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PART I 

1. INTRODUCTION 

In this paper, we study some systems of nonlinear functional-differential 
equations of the form 

X(t) = AX(t) + B(S,) X(t - T) + C(t), t 30, (1) 

which were introduced in Grossberg ([l], [2], [3]). M-e will choose (1) so 
that S = (si , xe , . . ., .x~) is nonnegative, B(X,) = /I Bij(t) /I is a matrix of 
nonnegative and nonlinear functionals of S(w) evaluated at all past times 
‘u E [- T, t], and C = (Zi , Za ,..., I,,) is a known nonnegative and continuous 
input function. We will show that for appropriate choices of .4. B, and C, 
ratios such as 

have limits as t --z cc, for all;, K = 1, 2 ,..., n. 
For these choices of A, B, and C, we will be able to interpret (I) as a 

prediction theory. The goal of this theory is to discuss the prediction of 
individual events, in a fixed order, and at prescribed times. The theory is not 
homogeneous in time. A system which produces random predictions at t = 0 
can be graduallv transformed into a system whose predictions become deter- 
ministic as t -+ cc. Similarly, a system which produces deterministic pre- 
dictions at t =I 0 can be gradually transformed into a system whose predic- 
tions become random as t - co. The factor which primarily determines if a 
system becomes random or deterministic in its predictions as t - cc is the 
system’s input function C(t). C(t) is th e “environment” or “experience” of 
the system, and we will make precise the statement that these systems “adapt 
to their environment” or “learn from experience.” 

643 
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Our systems can also be interpreted as cross-correlated flows on networks, 
or as deformations of probabilistic graphs. They often have the property 
that the average input 

is related to the average output 

through a system of linear difference-differential equations. This property 
is crucial to our proofs. Another important property is the nonnegativity of 
initial data. When mixtures of positive and negative initial data are chosen, 
the results are not true in general. 

2. THE SYSTEMS AND THEIR BASC PROPERTIES 

A and B are chosen in the following way. Let us be given any positive 
integer n; any real numbers, 01, u, /l > 0, and T > 0; and any n x n semi- 
stochastic matrix P = lIpi II (i.e., pij 3 0 and x.blpik = 0 or 1). Then we 
let 

(2) 

Yjkct> = hc%k(t) (.$hz,(t))-l> 

and 

%k(‘) = [- =?k@) + hdt - T> Xk(t)] @,k), (4) 

* 

, 

where 

andi,j,k=1,2 ,..., n. If for example alI p,, are positive, then in (I), 

A,(t) = - a& 
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and 

P5i [zji(o) + j: e”“xj(v -- T) x<(w) dv 

b(t) = n 
I 

,T1,Ph [zjm(o) + Jt __ . eu2’xj(v - T) .-c,,,(v) dv 
0 1 

All of our results require that the initial data of (*) be nonnegative. We also 
require the initial data to be continuous and for convenience let ~~~(0) > 0 
iff p, > 0. When we say the initial data is chosen “arbitrarily,” we will always 
mean “arbitrarily subject to these constraints.” 

The following theorem guarantees that (*) makes sense when its initial 
data are chosen in this way. 

THEOREM 1. Let (*) be given with arbitrary initial data. Then the solution 
of (*) exists and is unique, continuously diferentiabze, and nonnegatiwe in (0, 03). 
If the initial data of a given variable xi or zjk is positive, then this variable is 
positive in (0, ~0). 

