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Abstract 

An (n x n)/k semi-Latin square is an n x n square in which nk letters are placed so that there 
are k letters in each row-column intersection and that each letter occurs once per row and once 
per column. It may be regarded as a family of nk permutations of n objects subject to certain 
restrictions. Squares of  a given size fall into strong isomorphism classes (interchange of rows 
and columns not permitted), which are grouped into weak isomorphism classes (interchange of 
rows and columns permitted). We use group theory, graph theory, design theory and computing 
to find all isomorphism classes of  (4 × 4)/k  semi-Latin squares for k -  2,3,4. 

! .  Preliminaries 

An (n x n ) / k  s e m i - L a t i n  square  is an n × n array containing nk  letters in such a 

way  that each r o w - c o l u m n  intersect ion contains  k letters and each letter occurs  once 

in each row and once in each column.  Genera l  semi-Lat in  squares were  so named by 

Yates [12]; statistical uses are summar ized  in [11,2]; opt imal i ty  propert ies are g iven  

in [1,5,4].  

Preece and Freeman [11] enumera ted  the (4 × 4 ) /2  semi-Lat in  squares by ad hoc 

methods.  The  purpose o f  this paper is to give a systemat ic  me thod  o f  enumerat-  

ing i somorphism classes o f  semi-Lat in  squares o f  a g iven size. The method  is prac- 

t icable only for small  n and k, but this is sufficient for the practical needs o f  

statisticians. 

Let A be an (n x n ) / k  semi-Lat in  square. We  shall a lways assume that the rows 

and co lumns  o f  A are labelled 1, . . . ,  n. Let  X A be the set o f  letters in A: here, and 

e lsewhere ,  the superscript  will  be omit ted i f  there is no ambigui ty.  For i, j ~ { 1 . . . . .  n} ,  

let A,ii be the set o f  letters in X "1 which occur  in row i and co lumn j o f  A. Then each 
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letter x in X determines a permutation z~ A in S. by 

iZtax = j ¢==~ x E Aij for l~<i, j <~ n. 

Moreover, each permutation o- in S~ determines a subset Y~ of X by 

: { x  X : = 

Write N A for [yA[. It is clear that 

£ N ~ = k  for i ,  j E { 1  . . . . .  n}. (1) 
~rE&,:ia=j 

Moreover, if  the semi-Latin square M is obtained from A simply by relabelling the 
letters, then N A = N ~  for all ~ in S~. Further, given any family of  non-negative 

integers (N~ : a E S~) satisfying (1), then there exists a semi-Latin square A such that 
N A = N~ for all a in &. 

Example 1. Let n = k = 3 and put 

1 2 3 
a b c d e f g h  i 
f g h a b  i c d  e 
d e  i c g h a b f  

ztf = (12), 7zg -- ~zh = (132) ,  

Y(,2) = { f } ,  }1(132) : {g,h}, 

N(12) : 1, N(132 ) : 2 .  

Thus semi-Latin squares may be identified with families of  non-negative integers 

(N~: tr E S.) satisfying (1). Since N~ can take only k + 1 values, the family can be 
succintly represented by the partition of Sn into subsets A0, A I . . . . .  Ak, where 

A r =  {a E Sn: NA = r } .  

2. Isomorphism classes 

Following [3], we define a stron9 isomorphism between (n × n)/k semi-Latin squares 
A and M to be a triple (~,/~, 7), where ~,/3 E Sn and 7 is a bijection from X a to X M 
satisfying 

Aij7 =Mi~,jl3 for all i, j E {1 . . . . .  n}. 

In other words, M is obtained from A by permuting the rows by ~ and the columns 
by /~ and relabelling the letters by 7. A weak isomorphism from A to M is either a 
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strong isomorphism or a triple (ct, fl, 6), where ~,/:t E S, and 6 is a bijection from X A 
to X M satisfying 

Aij6 = Mjt£i~ for all i, j E {1 . . . . .  n}. 

In other words, a weak isomorphism may interchange rows and columns. Thus ev- 
ery semi-Latin square is weakly isomorphic to its transpose but may not be strongly 
isomorphic to it. 

Strong isomorphism classes correspond to the notion of transformation sets [8, 11] 
or isotopy classes [7] for Latin squares, while weak isomorphism classes correspond 
to the notion of species [8,11] or main class [7,10]. 

If A is strongly isomorphic to its transpose then the weak isomorphism class 
Weak(A) containing A is also a strong isomorphism class; otherwise Weak(A) is 
the union of two strong isomorphism classes. 

