



F
ile

:6
83

J
15

94
03

.B
y:

B
V

.D
at

e:
29

:0
2:

96
.T

im
e:

16
:1

1
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

27
49

Si
gn

s:
18

89
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

Given a function h: Rd � R, set

h+
$ (x)=sup[h(x+y): | y|�$], h&

$ (x)=inf[h(x+y): | y|�$],

h� (x; $)=h+
$ (x)&h&

$ (x).

Let H be a class of measurable functions from Rd to R, which are
uniformly bounded by some constant assumed to be 1 without loss of
generality. Suppose H satisfies the following properties: for any h # H and
any $>0, the functions h+

$ (x) and h&
$ (x) are in H, and for any d_d

matrix A and any vector b # Rd, the function h(Ax+b) belongs to H. In
addition we assume that for all $>0

sup {|Rd
h� (x; $) 8(dx): h # H=�a$ (2.1)

for some constant a which depends only on the class H and the dimension
d. Obviously, we may assume a�1.

The class of indicators of convex sets is known to be such a class (see,
e.g., [19, 5]).

Theorem 2.1 below provides a normal approximation for a sum of ran-
dom vectors in terms of certain decompositions of the sum. This theorem
is somewhat formal and should be read together with its natural corollary,
Theorem 2.2, which motivates it and is used later in the applications.

Given random vectors Xj taking values in Rd, we study the proximity of
the distribution of the random vector W=�n

j=1 Xj to the normal distribu-
tion. We assume throughout that the summands are bounded, that is,
|Xj|�B, 1� j�n for some constant B. In particular applications, the con-
stant B, and others below, may be considered to depend on n.

As a measure of the proximity to the standard normal distribution we
consider sup[ |Eh(W)&8h|: h # H], where 8h=�Rd h(z) 8(dz).

In the case d=1, the convergence rate of our theorem is better (by log n)
than the rate for d>1. For this reason, we state a bound in the univariate
case separately.

Theorem 2.1. For each j=1, ..., n assume that we have two representa-
tions of W, W=Uj+Vj and W=R j+Tj , such that |U j|�A1 , and
|Rj|�A2 for constants satisfying A1�A2 . Define

/1= :
n

j=1

E |E(X j | Vj)|, /2= :
n

j=1

E |E(Xj U
T
j )&E(XjU

T
j | Tj)|,

(2.2)

/3= } I& :
n

j=1

E(X jU
T
j ) } ,

335A CLT FOR LOCAL DEPENDENCE
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where I denotes the identity matrix. Then for d=1 there exists a universal
constant c such that

sup[ |Eh(W)&8h|: h # H]

�c[aA2+n(a+- EW 2) A1A2 B+/1+/2+/3]. (2.3)

For d�1 there exists a constant c depending only on the dimension d such
that

sup[ |Eh(W)&8h|: h # H]�c[aA2+naA1 A2B( |log A2 B|+log n)

+/1+( |log A1 B|+log n)(/2+/3)]. (2.4)

For independent Xj the natural decomposition is Uj=Rj=Xj . In the
case of dependence, other decompositions prove to be more effective as
shown below. It may seem that the choice of Vj and Tj is arbitrary.
However, if, for example, the Tj's are constant, then /2 vanishes, but then
A2 may be large. Similarly, if EW=0 and Var W=I, the choice Vj=0
leads to /3=0 but then A1 may be large. Useful decompositions related to
the dependence structure are considered below in detail.

Note that in the theorem there is no assumption on the mean and
variance of W. However, since the distribution of W is being compared to
a standard normal distribution, we obviously have in mind the case where
EW vanishes and Var W is the identity matrix I, or approximately so.
Since H is closed under affine transformations, we can always standardize
W (exactly or approximately) before applying the theorem. For d=1,
when EW 2=1, or if EW 2 is bounded by a universal constant, we may
simply omit this term from the r.h.s. of (2.3) by absorbing it into c, since
we assume a�1.

Theorem 2.1 appears rather abstract. It was motivated by the following
theorem which suggests natural decompositions in terms of the dependency
structure. The decomposition is given by sets Si and Ni defined below,
which may be random.

Theorem 2.2. Let Si and Ni be subsets of [1, ..., n], which in general
may be random, such that i # Si�Ni , i=1, ..., n. Assume that there exist
constants D1�D2 , such that max[ |Si |: i=1, ..., n]�D1 , and max[ |Ni |:
i=1, ..., n]�D2 , where for sets | } | denotes cardinality. Denote

Uj= :
k # Sj

Xk , Vj=W&U j ,

(2.5)
Rj= :

k # Nj

Xk , Tj=W&Rj , j=1, ..., n.