PROOF. (*) can be written in vector form as 

with 
W) =f(t, W), w - 4) 

u = (Xl , 62 ,*-*, %I , 211 I 212 ,-*-, %.n-1 , z,,), 

f = (fi ,f2 ,.*vfn Pfil ,fiS P.,fn.n-1 ,fnn), 

(*I 

Let 7 = 0. Then o(t) = g(t, U(t)), where g(t, w) = f (t, w, w). By the con- 
tinuity of g, a solution U(t) exists in an interval with 0 as its left-hand end- 
point. If moreover, 

/ g(t, U’l’) - g(t, U’2’ 1 < h(t) j U’l’ - CT@’ 1 

for some continuous function h(t) and any two solutions U(l) and Uc2), then 
this interval is (0, co) and the solution is unique and continuously differen- 
tiable [5]. First we show that such a h(t) exists if all xi and xjk are nonnegative. 
The only terms for which this is not obvious are the terms 
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We use nonnegativity to estimate xi above by a continuous function m(t). 
By nonnegativity, fi > - ryxi and *jr > - uzjk , or xi(t) 3 e-~%,(o) and 
zjk(f) > Cam+. Thus nonnegativity implies positivity if the initial data 
is positive. In particular, 

This implies 

from which we find that 

if 

if 

or 

ilP, =O 

$Pj* = l* 

1, (5) 

where 

or 

where 

m(t) = ne(fi”)t [x(O) + J‘: e(rr-~)uI(v) dv 1 . 

By nonnegativity, 

xj(t) <[nx(t)~<~~(t)* 

We can now prove the required Lipschitz condition. Obviously 
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It therefore suffices to show that 

for some continuous h(t). When xE,=lpj,,, = 0, the choice h(t) = 0 suffices. 
Suppose Ckzlpj,,? = 1. Then 

Pjk 
(1) 

%k 
(2) 

%k 

Letting 

11 
h(t) = 2eut ( 1 pj,,,u”i,L,‘(O’)) ~’ 

m=l 

completes the proof when 7 = 0 except for the demonstration that xi and 
zjk are nonnegative. 
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By (4) and the nonnegativity of initial data, zjk(t) cannot become negative 
until either am or xn(t) becomes negative. Otherwise if ajk(t) is zero at 
t = TO, then 

Let t = Tl be the first zero of any function xi(t). Suppose in particular that 
.q(T,) = 0. Then by (2) and the nonnegativity of C(t), 

x1 can therefore never become negative, and all solutions are nonnegative. 
This completes the proof when 7 = 0. 

Suppose T > 0. The existence of a solution of (*) follows by a standard 
“step-by-step” construction in each interval of the form (KIT, (n + 1) ~1, 
n = 0, I,... [7]. To prove the remaining assertions, it suffices to show that 
If(& ,T) -f(& , 7) I < h(t) I & - ~5 I for every 7, and this can be done 
just as in the case T = 0. The proof is therefore complete. 

Theorem 1 implies a property of averages of the inputs Id and the outputs 
xi that is used repeatedly in proving our results. To state this property, we 
inductively define a sequence of subsets S(Y) and T(Y) of {I, 2,..., n} by 

T(Y) = l/c : c pki = 01 , Y = 1, 2 ,..., k, 
iSS(S-1) 

where S(0) = (1, 2,..., n} and k is the least positive integer such that each 
S(Y) and S(Y)\S(Y - 1) is nonempty, r = 1,2,..., k - 1. We also let 

COROLLARY 1. The vectors V = (E(~) ,..., x(~-~)) and W = (I(,, ,..., I(k-l)) 
obg, a linear equation 

V(t) = - aV(t) + poqt - T) + W(t) (6) 

i8 

S(Y) u T(Y) = S(O), r = 1, 2 ,..., k. 
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When S(k) = S(k - l), 

When S(k) = 4, 

If moreover P is stochastic (i.e., ztl=,pim = 1 for all i), then (6) becomes 

it(t) = - ax(t) + f%c(t - T) + I(t). (7) 

PROOF. To prove sufficiency, sum (2) over all i E S(r), for any 
r = 0, l,..., k - 2. Then 

Since S(0) = S(r) U T(r), 

and 

G-)(t) = - ~-w(t) + hr+dt - 4 + I,,,(t). 