Theorem 1. Semi-Latin squares A and M o f  size (n × n) /k  are strongly isomorphic 

i f  and only i f  there exist permutations ~ and ~ in Sn such that 

~ - l A r f l = M r  for  r = O  . . . . .  k. (2) 

In particular, i f  A0, . . . ,  Ak can be simultaneously conjuyated into M0, . . . ,  Mk (that 

is, i f  condition (2) holds with ct =- fl) then A is strongly isomorphic to M. 

Proof. Suppose that (~,/~,7) is a strong isomorphism from A to M. For cr in S, we 
have 

YA = f i  Ai, i~r 
i=1 

SO 

i=1 j = l  

and N ~ , ~  = N A. Hence (2) is satisfied. 
Conversely, suppose that ~ and /~ satisfy (2). Then, for each a in S, we have 

IY~I = I r~- ,~ l ,  so there is a bijection 7, between these sets. Since the non-empty 

sets { yA: ~r E Sn } partition X A, and similarly for X M, the maps 7~ combine to form 
a bijection 7 from X A to X M such that, for all ~r in Sn, if x E yA then x7 E Y~M,~[~. 
Now, for all i, j in {1, . . . ,n} we have 

Aij7 = U yA7 = U Y~,,71~ = Mi~,)l~. 
aES,, : ia=j c~ES,, : ia=j 

Thus (ct,/£7) is a strong isomorphism from A to M. [] 

Theorem 2. I f  {a - l :  a E A t }  = Mr fo r  r = 0 . . . . .  k then A is weakly isomorphic 
to M. 
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Proof.  The effect o f  transposing A is to replace each permutation 

inverse. [] 

We write S - I  for { s - l :  s E S} for any subset S o f  S,,. 

~ by its 

3. First stage: overcounting 

The first stage o f  the enumeration is to find all families (N~: cr E S~) satisfying 

(1) but using Theorem 1 to omit any family whose corresponding semi-Latin square is 

obviously strongly isomorphic to one already listed. We use Theorem 1 in the following 

way. 
Suppose that P is a subset o f  S, and that No has been specified for a E P in such 

a way that A/'(P) holds, where JU(P)  means 

Na<~k for i,j ~ {1 . . . . .  n}. (3) 
~CP: i~r--j 

We wish to adjoin a subset Q of Sn\P to some Ar in such a way that A/'(PUQ) holds. 

If  Ql and Q2 are candidates for Q, and if  there exist ~,/3 in Sn such that c~-lPfi = P 
and a - l Q l f l  = Q2 then there is no loss o f  generality in choosing Ql and omitting Q2. 

We almost always use this technique in the case that ~ = fi, because conjugacy is so 
easy to recognize in S,. 

Note that if [Ak[ = n then A is just the k-fold inflation of  an n × n Latin square 

(obtained by replacing each letter o f  the Latin square by k letters). Thus the number 

o f  strong isomorphism classes of  semi-Latin squares with IAk[ = n is the same as 

the number o f  isotopy classes o f  Latin squares. Further, it is impossible to have 

IAk[ : n - 1. Also, Z r r l A r l  = nk. 

Example 2. As an example, we show the method on the case n = 4, k = 2. Although 

this may be overkill for this small case, this does illustrate the more systematic method 

which is definitely needed for larger cases. 

We have either IAz] = 4 and AI = 0, or [Az[ = 2 and JAil = 4, or Idz[ = 1 and 
IAI[ = 6, or A2 = 0 and [A1] = g. If  Ia2[ = 4 then A is an inflated Latin square so is 
one of  the two squares (a) and (b) in Fig. 1. 

I f  [A21 --= 2 then, by Theorem 1, we may assume that 1 E A2. Then (1) shows 

that no other permutation in A1 U A2 c a n  have any fixed points. By Theorem I, 
we need consider for the other element of  A 2 only one element o f  each conjugacy 
class o f  5'4 with no fixed points. I f  the other element o f  A2 is ( 12 ) (34 )  then (1) 

forces Ai = { ( 1 3 ) ( 2 4 ) , ( 1 3 2 4 ) , ( 1 4 ) ( 2 3 ) , ( 1 4 2 3 ) }  and A is the square in Fig. l(c). 
I f  A2 = { 1 , ( 1 2 3 4 ) }  then there is no solution to (1). 