336 RINOTT AND ROTAR
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Then for d=1 there exists a universal constant c such that

sup[ |Eh(W )&8h|: h # H]

�c[aD2 B+n(a+- EW 2) D1D2B3+/1+/2+/3], (2.6)

where /i are defined in (2.2). For d�1 there exists a constant c depending
only on the dimensional d such that

sup[ |Eh(W)+8h|: h # H]�c[aD2 B+naD1 D2B3( |log B|+log n)

+/1+( |log B|+log n)(/2+/3)]. (2.7)

Theorem 2.1 follows from Theorem 2.2 simply by observing that the
quantities defined in (2.5) satisfy the assumptions with A1=D1 B, and
A2=D2 B. Also, since log A2 appears in (2.4), it would seem that the quan-
tity log D2 should appear in (2.7); however, it may be omitted since D2�n.

Remarks. In general, the dependence structure affects the convergence
rate in central limit theorems for dependent random variables through
three types of characteristics or conditions. The first type, reflected in /1

above, concerns conditional expectations with respect to appropriate fields,
which should be small or vanish, as for example in martingales or for
exchangeable random variables, where this type of condition appears in
terms of correlations. The second type, reflected by /2 and /3 , concerns
conditional variances, which should be close in some sense to the uncondi-
tional ones. The third and main type reflects special aspects of the
dependence structure. Here, this term involves the bound B on the sum-
mands, and the bounds D1 and D2 on the sizes of the so-called dependency
neighborhoods Si and Ni . A discussion of characteristics of this nature may
be found for example in Jacod and Shiryayev [14], Liptser and Shiryayev
[16], and Rotar [18]. Next, we consider the above characteristics in more
detail.

Formally Theorem 2.2 holds for arbitrary sets Si and Ni . Clearly, one
should choose them so as to minimize the bound given by the theorem,
which means that both the /i's and the Di's should be small. In order to
clarify the nature of such a choice, assume now that we have standardized
W, so that EW=0 and Var W=I, and consider first the case where for
each i there exists Si such that Xi is independent of [Xj : j � Si]. In this case
/1=0 and /3=0. Suppose also that there exist sets Ni such that, if k and
l are both in Si , then the collections of variables [Xk , Xl] and [X j : j � Ni]
are independent. In this case /2=0. It may even happen that a stronger
kind of independence takes place; that is, the collections [Xj: j # Si] and
[Xj : j � Ni] are independent. In any case, it is natural to view Ni as a
dependency neighborhood of [Xj : j # Si], or a second-order dependency

337A CLT FOR LOCAL DEPENDENCE
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neighborhood of Xi . In nonexotic situations one may expect Ni=�j # Si Sj

and then D2�D2
1 . However, this is not the case in general; for the latter

Ni , the present assumptions on the Si's imply that the above Xk is inde-
pendent of [Xj : j � Ni], and the same holds for Xl , but this does not
necessarily imply the independence of [Xk , Xl] and [X j : j � Ni].

In general, the choice described above may not be feasible, and one may
try to achieve an approximation to this situation, that is, to find sets Si and
Ni , ``essential dependency sets,'' such that the /i's do not vanish but are
small and the Di's are still not large.

A dependence structure similar to that of Theorem 2.2, with two types of
dependency sets, was used before; see, for example, Barbour, Holst, and
Janson [4], who considered Poisson approximations, and references there.

Turning to B, note that in many applications one starts with a sum of
random variables Yi , such that Var(Y1+ } } } +Yn) has the oder n (or nI
in the multivariate case), and the Yi's are bounded. Setting Xi=Yi�- n to
apply the theorems, we see that the bound B for the Xi's will have the order
1�- n. If D1 and D2 are bounded, then the part of the bound (2.7) not
involving the /'s has the order n&1�2 log n.

Clearly, if EW=*, and Var W=7, we can apply the theorems
to 1&1�2(W&*), where 1 equals or approximates 7. By the invariance
of H under affine transformations, we then obtain a bound on
suph # H |Eh(W)&Eh(11�2Z+*)|, where Z is a standard normal vector
in Rd.