Let r = k - 1. If S(k) = S(k - I)+$, then 

%4(t) = - “%+-1)(t) + ,B%4(t - 4 + ~(r-l)(t)~ (8) 

If S(k) = QI, then 

%4(t) = - w4(t) + I(k-l)(t)~ 

which completes the proof of sufficiency. 
Necessity follows from the observation that at least one ymi(t) is not 

summed to 0 or 1 in I;>1 x,(t - 7) ‘&S(,.)y,ni(t) if S(0) f S(r) u T(r), 
and thus the system is nonlinear, 
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If P is stochastic, then S(1) = S(0) and by (8), 

%)(4 = - ~(o)(t) + lkdt - 4 + I(o)(t)* 

Dividing both sides of (9) by n gives (7). 

(9) 

REMARK. The vector C = (1r ,..., 1,) can be viewed as inputs fed into the 
machine (*) by an experimenter, and X = (x1 ,..., x,) can be viewed as the 
outputs produced thereby. By Corollary 1, the average input and output 
of the machine often obeys a simple system of &ear equations. It is therefore 
natural to ask what new information the experimenter gains by studying the 
nonlinear interactions of (*) within itself. It is easily seen by nonnegativity of 
solutions that if lim,, a, x(t) = 0 and u > 0, then also 

t’i q(t) = plil2&(t) = 0 

for all i, j, and k. Thus the individual variables xi and zjlc need not carry any 
more information than the average output x as t + CO. The new information 
of (*) is contained, instead, in ratios such as 

and 

We will show, moreover, that such ratios can have a substantial effect on the 
actual size of the outputs xi(t), even when they have no effect on the average 
output x(t), if the inputs C(t) are properly chosen. 

3. GEOMETRICAL INTERPRETATION 

Before studying the ratios of (*), we give (*) a geometrical interpretation 
which helps to visualize and motivate our statements. This interpretation 
also facilitates comparison and contrast of our systems with some known 
biological systems to which they are similar in certain ways. This comparison 
will be carried out in another place. 

Let G be any finite directed graph [4] with vertices V = {wi : i = 1,2,..., n} 
and directed edges E = {e, : i, j = 1, 2 ,..., n}. To each vi , we assign the 
vertex (or state) function xi(t), and to each eii, we assign the edge (or inter- 
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action) function yij(t), as in Fig. 1. .vi(t) is thought of as a process going on 
at vi , and yij(t) is though of as a process going on at the arrowhead of eij _ 
With this picture in mind, (*) can be interpreted as a kind of flow on G [6] 
in the following way. 

xi(t) Yij(‘) xj (11 

. - . 

“i eii "i 

Frc. 1 

(A) THE FLOW ALONG A SINGLE EDGE. At every time t - T, a quantity 
of size /3xi(t - T) leaves vertex vi and flows along the edge ejj at a finite 
velocity. This quantity reaches the arrowhead of eij at time t. When /3x,(t - T) 
reaches the arrowhead of eij at time t, it activates the process described by 
vii(t). As a result of this activation, a total magnitude /3xi(t - 7)yij(t) is 
instantaneously emitted from the arrowhead and reaches vertex z’~ at time t. 
This process is illustrated in Fig. 2. 

X;(t-r) - -- - - -* BXi(t-$- - - - + px;(t-Z)yij(t)- j 
. )* 

vi eij "j 

FIG. 2 

(B) THE TOTAL FLOW ARRIVING -4~ A FINED VERTEX. The total flow 
received by vertex vi from all other vertices vi at time t is the sum of the flows 
received from each vertex vi . By (A), this flow is 

n 

fi 2 Xj(t -- T)rij(t), 

i=l 

as in Fig. 3. (2) says that the contribution of all vertices to the rate of change 
of the xj(t) process at vj equals this total flow at every time t. The rate of 

FIG. 3 
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change of xj(t) is also proportional to the magnitude of the input function 
I,(t) controlled by the experimenter, and xj(t) decays (or diverges) spontane- 
ously at an exponential rate 01. 

(C) THE TOTAL FLOW LEAVING A FIXED VERTEX. By (A), the total flow 
received by all vertices vi from a fixed vertex et, at time t is 

if 

if 

$P,s =o 

tl**i = 1. 