I f  IA2[ = 1 then we may take A2 = {1}. Then all elements o f  A1 have no fixed 
points, so they have cycle structure 4 or  2 2. The six 4-cycles give one solution to (1) 

(shown in Fig. l(d));  while if A1 contains a permutation of  cycle type 2 2 then it must 
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a b c d e f g h  

g h a b c d e f  

e f g h a b c d  

c d e f g h a b  

(a) inflatedcyclic  
Latinsquare  

a b c d e f g h  

c d a b g h e f  

e f g h a b c d  

g h e f c d a b  

(b) inf la tednon-  
cyc l i cLa t insqua re  

a. b c d e f g h  

c d a b g h e f  

e g f h a b c d  i 

f h e g c d ! a b  

(c) IA21 = 2 

a b c d e f g h  

f h a b c g d e  

d g e h a b c f  

c e . f g d h e b  

(d) A2 = {1}; all 
4-cycles 

a b c d e .f g t i 
g h a f c d b  

d e b g a h c f 

c ,f c h, b g a 

(g) D i,~ (i) 

a b c d e . f ig  h 

c g a b i d  h e .f 

f h e g :a  c b d 

d ei .f  h!b  .q , c 

(j) D is (iv-) 

a b c d e f g h  

f h a b c g d e  

d e g h a b c f  

c 9 e f d h a b 

(e) A2 = {1}; two 
cyclic subgroups 

a b c d e f g h  

f h a g b c d e 

c g e h a d b .f 

d e b ,f 9 h a c 

(h) D is (iii) 

a b c d e . f ig  h 

e g a b l c h d f  

c f g h i a d b e  

d h e f b g a c  

(k) D is (v) 

a b c d e f g h  

c h a f d g b e  

d e b g a h c . f  

g f e h b c a d 

(f) D is (i) 

a b c d e f g h  

c d a b ig  h c .f 

.f h e g a c b d 

e 9 f h b d (~ c 

(i) D is (iv) 

a b c d e .f g tt 
e g a b c h d . f  

c h . f g a d b e  

d . f l e  h b g a c 

(1) D is (v) 

a b c d ie  f g h 
g h a b c d e f  

c .f e h a g b d 

d c f g b h a c  

( . 0  D is (,,i) 

a b c d e f g h  

. f g a b c h d e  

c d e h, a g ! b  .f 

e h f g b d a c  

(n) L)is (vi) 

a b[c  d e .f g h 

d g a b c h e .f 

c . f i e  h (, g b d 

e h .f g b d e c 

(o) I )  is (vi) 

Fig. l. First stage of counting (4 x 4)/2 semi-Latin squares, 

consist of  the non-trivial elements of  two cyclic subgroups of  $4 of  order 4 (as in 
Fig. l (e ) ) .  

Finally, suppose that A 2 = 0 .  We may assume that 1 E Al. Let D = {a  E AI: a ~ 1, 
cr fixes at least one point.} Then, up to conjugacy, D is one of  the following sets. 

(i) {(1 2 3 ) , ( 2  1 4 ) , (4  1 3 ) , ( 3 2 4 ) } .  
(ii) ((1 2 3),(1 24) , (2  3 4),(3 4 1)}. 

(iii) {(1 2 3), (1 2 4), (2 3 4), (3 1 4 ) } .  
( iv) {(1 2 ) , ( 3 4 ) } .  
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(v) { (34 ) , (123 ) , (124 )} .  
(vi) { (34 ) , (123 ) , (214 )} .  
In case (i), D contains exactly one element a such that ia=j ,  for all i, j E  {1 . . . . .  4}. 

Hence AI\D also defines a Latin square. But AI\D contains the identity, and D is 
fixed by the whole alternating group A4. Up to conjugacy by A4, the only possibilities 
for A1 \D are the Klein subgroup of $4 and one of the cyclic subgroups of $4. These 
possibilities are shown in Figs. l(f) and (g) respectively. 

Case (ii) has no solution to (1). 
Case (iii) can be completed in only one way, with the rest of A1 as (1324) ,  ( 1 3 4 2 )  

and (1432) .  See Fig. l(h). 
In case (iv), A1 can be completed in three ways, with any of the following sets of 

five permutations. 
• { ( 1 2 ) ( 3 4 ) , ( 1 3 2 4 ) , ( 1 3 ) ( 2 4 ) , ( 1 4 ) ( 2 3 ) , ( 1 4 2 3 ) } .  
• { ( 1 2 3 4 ) , ( 1 3 2 4 ) , ( 1 3 ) ( 2 4 ) , ( 1 4 3 2 ) , ( 1 4 2 3 ) } .  
• { ( 1 2 4 3 ) , ( 1 3 2 4 ) , ( 1 3 4 2 ) , ( 1 4 ) ( 2 3 ) , ( 1 4 2 3 ) } .  