We shall consider statistical applications in detail in Section 3. Here we
briefly illustrate the dependency structure by an application (with d=1)
due to Baldi and Rinott [2]. Some of the rates in the latter paper can be
improved by using Theorem 2.2. Consider a random ranking of the n=2m

vertices of the hypercube [0, 1]m. Let Yi be the indicator of the event that
the rank of the ith vertex exceeds that of all the m neighboring vertices (a
local maximum). The total number of local maxima is M=�n

i=1 Yi . It can
be shown that if the distance between any two vertices i and j is 3 or more,
that is, if the vertices differ in three coordinates or more when viewed as
m-vectors of 0's and 1's, then Yi and Yj are independent. More generally
any collections of [Yj : j # Ai], i=1, 2, are independent if the distance
between the vertex sets A1 and A2 is at least 3. Thus, we may choose Si

consisting of the ( m
2 )+m vertices of distance at most 2 from i. This results

in D1 which is of the order m2, or (log n)2. Setting Ni=�j # Si Sj , we have
D2�D2

1 and /i=0, i=1, 2, 3. Here _&1
M and hence B have the order

(log n�n)1�2. For W=�n
i=1 (Yi&EYi)�_M , Theorem 2.2 provides a normal

approximation with the rate of (log n)7.5 n&1�2.
In the above example a natural linear ordering of the variables does not

exist and the dependency neighborhoods are determined by distances on a
graph. Note also that the Di's are not bounded, but increase in n. This

338 RINOTT AND ROTAR
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suggests a general scheme, where the dependence structure is described by
a graph whose vertices correspond to the random summands, the
dependence between two summands is defined as a function of the distance
between corresponding vertices, and natural dependency sets arise as
``geographical'' neighborhoods of vertices. If for example, the dependence as
reflected by such a function of the distance decays exponentially, one may
choose dependency sets with diameter of the order c log n, and for an
appropriate c the characteristics /i will have the order n&1�2, whereas the
constants Di will have the oder of a power of log n, leading to a con-
vergence rate of (log n)kn&1�2 for some k.

3. Applications to Graph Related Statistics

Nonrandom Graphs. For the applications described later we need to
consider random graphs; however, we start with nonrandom graphs for
ease of exposition. Consider a fixed regular graph, with n vertices and ver-
tex degree m. The regularity implies that the number of edges in the graph
is N=nm�2. Suppose that each vertex is independently assigned one of
colors ci with probability ?i , i=1, ..., d, satisfying �d

i=1 ?i=1. Let
W=(W1 , ..., Wd), where Wi , i=1, ..., d, is the number of edges connecting
vertices which are both of color ci ; that is, Wi=�N

j=1 Xji , where Xji is the
indicator of the event that both vertices associated with the edge j have the
color ci . Set *=EW=N(?2

1 , ..., ?2
p). The entries of 7=(_ij), the covariance

matrix of W, satisfy (see [9], hereafter called GR)

_ii=Var(Wi)=N?2
i (1&?2

i )+2N(m&1)(?3
i &?4

i );
(3.1)

_ij=Cov(Wi , Wj)=&N(2m&1) ?2
i ?2

j , for i{ j.

Let L=[min1�i�d [?2
i (1&?i)]]&1�2. Given a matrix A, let &A& denote the

maximal absolute value of its entries. It is proved in GR that
&7&1�2&�N&1�2L, and, hence, we can apply Theorem 2.2 to 7&1�2(W&*),
with the bound on the summands B=dN&1�2L. For any edge j we choose
a neighborhood Sj consisting of all edges which share a vertex with j. With
the natural choice Ni=� j # Si Sj we have the bounds D1=2m&1 and D2=
(2m&1)2 on the cardinality of Sj and Ni , respectively, and /1=/2=/3=0.

For functions h # H, using the closure of H under affine transformations
and the facts m�n and L�1, we derive from (2.7),

sup[ |Eh(W)&Eh(71�2Z+*)|: h # H]

�cam3�2L3( |log L|+log n)n&1�2, (3.2)

where Z is a d-dimensional standard normal vector, c is a constant depending
on the dimension d, and a is defined in (2.1). Such a result, with rate n&1�2,
but only for smooth functions h was obtained in GR.