Thus vi either sends out no flow whatsoever at any time, or sends out a 
total flow which is proportional to its vertex function. 

(D) THE FLOW IS CROSS-CORRELATED. The function yti(t) which appears 
in the flow magnitude /3xj(t - T) yii(t) received by vj from vi at time t 
itself depends on the vertex functions, as is obvious from (3) and (4). The 
term j3xBxi(t - 7) xi(t) appearing in (4) has the following interpretation in 
terms of the flow along the edge ebj . ,&(t - T) is the size of the flow received 
by the arrowhead of eij from vi at time t. This arrowhead touches on vj , 
whose vertex function has the value z,(t) at time t. z+,(t) cross-correlates the 
two quantities /?xi(t - 7) and z,(t) which impinge on the arrowhead at time t. 
That is, the rate of change of +(t) is proportional to @i(t - T) xi(t). +(t) 
also decays (or diverges) spontaneously at the rate u. 

We form yij(t) from the cross-correlating functions adt) weighted by the 
coefficients pik; that is, from pigik(t). This is done by dividing &ztj(t) by 
the sum of the functions pig&t), k = 1,2,..., 71, which belong to any edge 
eik that faces away from vi, as in Fig. 4. yii(t) appears in the flow 
&(t - 7)yij(t) instead of the unnormalized function pii+ to guarantee 
that the average output x(t) of (*) 0 e b y s a linear equation, as in Corollary 1. 

FIG. 4 
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By way of summary, the process (*) can be geometrically described as a 
directed flow on a graph or network. The magnitude of the flow at any time 
depends on the magnitude of the vertex functions at this time, on the normal- 
ized and exponentially weighted cross-correlations of the vertex functions 
at all past times, and on the inputs created by the experimenter. 

(E) DEFORMING A PROBABILISTIC GRAPH. A closely related geometrical 
interpretation of (*) can be given if at every time t we think of G as a ptob- 
abilistic graph G(t) with weight rij(t) assigned to edge eij [4]. Then (*) 
becomes a l-parameter family of probabilistic graphs B == (G(t) : t > O>, 
or a continuously differentiable deformation of the probabilistic graph G(0). 
From this perspective, (*) provides a mechanism for continuously deforming 
one probabilistic graph G(t,) into another graph G(t,), t, > t, . In particular, 
when f, ~= 00, we ask for the existence of a limiting graph G(co). This 
question can also be expressed as: when do fluctuations in the transition 
probabilities G(t) converge to stationary transition probabilities G( co) ? 

Another probabilistic graph can be constructed from (*) with weight pij 
assigned to edge ejj . This graph, called the “coefficient graph” of (*), is the 
“geometry” of (*) over which the cross-correlated flow passes. When C= 0, 
we shall study the influence of the “geometry” P on the “limiting transition 
probabilities” G(co). P’s can be found for which this influence is either 
negligible or profound. 

4. OUTSTARS 

In this section, we introduce the simplest example of our prediction theory. 
This example is characterized by the coefficient matrix 

p = (0, l/(n - I), l/(n ; 1) ?...I W - 1)). 

The system therefore obeys the equations 

,1(t) = - cq(t> + 4(t), 

kj(t) = - mjjt) + Bxl(t - T)Ylj(t) + lj(t)t j = 2,..., n 

Yld4 = %W p2 %dqs j = 2,..., 12, 

and 

.f$(t) = - #Z&) + /lx& - 7) xj(t), j = 2,..., n. 

(10)‘ 
(11) 

(12) I’ * 

(13) ,’ 
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where all initial data is nonnegative and continuous and z,,(O) > 0, j f 1. 
All other functions are identically zero, and we let &+r x,(O) > 0 to avoid 
trivialities. The coefficient graph of (*) is given in Fig. 5. (*) is therefore 

“n-l0 l “3 

FIG. 5 

called an outstay. The vertex co1 is called the source of the outstar and each 
vertex vi , j # 1, is called a sink of the outstar. The set B = {vi : j f l} of all 
sinks is called the border of the outstar. 

