Crystal structure of vipoxin at 2.0 Å: an example of regulation of a toxic function generated by molecular evolution

M. Perbandt^a, J.C. Wilson^b, S. Eschenburg^c, I. Mancheva^d, B. Aleksiev^d, N. Genov^c, P. Willingmann^c, W. Weber^c, T.P. Singh^f, Ch. Betzel^c,*

^a Institute of Biochemistry, Free University of Berlin, Thielallee 63, 14195 Berlin, Germany

^bDepartment of Chemistry, University of York, York Y01 5DD, UK ^cInstitute of Physiological Chemistry, UKE, clo DESY, Notkestr. 85, 22603 Hamburg, Germany

^dUniversity of Chemical Technology and Metalurgy, Sofia 1040, Bulgaria

^eInstitute of Organic Chemistry, Bulgarian Academy of Science, Sofia 1040, Bulgaria

^fDepartment of Biophysics, All India Institute of Medical Sciences, New Delhi-1103 029, India

Received 23 June 1997

Abstract Vipoxin is the main toxic component in the venom of the Bulgarian snake *Vipera ammodytes meridionalis*, the most toxic snake in Europe. Vipoxin is a complex between a toxic phospholipase A_2 (PLA₂) and a non-toxic protein inhibitor. The structure is of genetic interest due to the high degree of sequence homology (62%) between the two functionally different components. The structure shows that the formation of the complex in vipoxin is significantly different to that seen in many known structures of phospholipases and contradicts the assumptions made in earlier studies. The modulation of PLA₂ activity is of great pharmacological interest, and the present structure will be a model for structure-based drug design.

© 1997 Federation of European Biochemical Societies.

Key words: X-ray structure; Synchrotron radiation; Vipoxin; PLA₂-complex

1. Introduction

Phospholipases represent a class of enzymes that catalyse the hydrolysis of membrane phospholipids to release free fatty acids. In particular, PLA_2 (EC 3.1.1.4) hydrolyses the sn-2acyl bond of phospholipids producing equimolar amounts of lysophospholipids and free fatty acids. In addition to this activity, PLA_{2S} from snake venom include a wide variety of pharmacological activities such as neurotoxic effects and septic shock [1]. The ability to produce substrates for the generation of inflammatory lipid mediators in the process of tissue injury and rheumatoid arthritis [2] makes this specific class of phospholipases of medical and pharmaceutical interest. Structure-based drug design for the development of potent and specific inhibitors for these enzymes has led to the characterization and structural analysis of several PLA_{2S} and their complexes with substrate analogues [3–11].

The vipoxin complex consists of an alkaline PLA₂ and an acidic protein inhibitor. Both, the PLA₂-subunit and the inhibitor consist of a polypeptide chain with 122 amino acids. The inhibitor-subunit of vipoxin reduces phospholipase activity in vitro by up to 60% [12]. The separated PLA₂-subunit is so far the most toxic phospholipase [13] characterized to date $(LD_{100} = 1-3 \ \mu g \text{ per } 20 \ g \text{ mouse})$, and is the only PLA₂ known to form a complex with a highly homologous natural inhibitor. The high degree of sequence homology between the

PLA₂-subunit and the inhibitor makes the complex of great genetic interest [14,15]. The vipoxin complex is also a neurotoxin with postsynaptic action, whereas all other known PLA₂s exhibit a presynaptic action [13]. However, when the PLA₂-subunit is separated as an isolated component from the vipoxin complex, it also exhibits presynaptic action [16].

2. Materials and methods

Details of purification are available from the authors. Crystals with high quality were grown within two weeks at 20°C by sitting drop technique from a solution with a final composition of 14% PEG 3350, 15% PEG 400, 10 mM CaCl₂, 100 mM Na acetate at pH 4.8 containing 12 mg/ml Protein. One crystal was used to collect data up to 2.0 Å. All diffraction measurements were performed at -172°C on a flash frozen crystal of approximate dimensions of 0.2×0.1×1.5 mm³. Diffraction data were collected at EMBL-Hamburg, synchrotron beam line BW7B using a MAR Image Plate Scanner. The space group was assigned as $P2_12_12$ with one molecule in the asymmetric unit. The cell dimensions are pseudotetragonal with a = 67.64, b = 67.69 and c = 46.82 Å, giving a packing parameter $V_{\rm M}$ of 2.0. The images were processed using the DENZO program package [19] with a resulting $R_{\rm symm} = 8.6\%$. The phase problem was solved by molecular replacement techniques applying the program AmoRe [20] and one monomer of the dimeric phospholipase A_2 from Crotalus atrox (pdb entry=1 PP2) as search model. The initial structure was refined by the maximum likelihood method using the program refmac [21]. The present crystallographic R factor is 0.16 (R_{free} is 0.23) using all data between 20.0 and 2.0 Å including 285 water molecules and one acetate. On average, bond lengths, interbond angle distances and planarities deviate from ideality by 0.013, 0.034 and 0.025 Å, respectively.