339A CLT FOR LOCAL DEPENDENCE
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Random Nearest Neighbor Graphs. Consider a sample of n i.i.d. points
from an absolutely continuous distribution F in Rk. Let G denote the
nearest neighbor graph whose n vertices are these points. This is a directed
graph such that from each vertex there is a directed edge pointing to its
nearest neighbor (with respect to Euclidean distance, say). As before each
vertex is independently assigned one of the colors ci with probability ?i ,
i=1, ..., d. For a vertex j, let N( j) denote its nearest neighbor. Let Xji=1
if the vertices j and N( j ) are both assigned the color ci , and 0 otherwise,
j=1, ..., n; i=1, ..., d. Then Wi=�n

j=1 Xji counts the number of vertices
having the color ci as well as their nearest neighbors (with mutual nearest
neighbors counted twice, once for each vertex). Set W=(W1 , ..., Wd), and
*=EW=n(?2

1 , ..., ?2
d). We now calculate the covariance matrix of W,

which we denote by 7n . For a given realization of the graph G, let D( j )
denote the degree of the vertex j, that is, the number of edges pointing to
j plus the one edge emanating from j. Let A denote the number of pairs
of vertices which are mutual (nearest) neighbors. For the conditional
variance of Wi given the graph G we claim that

Var(Wi | G)=n?2
i (1&?2

i )+ :
n

j=1
\D( j )

2 + (?3
i &?4

i )+2A(?2
i &?3

i ). (3.3)

To see this note that, if j and N( j ) are not mutual neighbors, then for the
D( j ) edges connected to j, say l1 , ..., lD( j ) we have Cov(Xlpi , Xlqi)=?3

i &?4
i .

If j and N( j ) are mutual neighbors, then the covariance between Xji and
XN( j ) i is not ?3

i &?4
i , but ?2

i &?4
i and, therefore, we have to add 2A times

?2
i &?4

i &(?3
i &?4

i )=?2
i &?3

i . Since �n
j=1 D( j )=2n, we can rewrite (3.3) in

the form

Var(Wi | G)=n(?2
i &?3

i )+ 1
2 (?3

i &?4
i ) :

n

j=1

D2( j )+2A(?2
i &?3

i ). (3.4)

Also,

Cov(Wi , Wk | G)=& :
n

j=1
\D( j )

2 + ?2
i ?2

k=n?2
i ?2

k& 1
2?2

i ?2
k :

n

j=1

D2( j ). (3.5)

Since EWi=E(Wi | G) for any G, we obtain the variance and covariance
by taking expectations of the conditional ones in (3.4) and (3.5). Let
:n=P(N(N( j ))= j ), that is, the probability that the nearest neighbor of
N( j ) is j, and set ;n=ED2( j ). Both :n and ;n depend also on F. Note that
2EA=n:n . Then

Var Wi=n(?2
i &?3

i )+ 1
2n;n(?3

i &?4
i )+n:n(?2

i &?3
i ),

(3.6)
Cov(Wi , Wk)=n?2

i ?2
k& 1

2n;n ?2
i ?2

k , i{k.

340 RINOTT AND ROTAR
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Let H, J, and K be the diagonal d_d matrices with ith diagonal entries
?3

i , ?2
i &?4

i , and ?2
i &?3

i , respectively; let b be a column vector with ith
component ?2

i ; and let bT denote its transpose. We can write (3.6) as

7n= 1
2 n(;n&2)[H&bbT]+nJ+n:nK. (3.7)

Note that ED( j )=2 and, therefore, ;n�4. It is easy to verify that
[H&bbT] is nonnegative definite, and therefore so is 7n&nJ. Denoting
the spectral radius by \, we see that

&7&1�2
n &�\(7&1�2

n )�\(n&1�2J&1�2)�n&1�2M, (3.8)

where M=[min1�i�d [?2
i &?4

i ]]&1�2. (See, e.g., Horn and Johnson [13]
for standard facts on matrices used here and below.) In applying Theorem
2.2 to the vector 7&1�2

n (W&*), this shows that we can take the bound B
in Theorem 2.2 to be B=dn&1�2M.

Using the fact that the sets Sj in Theorem 2.2 may be random, we choose
them depending on the graph G. Specifically, given G, define Sj to consist
of j and all vertices which are connected with j by an edge. Note that
for any set A, we have P([Xji , 1�i�d] # A | G, [Xli , 1�i�d, l � Sj]=
P([Xji , 1�i�d] # A). Taking expectations conditioned on [Xli , 1�i�d,
l � Sj] we obtain independence of [Xji , 1�i�d] and [Xli , 1�i�d, l � Sj].
With similar arguments for Nl=�j # Sl Sj , one may conclude that /1=/2 =
/3=0. It is well known that the degrees in the nearest neighbor graph in Rk

are bounded by some constant K(k) which depends on the dimension k,
where K(1)=2, K(2)=6, K(3)=12. Estimates are known for all K(k) (see,
e.g., [15]). For the sets defined above we have the bounds D1=K(k) and
D2=K2(k) on the cardinality of Sj ad Nl , respectively.