Part I studies (*) from a purely mathematical point of view. Part II gives 
these results a prediction theoretic interpretation. Our mathematical discus- 
sion will concern itself with the limiting and oscillatory behavior of (*) as 
t -+ co for special choices of the input vector function C = (1, ,..., I,). 
These choices will be interpreted in later sections as the presentation to the 
machine which (*) represents of sequences of predictions to be learned. 

The choices of C will be divided into three general cases. In the first case, 
no inputs reach the border of the outstar at any time. In the second case, 
inputs do reach this border and continue to do so even at arbitrarily large 
times. In the third case, inputs reach the border but only for a finite amount 
of time. All of these cases can be treated by a single method. The success 
of this method depends on the fact that (*) can be transformed into a more 
tractable system of equations expressed in terms of new unknown variables. 
These variables can be classified into two classes. The first class consists of 
sums over all vertices vj , j f 1, in the border (*). These sums are 

.x(l) = c XL > z(l) = 
c zlk > and 1’l’ = 1 Ik. 

k#l k#l k#l 

The second class consists of three l-parameter families of probability distri- 
butions associated with (*). These are X = {Xi : j f l}, y = {yrj : j # l}, 
and 6’ = {6Jj :j f l}, where X, = xj/xo), yrj = zJz(r), and 0, = l#l). 
We will find that the sums x(l) and z(r) over the border depend on time only 
through the known inputs I1 and I (I). In particular, they are independent of 
the unknown probabilities X and y. Moreover, (*) can be replaced by a 
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system of equations for the time evolution of the probability distributions 
X(t) and y(t). The coefficients in these equations depend only on I, , I(l), and 
the known sums x(l) and .~‘l). These facts are summarized in the following 
two lemmas. 

LEMMA 1. The source function xl and the sums .xI1) and .z’ll depend on time 
only through the known inputs I, and I”). 

PROOF. The assertion is obvious for x1 bp (10). Sum (11) over j & 1 
using the fact that xj+I ylj = 1. Then 

9”’ = - cidl) + /3x1(t - T) +- P’, (14) 

and so by (10) the assertion is obvious for x (l). Summing (13) over j f 1 gives 

2(l) = - 21x(1’ + /3x1(t - T) x’l’, (15) 

which gives the assertion for .&l) by (10) and (14). 

LEMMA 2. (*) can be transformed into the .following system qf equations 
for the probability distributions y and X. 

and 

.x-j = L4,(y1j - XJ + B,(B, - XJ (16) 

where 

A,(t) = Mt - T) , __ 
x(1’(t) B,(t) = f:::;:; I 

and 

.qt) 
cl(t) = r%(t - T)Z’l’(t) * 

PROOF. (16) has the following derivation. Since Xj = xj/.x(l’, 

Substituting (11) and (14) into this equation gives 
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(17) is derived in the following way. Since yrj = zJz(r), 

1 
( 

2(l) 
YV = 2(1) &i - xlj 2(1) 

1 
* 

Substituting (13) and (15) into this equation gives 

jlj = $ [- UZlj + pX*(t - T) Xj - Zlj (- 24 + ‘*ily’ ““‘)I 

5. OUTSTARS WITH AN INPUT-FREE BORDER 

We use Lemmas 1 and 2 to study the case in which no inputs reach the 
border of the outstar at any time. Thus Ij = 0, j f 1, and we say the border 
of (*) is input-free. The main fact needed to carry out our prediction theory 
in this case is the following. 

THEOREM 2. Let (*) be given with arbitrary initial data, an input-free 
border, and any nonnegative and continuous 2; . If xl + 0, then ylr and Xj are 
monotone in opposite senses and 

li,iy~j(t) = pi X.j(t). 

If x, = 0, then ylr and Xi are constant. 