3. Results and discussion

We can show, that as expected from the extensive sequence homology (Fig. 1) the overall fold and disulphide network are similar to other known PLA₂s. As shown in Fig. 2, the structures of vipoxin-PLA₂-subunit and the inhibitor can both be closely superimposed on a PLA₂ from *Crotalus atrox* [11] with an r.m.s. difference for the C_{α} positions of 1.48 and 1.46 Å, respectively.

One of the most striking features of the vipoxin complex is the manner in which the complex is formed. The reported structures of PLA_2 from *Crotalus atrox*, and recently the structure of the isolated inhibitor of vipoxin [17] show that both form dimers with an almost exact two-fold rotational symmetry. Based on this arrangement Devedjiew et al. [17] have proposed a model for the vipoxin complex with a similar complex conformation. However the structure presented here shows that this is not the case and that the relative positions

0014-5793/97/\$17.00 © 1997 Federation of European Biochemical Societies. All rights reserved. *PII* S 0 0 1 4 - 5 7 9 3 (9 7) 0 0 8 5 3 - 3

^{*}Corresponding author. Fax: (49) (40) 89984747.

										10										20
		α	α	α	α	α	α	α	α	α	α	α	α	α						
PLA ₂ Vipoxin	Asn	Leu	Phe	Gln	Phe	Ala	Lys	Met	Ile	Asn	Gly	Lys	Leu	Gly	-	Ala	Phe	Ser	Val	Trp
Inh. Vipoxin	Asn	Leu	Phe	Gln	Phe	Gly	Åsp	Met	Ile	Leu	Gln	Lys	Thr	Gly	-	Lys	Glu	Ala	Val	His
PLA ₂ C. Atrox	Ser	Leu	Val	Gln	Phe	Glu	Thr	Leu	Ile	Met	Lys	Ile	Ala	Gly	-	Arg	Ser	Gly	Leu	Leu
										30	•			5		U		5		40
																				α
PLA ₂ Vipoxin	Asn	Tyr	Ile	Ser	Tyr	Gly	Cys	Tvr	Cys	Glv	Tro	Glv	Glv	Gln	Glv	Thr	Pro	Lvs	Asp	Ala
Inh. Vipoxin	Ser	Tyr	Ala	Ile	Tyr	Gly	Cys	Tyr	Cys	Gly	Trp	Glv	Gly	Gln	Gly	Arg	Ala	Gln	Asp	Ala
PLA ₂ C. Atrox	Trp	Tyr	Ser	Ala	Ťyr	Gly	Cys	Tyr	Cys	Gly	Trp	Glv	Gly	His	Gly	Leu	Pro	Gln	Asp	Ala
	-	•			•	•	•	•	•	50	-	•	2		5				· · · · F	60
	α	α	α	α,	α	α	α	•		α	α	•	α	α.						
PLA ₂ Vipoxin	Thr	Asp	Arg	Cys	Cys	Phe	Val	His	Asp	Cys	Cys	Tvr	Glv	Arg	Val	Arg	-	-	Glv	-
Inh. Vipoxin	Thr	Asp	Arg	Ċys	Ċys	Phe	Ala	Gln	Asp	Cys	Cys	Tyr	Gly	Arg	Val	Asn	-	_	Asp	-
PLA ₂ C. Atrox	Thr	Asp	Arg	Cys	Cys	Phe	Val	His	Asp	Cys	Ċys	Tyr	Gly	Lys	Ala	Thr	-	-	Asp	-
				-	•				-	70	•	•	-	-					1	80
														β	β	β	β	β	β	ß
PLA ₂ Vipoxin	Cys	-	-	-	-	-	Asn	Pro	Lys	Leu	Ala	Ile	Tyr	Ser	Tyr	Ser	Phe	Lys	Lys	Gly
Inh. Vipoxin	Cys	-	-	-	-	-	Asn	Pro	Lys	Thr	Ala	Thr	Tyr	Thr	Tyr	Ser	Phe	Glu	Asn	Gly
PLA ₂ C. Atrox	Cys	-	-	-	-	-	Asn	Pro	Lys	Thr	Val	Ser	Tyr	Thr	Tyr	Ser	Glu	Glu	Asn	Gly
					Na 2201270antes					90					-					100
	β	β	β	β	β				a	α	α	α	α	α	α	α	α	a	•	a
PLA ₂ Vipoxin	Asn	Ile	Val	Cys	Gly	Lys	-	Asn	Asn	Gly	Cys	Leu	Arg	Asp	Ile	Cys	Glu	Cys	Asp	Arg
Inh. Vipoxin	Asp	Ile	Val	Cys	Gly	Asp	-	Asp	Asp	Leu	Ċys	Leu	Arg	Ala	Val	Cys	Glu	Ċys	Asp	Arg
PLA ₂ C. Atrox	Glu	Ile	Ile	Cys	Gly	Gly	-	Asp	Asp	Pro	Cys	Gly	Thr	Gln	Ile	Cys	Glu	Cys	Asp	Lys
			1017 - 101 alia - 104 - 1							110									-	120
	α	α	α	α	α	α	α	α	α											
PLA ₂ Vipoxin	Val	Ala	Ala	Asn	Cys	Phe	His	Gln	Asn	Lys	Asn	Thr	Tyr	Asn	Arg	Asn	Tyr	Lys	Phe	Leu
Inh. Vipoxin	Ala	Ala	Ala	Ile	Cys	Leu	Gly	Glu	Asn	Val	Asn	Thr	Tyr	Asp	Lys	Asn	Ťyr	Ġlu	Tyr	Tyr
PLA ₂ C. Atrox	Ala	Ala	Ala	Ile	Cys	Phe	Arg	Asp	Asn	Ile	Pro	Ser	Tyr	Asp	Asn	Lys	Tyr	Тгр	Leu	Phe
								-		130			•	-		-	•	•		
PLA, Vinovin	Sar	Ser		Sar	Ara	Cure	٨٠٠	C1-	Th-	Sar	Chr	Cl-	C							
Inh Vinovin	Ser	Ser	-	Ser	Hie	Cys	The	Gh	Glu	Sor		Gin	Cys							
PLA. C Atrov	Pro	Dro	-	Lvc	Acr	Cys	1.11	Glu	Ch	Dro	Ch	Dro	Cys							
	110	110	-	Lys	Loh	Cys	nig	Olu	Ju	E10	Old	riu	Cys							