For any functions h # H we obtain, using the closure of H under affine
transformations,

sup[ |Eh(W)&Eh(71�2
n Z+*)|: h # H]

�caK 3(k) M3( |log M|+log n) n&1�2, (3.9)

where Z is a d-dimensional standard normal vector, c is a constant depending
on the dimension d, and a is defined in (2.1).

Note that if the color allocation is not done at random and vertices having
the same color ci tend to cluster together, we should expect large values of
Wi . This phenomenon was used by Henze [12] (see other references
there), who proposed a statistic similar to W1 for testing equality of two
distributions and proved its asymptotic normality.
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Our result provides rates and a natural multivariate extension for testing
equality of several distributions as we briefly indicate next.

Consider d distributions Fi on Rk, or populations 6i , i=1, ..., d. A sample
of size n is obtained by choosing population 6i with probability ?i , taking
a random observation from the chosen population and repeating this
procedure independently n times. The nearest neighbor graph whose ver-
tices are the n obtained sample points in Rk is constructed. We color each
point by ci if it is drawn from 6i . Thus a large Wi indicates that 6i tends
to form clusters, and the vector W can be used as a test statistic for testing
H0 : F1= } } } =Fd .

Tests which reduce W to a univariate statistic and reject H0 , for example,
when �d

i=1 ai |Wi|
p is large, for some p and weights ai depending on the

alternative, or when max1�i�d Wi is large, may appear natural. More
general rejection regions in Rd may arise in connection with specific alter-
natives. For example, if one suspects a priori that some populations are
more likely to differ from the rest than others, then rejection of H0 if
|Wi|>bi for at least one i, i=1, ..., d, for suitable critical values bi , is a
natural choice for a rejection region. The asymptotic distribution of W
under H0 , that is, when F1= } } } =Fd=F, is needed to determine critical
values for the tests (and, more generally, rejection regions).

Calculations similar to those of Henze [12] show that :n and ;n of (3.7)
converge to finite limits, and therefore there exists a matrix 3 such that
|(1�n)7n&3| � 0. For a continuous distribution F of the vertex locations,
all these limits do not depend on F.

Replacing the covariance matrix 7n by n3 leads to a nonparametric
statistic. More specifically, the statistic W� =n&1�23&1�2(W&*), and its
asymptotic distribution do not depend on F. As indicated in (3.11) below,
there is a price to pay for the convenience of using the nonparametric
statistic W� : its normal approximation rate seems slower compared to that
of W because of the additional approximation of the covariance matrix.

We apply Theorem 2.2 to the vector W� . In view of (3.8) we have
&3&1�2&�M and therefore we can use the same bound B=dn&1�2M as
before.

The covariance matrix of W� is not I, and therefore /3 does not vanish.
Taking into account that instead of Xj the summands now are
n&1�23&1�2(Xj&EXj), it is easy to verify that /3=|I&n&1�23&1�2_
7nn&1�23&1�2|. Standard arguments show that

/3=|n&1�23&1�2(n3&7n) n&1�23&1�2|�|n&1�23&1�2| 2 |n3&7n|

�(d 2n&1�2M )2 |n3&7n|=d 4M2 } 1n 7n&3 } . (3.10)
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For h # H we obtain

sup[ |Eh(W)&Eh(n1�231�2Z+*)|: h # H]

�caK3(k) M3( |log M|+log n) {n&1�2+ } 1n 7n&3 }= , (3.11)

where Z is a d-dimensional standard normal vector, c is a constant dependent
on the dimension d, and a is defined in (2.1).

The rate in which |(1�n) 7n&3| converges to zero, when the points
(vertices) are distributed according to F in Rk, depends on F. A careful
examination and adjustments of the calculations in Henze [2] indicate that
under reasonable conditions, such as that F is associated with a probability
density having a bounded derivative, it is impossible to assert that this rate
is of order n&1�2. Moreover, the rate becomes slower as the dimension k
increases. Thus the rate of normal approximation in (3.11) will generally be
determined by the last term.

4. Proof of Theorem 2.1

We denote all constants by c, even when we have in mind different
constants in the same equation, as long as they depend only on the dimen-
sion d. The method we use is based on the following differential equation
due to Barbour [3] and Go� tze [10],

29(x)&x } {9(x)=h(x)&8h, x # Rd, (4.1)

which allows us to evaluate the expectation Eh(W)&8h. In (4.1), 2 is the
Laplacian; that is 29(z)=Tr 9(2)(x), where 9(2)(x) is the Hessian matrix
of second derivatives, and { denotes the gradient.