PROOF. By (16) and the hypothesis P = 0, 

JG = 4(Yl, - X,)9 (1’4 

where A,(t) = pxl(t - 7)/x(l)(t) is nonnegative. By (17), 

9ij = Gtxj -YyV)t (17) 

where Cl(t) = pxl(t - T) x(l)(t)/+(t) is nonnegative. From (16) and (17) 
we draw the following conclusions. 

If x, 5 0 then yrr and Xj are constant since jr, = Xj = 0. Suppose that 
xl+ 0. If Xj(tJ = yu(tJ, th en X,(t) = yu(t) = constant for all t > to . 
In particular when t, = 0, Xj and yr* are constant. Suppose by contrast 
that X,(O) # ~~(0). By (IO), there is a T, such that xl(t - T) = 0 for 
t E [0, Z’,,] and xl(t - 7) > 0 for t > T, . If X,(O) > yU(0), then Xr(t) and 
yu(t) are constant for t E [0, ?‘a], but Xi(t) is strictly monotone decreasing and 
yu(t) is strictly monotone increasing for all t E (Z’,, , TJ, where Tr is the 



NONLINEAR PREDICTION AND LEARNING 657 

smallest root, if anp, of the equation Xi(t) = yrj(t). If such a Tr exists, then 
Xj(t) and yrj(t) are constant for t > Tr . We shall show in the next paragraph 
that no such Tr exists. If no such Tr exists, then S,(f) decreases monotonically 
for all t > To and yrj(f) increases monotonically for all t ;:> To . Since -Yj 
and yrj are bounded, the limits Qj z lim,,, Xj(t) and Plj := lim,,, yu(t) 
exist. If Xj(0) < ylj(0), the same argument goes through with all inequalities 
reversed. In all cases, therefore, -Uj and yrj are monotone in opposite senses 
and / -Yj - yu 1 is monotone nonincreasing. 

We now show that Tr does not exist and that Pi, =- Qj , j =’ 1, if .Y~ $ 0. 
Subtracting (16) from (17) gives 

where 

II, == A, + Cl = &u,(t - T) (-& + .$) . 

Integrating (18), we find 

where 
(19) 

Q,(t) = exp [ -- B /I xr(zI -- 7) (T&-- t -$$$--j d”] . 

To show that Tl does not exist, note that fil(,(t) > 0, t > 0. Thus 
yrj(0) f Xi(O) implies yrj(t) # Xi(t). TO show that Plj = Qj , we must 
show that lim km 4(t) = 0, or that 

Since 3+)/2(l) is positive, it suffices to show that 

For t 2 0, 

8-d~ - 7) ___ 
[S’(O) + /3 1: .vl(w - T) cow dw] 

dv 

= J-1 $ log (5”‘(O) + /!l i: rr(w - T) eaw dw) dv 

= log 
( 
1 B t + - 

s x(1’(0) 0 
xl(v - T) eo” dw 

) 
. 
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By (10) and the nonnegativity of Ii , &r > - olx, . Thus 

J 
-t x&J - 7) &) 

0 x(1)(v) 

diverges at a logarithmic rate as t + co, and Plj = Qi , j f 1. 
Theorem 2 is summarized in Fig. 6. It shows that the limits lim,,, yii(t) 

and lim t+s Xj do not vary continuously as a function of the initial data 
.ri(v), v E [- 7, 01. This theorem is picturesquely called the “speck of dust” 

I 
v--v------ ’ 

x,(l-T)=o x,(t-r) PO 

FIG. 6 

theorem, because it describes an alternative which depends on whether or 
not the source function x1 is identically zero. Since Ii is nonnegative, the 
positivity of xl(to) for any to implies the positivity of xi(t) for all t > to . Thus 
if the initial data of xi is identically zero, then x1(t) remains zero until a 
positive value of Ii(t), no matter how small-that is, a “speck of dust”- 
reaches the source v, . Thereafter xi(t) remains positive at all times. 