However, D is fixed by (12), which interchanges the second and third of these sets, 
so we obtain only two further semi-Latin squares. They are shown in Figs. l(i) 

and (j). 
In case (v), A1 can be completed in two ways. 
• { ( 1 3 4 2 ) , ( 1 3 ) ( 4 2 ) , ( 1 4 3 2 ) , ( 1 4 ) ( 2 3 ) } .  
• { ( 1 3 4 2 ) , ( 1 3 2 4 ) , ( 1 4 3 2 ) , ( 1 4 2 3 ) } .  

These give the squares in Figs. l(k) and (1). 
Finally, in case (vi) A1 can be completed in three ways. 
• { (1234) , (13  2 4 ) , ( 1 3 ) ( 4 2 ) , ( 1 4 3 2 ) } .  
• { ( 1 2 4 3 ) , ( 1 3 2 4 ) , ( 1 3 4 2 ) , ( 1 4 ) ( 2 3 ) } .  
• { (12 ) (34 ) , (1324) , (13 ) (24 ) , (14 ) (23 )} .  

These give the squares in Figs. l (m)- (o ) .  

4. Second stage: pinning down the number of isomorphism classes 

The result of  the first stage of the search is a list of (n × n)/k semi-Latin squares 
which includes at least one representative of each strong isomorphism class. If Theo- 
rem I has been used effectively, there should not be many representatives of any one 

class. 
The next stage is to separate elements of the list into different isomorphism classes 

as far as possible. To do this, we can use three progessively weaker criteria. 
1. A semi-Latin square A defines a quotient incomplete-block design A(A), whose 

points are the letters in X a and whose blocks are the sets Aij. If A is weakly 
isomorphic to M then A(A) is isomorphic to A(M), but the converse is not true in 
general. 

2. A semi-Latin square A defines a graph G(A) whose vertices are the letters in X A 
and in which the number of edges between x and y is equal to the number of blocks 
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in A(A) in which x and y both occur. If A(A) is isomorphic to A(M) then G(A) is 
isomorphic to G(M), but the converse is not true in general when k > 2. 

3. If G(A) is isomorphic to G(M) then these two graphs have the same list of valencies, 
although the converse is not true in general. 
Preece and Freeman [11] used primarily the valency list to distinguish isomorphism 

classes, but it is too feeble a criterion for larger sizes. 

Example 2 revisited. Fig. 2 shows the graphs of the semi-Latin squares in Fig. I, 
numbered correspondingly. These are the same as the incomplete-block designs, because 
k = 2. Each of squares (e), (d), (e), (f), (i) has a graph which is not isomorphic to 
any other graph in the list. Thus each of these is not even weakly isomorphic to any 
other square in Fig. 1: moreover, each of these squares must be strongly isomorphic 
to its transpose. 

Where two or more squares have isomorphic quotient block designs, we use ad hoc 
arguments to complete the identification of isomorphism, guided by Theorems 1 and 2 
and by explicit isomorphisms between the graphs or the block designs. 

Example 2 revisited. The remaining squares in Fig. 1 are partitioned as follows into 
sets with isomorphic graphs: 

{(a), (b)} {(g), ( j) ,(o)} {(h), (k), (1)} {(m),(n)}. 

Although squares (a) and (b) have isomorphic graphs, they are inflations of Latin 
squares which are not themselves isotopic, and each of which is isotopic to its transpose. 
So (a) and (b) belong to different strong isomorphism classes, each of which is also 
a weak isomorphism class. 

Let A, M, N be the squares in Figs. l(g), (j) and (o). By Theorem 1, i fM is strongly 
isomorphic to A then there is some ~ in $4 such that ~ IA1 is conjugate to M1. Since 
A1 contains six even permutations while M~ contains six odd permuations, any such 
must be an odd permutation. Moreover, Mi contains the identity, so any such ~ must 
be in A i. Now 

(1 2 3 4)-~A~ = {(1 432) ,  1,(1 23 4),(1 3)(24),(1 4),(1 243) , (2  3),(1 3 4 2 )} ,  

which is conjugate to Mi by (1 2 3 4). Hence A and M are strongly isomorphic. Arguing 
similarly, we soon find that Nl = (1 2)A1(1 3). Thus A, M and N belong to a single 
strong isomorphism class, which is also a weak isomorphism class. 