Fig. 1. Sequence comparison showing the sequences of the vipoxin-PLA₂, the vipoxin inhibitor and the *Crotalus atrox* PLA₂ [11]. The sequence numbering refers to the bovine pancreatic PLA₂ [10] accordance to the numbering scheme commonly adopted in literature. Catalytic site residues (ovals), the residues supposed to be involved in a potential calcium binding (squares), and the regions of secondary structure are indicated accordingly.

of the two subunits are significantly different to other dimeric PLA₂s and most interestingly also to the isolated inhibitor. In the vipoxin complex one subunit is rotated by about 180° to give a pseudo mirror symmetry (Fig. 3) and the complex is stabilized by twelve intermolecular contacts which obviously differ from those in the dimeric PLA₂ from *Crotalus atrox* (Table 1). Furthermore there is no evidence for the complex 'recognition site' involving residues Phe³, Trp³¹ and Tyr¹¹⁹ of the inhibitor as proposed by Devedjiew. Table 1 summarises the contacts found in the vipoxin complex in comparison to those found in the dimer of *Crotalos atrox* PLA₂.

The lack of activity for the inhibitor is explained by the replacement of the catalytically essential His⁴⁸ by glutamin (Fig. 1) whereas in the PLA₂-subunit the side chains of His⁴⁸, Asp⁹⁹ and Tyr⁵² (Fig. 4) form an active site which is conserved in all phospholipases [3–11]. However, in the vipox-in-PLA₂-subunit, the region referred to be the calcium-bind-ing loop is structurally different from other PLA₂s. The Ca²⁺-

binding region found in the refined crystal structure of bovine PLA₂ [10] and of human PLA₂ [8] the three backbone carbonyl oxygens of Tyr²⁸, Gly³⁰ and Gly³² and the carboxylate group of Asp⁴⁹ form a Ca²⁺ coordination site. This conformation is not possible in the PLA2-subunit, because the backbone carbonyl oxygens of Tyr28 and Gly32 (Table 1) are already involved in intermolecular contacts with the inhibitor. Moreover, the carbonyl oxygen of Gly^{32} (PLA₂) is about 5.5 Å apart from the potential calcium-binding site. Based on the Ca^{2+} -free structure of PLA₂ from *Crotalus atrox*, Keith et al. [11] have suggested that the positively charged alkylammonium side chain of Lys⁶⁹ may satisfy the need for partial charge neutralisation in the region of the structurally shielded Asp⁴⁹ carboxylate. Also in vipoxin there is an ionic interaction between Lys⁶⁹ (Inhibitor) and Asp⁴⁹ (PLA₂). The binding of calcium by the PLA2-subunit would require a change in the conformation of the complex, which would weaken the stability of the complex. The requirement of Ca²⁺ for activity needs