By Theorem 2, if Xi(O) =JJ~(O) th en Xj(t) =rti(t) = constant for all 
t 2 0 and any choice of I1 . This means in particular that arbitrary probability 
distributions can arise as limits lim,,, X,(t) = lim,,,y,(t), j # 1. The 
coefficient matrix P of an outstar thus does not uniquely determine the 
limiting distributions when the border of the outstar is input-free. That is, 
the “geometry” P has little effect on the “limiting transition probabilities” 
G(a). 

Theorem 2 contains all the information required for our simplest prediction 
theoretic needs, and we therefore recommend that the reader interested 
primarily in the prediction theory go on immediately to the next section. 

More information is available concerning an outstar with input-free 
border than is contained in Theorem 2, because (*) can be explicitly inte- 
grated in this case to give precise information about the relative rates at 
which the probability distributions associated with different vertices and edges 
approach their limits as t -+ co. A brute force integration of (*) by an expo- 
nential change of variable seems to indicate that each xj(t) and ali depends 
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on all its past values Lvj(~) and .zlj(z’), 0 < 2% < t, in a complicated way. This 
is, however, not so. 

THEOREM 3. xj and zlj obey equations of the form 

*vj(t) = Xj(O) a(t) + (y,,(O) - -y;(O)) b(t) (20) 
and 

Zlj(t) = Xj(O) c(t) + (y,,(O) - sj(O)) d(t), (21) 

where a, b, c, and d are nonnegative and continuous .furrctions that depend only 
on II and the initial data x1(O), x”‘(O), and ~‘~‘(0). 

PROOF. (19) can be written as 

%i Xj 
---= 
2(1) x(1' 

Ej , (22) 

where Ej = tzJ2, and kj = ~~~(0) - X,(O). Ej is a known function, since by 
Lemma 1, Qr can be written as an explicit integral which depends on time 
only through II , and on the initial data only through +(O), .v’*)(O), and 
~‘~‘(0). By (22), 

ZB = uxj + r/; ) (23) 

where U = .z(~)/.+) and Vj = +)Ej are known functions. Differentiating 
(23) we find 

flj = ih!j + Ci$ -+ l”? . 

(13) provides another expression for $rj . Identifying these two expressions 
and rearranging terms gives 

Ukj + (UU + ri - PNl(t - T)) Nj + (Ul'j + I;;.) = 0. 

Since U > 0, division by U is permissible and we find 

.ej + PXj + Qj = 0 
where 

(24) 

and 

Q = E d u -t - log x(1’ - 
dt 

The coefficients P and Q appearing in (24) are known functions which depend 
on time only through 11 , (24) can therefore be integrated. We find 

sj(t) := x,(O) exp [- J: P(U) du] - kj /IQ(v) exp [ -~ J: P(U) du] dv. (35) 
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(25) can be simplified by noticing that 

Q-(u+ .2(l) - /3x1(t - T) x’l) I&(~ - 4 --__ 
z(l) x(1) ) x’l’52 1 

( 

- u2(1) 
= u+-- Bx1(t - T> 

.#) -J(l) ) 
xv21 

and that 

= - /3x1(t - T) 9, ) 

d 2(l) 
Y=u+-&log-p- 

j3x1(t - T) x(l) 
2(l) 

=u+ 
2”’ - flXl(t - T) X(l) 

pp 
- -&log x(1) 

zr- -$ log x(l). 

exp[-/:P(u)du] =exp[log-$&] =$$ 

exp[-/:P(u)du] =$$$. 

Substituting these simplified expressions into (25) gives 

Let a(t) = x(l)(t) and 

in (26). a(t) depends only on Ir and on the initial data x(l)(O). s(t) depends only 
on Ir and the initial data x,(O), x(l)(O), and Z(~)(O). This completes the proof 
of (20). 

We now use (20) to derive an equation for zli . By (20) and (23), 
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nlj = z(l) [Xj(O) + kj (Q1 t /3 1: L’c1(w x~l:(~~(w) hj] . (27) 

Letting 

c(t) = 24) and 

in (27) completes the proof of (21) once we observe that c(t) and n(t) depend 
only on II and on the initial data x1(O), x’~)(O), and z(l)(O). 