For d=1, this approach is due to Stein [20, 21]. In this case (4.1)
reduces to

f $(x)&xf (x)=h(x)&8h, x # R, (4.2)

with f =9$. The unique bounded solution of (4.2) is given by

f (x)=
1

,(x) |
x

&�
(h(u)&8h) ,(u) du. (4.3)

For d>1, a solution for a smoothed version of h is given below, but in
both cases we are able to work only with smooth functions. To this end
define the following smoothing of h:

hs(x)=|
Rd

h(s1�2y+(1&s)1�2x) 8(dy), 0<s<1.

It is worth noting that 8hs=8h for any s.
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A bound on the error which arises from this smoothing is provided
by the following version due to Go� tze [10] of a smoothing lemma of
Bhattacharya and Ranga Rao [5].

Lemma 4.1. Let Q be a probability measure on Rd. Then there exists a
constant c>0 which depends only on the dimension d such that for any
0<t<1,

sup {} |Rd
hd(Q&8) } : h # H=

�c _sup {} |Rd
(h&8h)t dQ } : h # H=+a - t& ,

where a is defined in (2.1).

Let us return to (4.1). If h is replaced by ht , one may verify that Eq. (4.1)
has the solution 9t(x)=& 1

2 �1
t [hs(x)&8h](ds�(1&s)) [10]. Note that

9t(x) depends also on h, but this is suppressed in the national. Let
9(1)

t ={9t , and let 9 (2)
t (x) denote the d_d Hessian matrix whose pq th

entry, denoted by 9 (2)
t( pq)(x), is �29t(x)�(�xp �xq). It was shown in Go� tze

[10] that for |h|�1 there exists a universal constant c such that

|9 (1)
t ( } )|<c, |92)

t ( } )|<c log(t&1). (4.4)

Setting Kj=Xj U
T
j , a d_d random matrix, we have by (4.1)

Eht(W)&8h=E[29t(W)&W } {9t(W)]=A&B&C+D, (4.5)

where

A=ETr _9 (2)
t (W) \I& :

n

j=1

Kj+& ,

B= :
n

j=1

E[Xj } {9t(Vj)],

(4.6)

C= :
n

j=1

E[Xj } [{9t(W)&{9t(Vj)&9 (2)
t (Vj) UT

j ]],

D= :
n

j=1

ETr[Kj[9 (2)
t (W)&9 (2)

t (V j)]].

The next Lemma is required in order to bound Taylor series remainders
arising in the evaluation of the quantities of (4.6).
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Lemma 4.2. Let W, V, and U be any random vectors in Rd satisfying
W=V+U, and let Y be any random variable. Suppose |U|�C1 and
|Y|�C2 , where C1 and C2 are numbers. Set #=sup[ |Eh(W)&8h|: h # H],
and let 9 (3)

t( pqr) denote the third partial derivative of 9t with respect to the
indicated indices p, q, and r. Then there exists a constant c which depends
only on the dimension d, such that for any 0�{�1 and h # H,

|EY9 (3)
t( pqr)(V+{U)|�cC2(#�- t +aC1 �- t +a |log t | ), (4.7)

where a is defined in (2.1).

Proof of Lemma 4.2. Substitution and differentiation yield the formula

9 (3)
t( pqr)(x)=c |

1

t

(1&s)1�2

s3�2 ds |
Rd

h(- s z+- 1&s x) , (3)
( pqr)(z) dz,

where here c= 1
2 , but in the sequel c will stand for any positive constant

which may depend on the dimension d. Observe that �Rd , (3)
( pqr)(z) dz=0,

since this integral can be written as (�3��xp �xq �xr) �Rd ,(z+x) dz at x=0,
and the last integral equals the constant 1. This fact will be used in (4.8)
below in the third equality, where the added term vanishes. Abbreviating
,(3) for , (3)

( pqr) , we have

|EY9 (3)
t( pqr)(V+{U)|

= } c |
1

t

(1&s)1�2

s3�2 ds |
Rd

EYh(- s z+- 1&s (V+{U)) , (3)(z) dz }
= } c |

1

t

(1&s)1�2

s3�2 ds|
Rd

EYh(- 1&s W&- 1&s (1&{)U+- s z) , (3)(z) dz }
= } c |

1

t

(1&s)1�2

s3�2 ds |
Rd

EY[h(- 1&s W&- 1&s (1&{)U+- s z)

&h(- 1&s W&- 1&s (1&{)U)] ,(3)(z) dz }
�c |

1

t

1
s3�2 ds C2 |

Rd
E[ sup

|u|�C1+- s |z|

h(- 1&s W+u)