We use a different technique for the squares in Figs. l(h), (k) and (1). Here the 
automorphism group of the graph fixes a unique edge: for Fig. l(h) it is ac in cell 
(4,4); for Fig. l(k) it is cd in cell (1,2); for Fig. 1(1) it is e9 in cell (2, 1). Any strong 
isomorphism between these squares must map these cells to each other. We easily find 
that 

((1 4)(2)(3), (1)(24)(3), (ad) (bhe) (c ) ( fg ) )  
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4K2tJ4K2LI4K2tJ4K2 414204K~LI4K2LJ4K2 4K204K202K2,2  

(~) (b) (~) 

4K2 0 1{2,2,2 4K2 0 e g K4,4 

C .  . f  

(d) (e) (f) 

e b (I 

C d c 

a .f 
(g) (h) 

d c c 

f e d 

Y - - ]7 

Ci) (k) 

2K2,2 U 2/42,2 

(i) 

ap<c c d 

e h. 

g -  * f  .q- - h  

.q- - f  
(,n) (~) (o) 

g 

d 

(1) 

Fig. 2. Graphs of  the semi-Latin squares in Fig. 1. 

is a strong isomorphism from square l(h) to square l(k); while 

((2 4)( 1 )(3 ), (1 4)(2 3), (a g b h)(c e d f ) )  

is a strong isomorphism from square l(h) to square 1(1). 
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Finally, let q~ and 7 j be the squares in Figs. l (m) and (n). The double edges of  G(4~) 
occur in all the cells of  the first two rows of  4~, while the double edges of  G(7  j )  occur 

in all the cells of  the first two columns of  ~,  so q~ cannot be strongly isomorphic 

to ~. However, this observation suggests that qO might be strongly isomorphic to the 

transpose o f  5 u. We use Theorem 2 and find that 

~P~-~ = {1 , (34) , (21  3),(1 24) ,(1 3 4 2 ) , ( 1 4 2 3 ) , ( 1  243) , (1  4)(23)} 

- (3 4 ) ~ ( 3  4) 

and so 7/ is weakly isomorphic to 4). 

In summary, we have proved the following: 

Theorem 3. 777e (4 x 4)/2 semi-Latin squares lie in 11 stron,q isomorphism classes, 

oJ" which two merqe into a sinyle weak isomorphism class. 

This is consistent with the findings of  Preece and Freeman [11], who called weak 

isomorphism classes species and strong isomorphism classes transformation sets. 

5. Results for larger sizes 

Isomorphism classes have also been found for n = 4 with k = 3 and k -- 4 [6]. 

By using the same kind of  systematic method and overcounting techniques for n = 4 

and k = 2 in Section 3, we obtained one list of  squares for n = 4 with k = 3, and 

one for n = k = 4. The list for n = 4 with k = 3 consists of  49 squares while that of  

n = k = 4 consists of  245 squares. 

All the three progressively weaker criteria discussed in Section 4 for pinning down 

the overcounted squares into isomorphism classes are also applicable here. However, the 
part which involves checking the isomorphism of  squares based on their graphs needed 

some more help since this becomes more complicated with larger sizes. As mentioned 
earlier, the criterion of  distinguishing one isomorphism class o f  a square from the other 

based on their valency lists is too feeble for larger sizes. So, to ascertain the strong 

and weak isomorphism classes of  larger sizes of  the (n x n)/k semi-Latin squares we 
made use of  NAUTY [9]. 

The NAUTY package compares a set of  graphs pairwise for isomorphism. Its output 

is a list indexing each set according to isomorphism classes. To be able to use this 

package for our purpose we need to convert the semi-Latin squares into graphs in two 

ways. In the first way the graphs should be isomorphic if and only if the semi-Latin 
squares are weakly isomorphic; in the second way the graphs should be isomorphic if 
and only if the semi-Latin squares are strongly isomorphic. Thus given an (n x n)/k 

semi-Latin square A we convert it into two new graphs H(A)  and H ' ( A )  as follows. 