Fig. 2. Stereo-plot showing the superimposed C_{α} -backbone structures of the phospholipases A_2 of vipoxin (red), and from *Crotalus atrox* (green) and the Vipoxin inhibitor (blue). The three α -helices fit very close. Only in the region 65–75 of the flexible β -sheet and the area around the potential Ca^{2+} binding loop (residues 27–33) higher deviations are visible. The r.m.s. deviations for the C_{α} positions using Vipoxin-PLA₂ as target are 1.48 Å for the inhibitor and 1.50 Å for the PLA₂ from *Crotalus atrox*.

further discussion as, although greatly reduced, the PLA₂-subunit in complex with the inhibitor still shows enzyme activity in the absence of calcium.

White et al. [7] have reported the crystal structure of Cobra-Venom PLA₂ in complex with a phosphonate transition-stateanalogue which shows the interactions in the active site. For vipoxin the electron density maps have clearly shown the presence of an acetate, originating from the crystallization medium, in the active site. Acetate is the terminal part of a fatty acid and therefore it is interesting to note that this acetate is recognized in the position of the free fatty acid after cleavage of the 2-sn-acyl bond [7]. Fig. 4 shows that the acetate forms hydrogen bonds with His⁴⁸ and Gly³⁰ as well towards a water molecule in the active site. Considering the absence of calcium and the remaining reduced activity, this is an indication for an active site coordinated substrate-analogue. No acetate is found in the corresponding position of the inhibitor as might be expected due to the missing histidine in position 48.

The vipoxin complex displays bifunctional behaviour. Whilst the phospholipase activity is reduced by up to 60% if complexed with the inhibitor, it has also been shown that, when separated from the inhibitor, the phospholipase soon

irreversibly loses its enzymatic activity [16]. Similarly, the neurotoxic activity of vipoxin in complex persists for at least four years, whereas it is lost within some days after separation of the complex [12]. Snake venom contains several phospholipases and in the case of vipoxin, importance is placed on preservation of toxicity. Thus, the inhibitor provides stability to sustain the toxicity for long periods at the expense of phospholipase activity. Nature has found a compromise between these two biological functions. The crystal structure of the vipoxin complex reveals the molecular interactions, which effect these modifications of biological functions.

To elucidate the new and upcoming aspects in the structure function relationship of vipoxin further X-ray studies to high resolution, including studies of complexes with bound substrate analogues are intended.

References

- Vadas, P., Pruzanski, W. and Stefanski, E. (1988) Agents Actions 24, 320–325.
- [2] Silhammer, J.J., Pruzanski, W., Vadas, P., Plant, S., Miller, J.A., Kloss, J. and Johnson, L.K. (1989) J. Biol. Chem. 264, 5335– 5338.

Table 1

Intermolecular contacts stabilizing the Vipoxin-complex in comparison to contacts in the dimeric PLA₂ complex of Crotalus atrox

Vipoxin					Dimer of PLA ₂ from Crotalus atrox								
Atom of PLA ₂		Atom of	inhibitor	Distance (Å)	Atom of Chain R	PLA ₂	Atom of Chain L	PLA ₂	Distance (Å)				
	Νδ2 Νδ2 Ν Ο Νε Ο Οδ1 Οδ2	$\begin{array}{c} {\rm Gly^{33}}\\ {\rm Gln^{34}}\\ {\rm Gly^{32}}\\ {\rm Lys^{69}}\\ {\rm Lys^{12}}\\ {\rm Leu^2}\\ {\rm Lys^{69}}\\ {\rm Lys^{69}}\\ {\rm Lys^{69}}\end{array}$	Ο Οε1 Ο Νζ Ο Ν Νζ Νζ	3.1 2.9 2.8 2.7 3.1 3.0 2.9 3.0	$\begin{array}{c} {\rm Glu}^6 \\ {\rm Glu}^6 \\ {\rm Trp}^{31} \\ {\rm His}^{34} \\ {\rm Asp}^{49} \\ {\rm Tyr}^{52} \\ {\rm Ala}^{55} \\ {\rm Asn}^{67} \end{array}$	ΟεΙ ΟεΙ Νε2 Νε2 ΟδΙ Ο Ο Νδ2	His ³⁴ Trp ³¹ Glu ⁶ Glu ⁶ Lys ⁶⁹ Asn ⁶⁷ Asn ⁶⁷ Ala ⁵⁵	Νε2 Νε1 Οε1 Οε1 Νζ Νδ2 Νδ2 Ο	2.6 2.8 3.0 2.9 3.3 2.5 3.3 3.0				
Val ⁵⁵ Gly ⁵⁹ Cys ⁶¹ Lys ⁶⁹	Ο Ο Οδ1 Νζ	Asn ⁵⁶ Asn ⁵⁶ Asp ⁴⁹ Cys ²⁹	Νδ2 Νδ2 Ο Ο	2.6 3.3 2.8 3.2	Asn ⁶⁷ Lys ⁶⁹	Νδ2 Νζ	Tyr ⁵² Asp ⁴⁹	Ο Οδ1	2.7 3.3				