& inf
|u| �C1+- s |z|

h(- 1&s W+u)] |,(3)(z)| dz

=cC2 |
1

t

1
s3�2 ds |

Rd
Eh� (- 1&sW; C1+- s |z| ) |,(3)(z)| dz. (4.8)
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Let Z indicate an independent d-variate standard normal variable. By
adding and subtracting the same term, the last quantity of (4.8) equals

cC2 |
1

t

1
s3�2 ds |

Rd
E[h� (- 1&s W; C1+- s |z| )&h� (- 1&s Z; C1+- s |z| )

+h� (- 1&s Z; C1+- s |z| )] |,(3)(z)| dz. (4.9)

It is easy to see that by the definition of h� , for any =>0,

|E[h� (- 1&s W; =)&h� (- 1&s Z; =)]|

�|E[h+
= (- 1&s W)&E[h+

= (- 1&s Z)]|

+|E[h&
= (- 1&s W)&E[h&

= (- 1&s Z)]|. (4.10)

By the assumptions on the class H and the definition of # we see that for
any =>0 the expression in (4.10) is bounded by 2#. As �1

t (1�s3�2) ds�
c�- t , we conclude that for some c,

|
1

t

1
s3�2 ds |

Rd
|E[h� (- 1&s W; C1+- s |z| )

&h� (- 1&s Z; C1+- s |z| )] ,(3)(z))] ,(3)(z)| dz�c#�- t . (4.11)

Recording this fact we now study the last term of (4.9). Note that by (2.1)

Eh� (- 1&s Z; C1+- s |z| )�a(C1+- s |z| ).

Therefore,

|
1

t

1
s3�2 ds |

Rd
Eh� (- 1&s Z; C1+- s |z| ) |,(3)(z)| dz

�a |
1

t

1
s3�2 ds |

Rd
(C1+- s |z| ) |,(3)(z)| dz

�ca(C1�- t +|log t| ). (4.12)

Lemma 4.2 now follows.
We now return to (4.6) and start with the term C. Let Xjp and Ujp denote

the pth components of Xj and Uj , respectively. For j=1, ..., n, Taylor
expansion of {9t(W) centered at Vj shows that C is equal to

:
n

j=1

E |
1

0
(1&{) :

d

p=1

:
d

q=1

:
d

r=1

9 (3)
t( pqr)(Vj+{Uj) XjpUjqUjr d{. (4.13)
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We apply Lemma 4.2 for each j, with U=Uj and Y=UjpUjqXjr , and
obtain

|C|�cnA2
1B(#�- t +aA1�- t +a |log t| ), (4.14)

where again #=sup[ |Eh(W)&8h|: h # H].
Next consider the term D in (4.6). With the notation defined above, a

first-order Taylor expansion yields

9(2)
t( pq)(W)&9 (2)

t( pq)(V j)= :
d

r=1
|

1

0
9 (3)

t( pqr)(Vj+{U j) Ujr d{. (4.15)

The term D is obtained from (4.15) by multiplying by the entries of Kj , and
it is easy to see from the definition of Kj that this leads to a term which is
similar to the term of (4.13) and thus |D| is bounded by the r.h.s. of (4.14),
possibly with a different constant.

Next note that B of (4.6) satisfies B=�n
j=1 E[{9t(Vj) } E(Xj | Vj)]. By

(4.4) the components of {9t(Vj) are uniformly bounded, implying that for
some c>0

|B|�c :
n

j=1

:
d

p=1

E |E(Xjp | Vj)|. (4.16)

Finally, we consider the term A from (4.6). With $pq=1 if p=q and 0
otherwise, we have

Tr _9 (2)
t (W) \I& :

n

j=1

Kj+&
= :

d

p=1

:
d

q=1

9 (2)
t( pq)(W) \$pq& :

n

j=1

XjqUjp+
= :

d

p=1

:
d

q=1

9 (2)
t( pq)(W) _$qp& :

n

j=1

E(Xjq Ujp)

+ :
n

j=1

E(XjqUjp)& :
n

j=1

XjqUjp& . (4.17)

By (4.4), |9 (2)
t( pq)(W)|<c log(t&1) for all p, q=1, ..., d, and 0<t<1.

Therefore we obtain for the first two terms on the r.h.s. of (4.17)

E } :
d

p=1

:
d

q=1

9 (2)
t( pq)(W) _$qp& :

n

j=1

E(XjqUjp)&}
�c |log t| :

d

p=1

:
d

q=1
} $pq& :

n

j=1

E(XjpUjp) } . (4.18)
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We rewrite the expression involving the last two terms in (4.17) in the
form

:
n

j=1

:
d

p=1

:
d

q=1

[9 (2)
t( pq)(W)&9 (2)

t( pq)(Tj)+9 (2)
t( pq)(Tj)][E(XjqUjp)&XjqUjp].