The first stage of  this conversion involves identifying five types o f  vertex for each 
square, namely: row-type, column-type, letter-type, position-type and extra-type vertices 
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1 2 3 4 
l a b c d e f g h  i j k l  
2 d e f a b c j k l g h i  
3 j k l g h  i a b c d e f  
4 9 h  i j k  l d e f a b c  

Fig. 3. A (4 × 4)/3 semi-Latin square 

(see below). The number n o f  rows, the number k o f  entries per row-column intersec- 

tion and the number nk of  letters are determined. Then, the number nZk of  positions 

in a square and the total number v o f  its vertices are calculated. Squares with different 

values o f  v cannot be compared for isomorphism. 

The five types o f  vertices are labelled from 0 to v - 1 as follows: 0 . . . . .  n - 1 for 

the row-type vertices, n . . . . .  2n - 1 for the column-type vertices, 2n, . . . ,  2n + n k -  1 
for the letter-type vertices, 2n + nk, . . . ,  2n + nk + n2k - 1 for the position-type vertices 

and 2n + nk + n2k, 2n + nk + n2k + 1 for the extra-type vertices. Each position-vertex is 

joined to the row-vertex, the column-vertex and the letter-vertex corresponding to the 

row, column and letter at that position. The row-type vertices are differentiated from 
the column-type vertices by putting one o f  the extra-type vertices adjacent to every 

row-vertex and the other adjacent to every column vertex. 

Then the extra-type vertices may or may not be allowed to interchange depending 

on whether interest is on strong or weak isomorphism. We make the graphs H(A) 
for determining weak isomorphism classes by allowing the extra-type vertices o f  each 
square to interchange. On the other hand, the extra-type vertices o f  each square are 

disallowed from interchanging if we want to make graphs HI(A) for determining the 

strong isomorphism classes. In this case, a loop is added to the row extra-type vertices 

so that no isomorphism can take a row extra-type vertex to a column extra-type vertex. 

Now it is clear that H(A) and H(M) are isomorphic graphs if and only if the semi- 
Latin squares A and M are weakly isomorphic; while H~(A) is isomorphic to H~(M) 
if  and only if A is strongly isomorphic to M. 

Example 3. The vertex-labels and adjacencies below are determined from the (4 × 4)/3 

semi-Latin square in Fig. 3. 

• n = 4 ,  k = 3 ,  n k :  12, v = 7 0 .  

Labels o f  vertices: 
• row type: 0 . . . . .  3, 
• column type: 4 . . . . .  7, 

• letter type (for letters a, b . . . . .  k,l): 8 ,9 , . . . ,  18, 19, 

• position type (for all the 48 entries o f  the square): 20 . . . . .  67, 
• extra type: 68, 69. 

Some adjacencies: 
• first position (vertex 20): {0,4, 8}, 
• first row (vertex 0): {20,21,22 . . . . .  29,30,31,68},  
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• first column (vertex 4): {20, 21,22, 32, 33, 34, 44, 45, 46, 56, 57, 58, 69}, 
• first letter (vertex 8): {20,35,50,65}, 
• first extra (vertex 68): {0, 1,2,3}, 
• second extra (vertex 69): {4,5,6,7}. 

NAUTY classifies the graphs into their isomorphism classes. If the graphs are 
labelled 1 . . . . .  m then the output from the program is a list C1 . . . . .  Cm, where Ci is 
the smallest value of j with 1 ~ j  ~<i such that graph i is isomorphic to graph j. The 
details of the classification procedure and results of the strong and weak iso- 
morphism classifications for n = 4 with k = 3 and k = 4 are given in [6]. 

We summarize our results for these larger sizes in the following theorems: 

Theorem 4. The (4 x 4)/3 semi-Latin squares lie in 43 stron9 isomorphism classes, 
of which 10 merye into five weak isomorphism classes, 9iving 38 weak isomorphism 
classes in total. 

Theorem 5. The (4 x 4)/4 semi-Latin squares lie in 157 stron,q isomorphism classes, 
of  which 46 merge into 23 weak isomorphism classes, ,qivin~t 134 weak isomorphism 
classes in total. 

(A referee has pointed out that the graphs H(A) and H'(A) can be made into smaller 
graphs K(A) and K~(A) by amalgamating all the position-type vertices in each row- 
column intersection. Isomorphism of the graphs K(A) and K(M) is still equivalent to 
weak isomorphism of the semi-Latin squares A and M, and isomorphism of the graphs 
K~(A) and KS(M) is still equivalent to strong isomorphism of A and M. Although 
NAUTY had no difficulty in classifying the larger graphs for our values of n and k, it 
would be sensible to use the smaller graphs for larger values.) 
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