Fig. 3. A cartoon plot of the overall structure of the vipoxin complex (PLA₂ in blue and inhibitor in red). Based on the orientation of the vipoxin-PLA₂, the dimeric PLA₂ from *Crotalus atrox* is superimposed and only the part of the dimer corresponding to the inhibitor is shown (in white and dashed lines). The relative position of the inhibitor to the corresponding PLA₂ from *Crotalus atrox* is obviously different. The drawing was created by the program MOLSCRIPT [18].

- [3] Ritonja, A., Machleidt, W., Turk, V. and Gubensek, F. (1986) Biol. Chem. Hoppe-Seyler 367, 919-923.
- [4] Chang, J., Musser, J.H. and McGregor, H. (1987) Biochemical Pharmacology 36, 2429-2436.
- [5] Brunie, S., Bolin, J., Gewirth, D. and Sigler, P.B. (1985) J. Biol. Chem. 260, 9742–9749. Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H.
- [6] and Sigler, P.B. (1990) Science 250, 1541-1546.

Fig. 4. A view towards the active site of the Vipoxin showing also the coordination of the acetate. The supposed calcium binding region close to Asp^{49} is blocked by the side chain of Lys^{69} of the inhibitor, which forms a salt bridge with Asp^{49} . Hydrogen bonds are shown in dashed lines.

- [7] White, S.P., Scott, D.L., Otwinowski, Z., Gelb, M.H. and Sigler, P.B. (1990) Science 250, 1560–1563.
- [8] Wery, J.P., Schevitz, R.W., Clawson, D.K., Bobbitt, J.L., Dow, E.R., Gamboa, G., Goodson Jr., T., Hermann, R.B., Kramer, R.M., McClure, D.B., Mihelich, E.D., Putman, J.E., Sharp, J.D., Stark, D.H., Teater, C., Warrick, M.W. and Jones, N.D. (1991) Nature 352, 79–82.
- [9] Betzel, Ch., Visanji, M., Wilson, K.S., Genov, N., Mancheva, I., Aleksiev, B. and Singh .(19, T.P. (1993) J. Mol. Biol. 231, 498– 500.
- [10] Dijkstra, B., Kalk, K.H., Hol, W.G.J. and Drenth, J. (1981)
 J. Mol. Biol. 147, 97–123.
- [11] Keith, C., Feldman, D.S., Deganello, S., Glick, J., Ward, K.B., Jones, E.O. and Sigler, P.B. (1981) J. Biol. Chem. 256, 8602– 8607.
- [12] Aleksiev, B. and Tchorbanov, B. (1976) Toxicon 14, 477-485.

- [13] Mancheva, I., Aleksiev, B., Kleinschmidt, T. and Braunitzer, G. (1986) Chemistry of Peptides and Proteins, pp. 167–176, Walter de Gruyter and Co., Berlin.
- [14] Mancheva, I., Kleinschmidt, T., Aleksiev, B. and Braunitzer, G. (1987) Biol. Chem. Hoppe-Seyler 368, 343–352.
- [15] Tchorbanov, B., Grishin, E., Aleksiew, B. and Ovchinnikov, Y. (1978) Toxicon 16, 37–44.
- [16] Blinov, N.O., Tchorbanov, B.P., Grishin, E.V. and Aleksiev, B.V. (1979) Acad. Bulg. Sci. 32, 663–666.
- [17] Devedjiev, Y., Popov, A., Atanasov, B. and Bartunik, H.D. (1997) J. Mol. Biol. 266, 160–172.
- [18] Kraulis, J. (1990) J. Appl. Crystallogr. 24, 946-950.
- [19] Otwinowski, Z., (1991) DENZO, Yale University.
- [20] Navaza, J. and Vernoslova, (1995) Acta Cryst. A 51, 445-449.
- [21] Collaborative Computing Project No. 4, SERC Daresbury Laboratory, Warrington (1994) Acta Cryst. D 50, 760–763.