(4.19)

Taylor expansion of 9 (2)
t( pq)(W)&9 (2)

t( pq)(Tj) and Lemma 4.2 applied for each
j with U=Rj and Y=RjrXjqUjp imply

:
n

j=1

:
d

p=1

:
d

q=1

|E[[9 (2)
t( pq)(W)&9 (2)

t( pq)(T j)][E(XjqUjp)&XjqUjp]]|

�cnA1A2 B(#�- t +aA2�- t +a |log t| ). (4.20)

Returning to (4.19), we use (4.4) to bound the last term as

:
n

j=1

:
d

p=1

:
d

q=1

|E9(2)
t( pq)(Tj)[E(XjqUjp)&XjpUjp]|

�c |log t| :
n

j=1

:
d

p=1

:
d

q=1

E |E(XjpUjq)&E(Xjp Ujp | T j)|. (4.21)

Combining Lemma 4.1, and (4.6), (4.14), (4.16), (4.18), (4.20), and (4.21),
and noting that since A1�A2 , the term in the r.h.s. of (4.14) may be
ignored, being smaller than that of (4.20), we obtain

#�cnA1 A2B#�- t+cnaA1 A2B(A2 �- t+|log t| )

+c :
n

j=1

:
d

p=1

E |E(Xjp | V j)|

+c |log t| { :
d

p=1

:
d

q=1 } $pq& :
n

j=1

E(XjpUjq) }
+ :

n

j=1

:
d

p=1

:
d

q=1

E |E(XjpUjq)&E(XjpUjq | Tj)|=+ca - t . (4.22)

The choice - t=2cnA1A2B, provided it is less than 1, and simple
manipulations yield (2.4), after observing that the last term in (4.22) is of
lower order than the second term and may be ignored. If for the above
choice t>1, then the theorem is trivial.
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For the case d=1, a better bound, that is (2.3), may be obtained with
some extra work which we now sketch. The improvement is achieved by
eliminating the terms log t in (4.22) for d=1. Indeed, we may use (4.2)
with h=ht , and the solution f =9$t has the explicit representation (4.3). By
Lemma 3 of Stein [21, p. 25], f and f $ are bounded, and we immediately
see that the term log t, arising in (4.18) and (4.21) is avoided in the present
case since now 9 (2)

t = f $.
The term log t arises also in Lemma 4.2 and, consequently, in (4.20). We

now show that it can be avoided in the case d=1. Using f " for 9 (3)
t and

the relation f "(x)= f (x)+xf $(x)+h$t(x), we recalculate the l.h.s. of (4.7)
and obtain

EY9 (3)
t (V+{U)=EY[ f (V+{U )+(V+{U ) f $(V+{U )+h$t(V+{U)].

(4.23)

Starting with the first and last terms in (4.23), we have

|EY[h$t(V+{U )+ f (V+{U )] |

= }EY {(1&t)1�2

t1�2 |
R

h(- t z+- (1&t) (V+{U )) ,$(z) dz+ f (V+{U)] }
�E } Y

- t |R
h(- t z+- (1&t) (V+{U )) ,$(z) dz }+cC2 , (4.24)

where the last inequality uses the fact that f is bounded. To estimate the
integral on the r.h.s. of (4.24) we follow the same logic as in (4.8)�(4.12);
the calculations are simpler because we do not integrate with respect to s.
We conclude that

|EY[h$t(V+{U)+ f (V+{U)]|�cC2(#�- t+aC1�- t +a+1). (4.25)

Returning to the middle term in (4.23), we have, using the boundedness of
f $ and the Cauchy�Schwarz inequality,

|EY(V+{U) f $(V+{U)|=|EY(W&(1&{)U ) f $(V+{U)|

�c[- EY 2
- EW 2+E |YU|]�cC2(- EW 2+C1). (4.26)

This leads to the one-dimensional version of Lemma 4.2:

|EY9 (3)
t (V+{U )|�cC2(#�- t +aC1�- t +a+1+- EW 2+C1). (4.27)

Since a�1 and t<1, the r.h.s. of (4.27) may be reduced to
cC2(#�- t +aC1�- t +a+- EW 2). As this version of Lemma 4.2 differs
from the original lemma only in the absense of log t and the addition of
- EW 2, we obtain (2.3) by repeating the above arguments.
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