Theorem 3 can be used to show that the probability distributions at dif- 
ferent vertices and edges approach their limits at the same rate, except for a 
multiplicative factor that depends on their initial data, as we prove in the 
next corollary. We already know that ~~~(0) = S,(O) implies 

rIi(t) = Xi(t) = constant, 

t >, 0, and that yli(t) and Xi(t) are constant whenever x,(t - T) = 0. We 
consider therefore only the remaining case in which rr,(O) f Xi(O) and 
“Q(t - T) > 0. 

COROLLARY 2. ~WoseydO) f Xi(O), YdO) # Xj(O), Umf xl(to - T) > 0. 
Then 

y&) - X,(O) xi(t) - xm YliW - X,(t) 
xi(t)-xj(o) = Xj(t) - Xi(O)= ylj(t) - Xj(t)= ‘Onstant’ 

t > t,. 

PROOF. The proof of Theorem 3 shows that a = x(l) and c = z(l). Thus 
(20) and (21) can be written as 

x5(t) -X5(0) =(rdO> -x5vw$$ 

and 

where b(t)/a(t) > 0 and d(t)/c(t) > 0 for t >, t, since r,(t - T) > 0. Thus 

xi(t) - Xi(O) = r1m - Xi(O) -= rdt> - Xi(O) 
-Yj(t) - Xj(O) ylj(O) - xj(0) Ylj(t) -- xj(“) 

for t >, t, . By (19) we also know that 

Yl&) - xi(t) =Yli(O) - -WV 
Ydt) - xi(t) Yd”) - lydo)’ 

Combining these equalities completes the proof. 
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6. OUTSTARS WHOSE BORDER NEVER BECOMES INPUT-FREE 

In the preceding section, we found that any probability distribution 
ylj(t) = Xj(t), j f 1, remains constant for all t > 0 when the outstar’s 
border is input-free. This fact provides an affirmative answer to the following 
question. Given any probability distribution (0, , j f l}, does there exist an 
input function C = (1, ,..., 1,) for which Xj(0) = y,,(O) = Bj and 

Any nonnegative C with Ij = 0, j f , 1 accomplishes this goal. A natural 
generalization of this question is the following question. Given any three 
probability distributions 0, , j , ‘I) 0’“) and 0,!‘), j f 1, does there exist an input 
vector function C for which 

and 
Xj(0) = e,(l), yli(o) = ey), 

lim Xj(t) = limyij(t) = ep) ? 
t+n 1+x 

We now answer this question in the affirmative and provide a considerable 
amount of supplementary information concerning the manner in which the 
probability distributions Xj and yij approach their limits. We do this in the 
following theorem. 

THEOREM 4. Suppose a: > 0 and u > 0. Let the inputs to the border of an 
outstar have the form Ii(t) = OjI(t), j # 1, where {ej : j f l} is a Fxed, but 
arbitrary, probability distribution, and II(t) and I(t) are arbitrary nonnegative 
and continuous functions. Then the functions h(t) = yu(t) - Xi(t), 
gj(t) = Xj(t) - 0, , and PIi change sign at most once, and not at all ;f 
fj(0) g,(O) > 0. Moreover fj(0) gj(0) > 0 implies fj(t) gj(t) > 0 for a21 t > 0. 
Suppose .furthermore that II(t) and I(t) are bounded functions, and that there 
exist two positive constants c and T,, such that 

and 

s 

t 

e-m’t-U)I,(v) dv 2 c 
0 

f 

t 

e-“(i-v)I(v) dw > c 
0 

for t 3 To . Then 

;iT xj(t) = khr,(t) = e, , j# 1. 
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PROOF. Th e proof is divided into three steps. In step (1) we prove that 
jj , gj , and glj change sign at most once and, thus, that lim,,, ylj(t) exists, 
j # 1. In step (II), the existence of these limits along with estimates of 
-JI(t), B,(t), G(t), and cl(t) f or large t are used to show that the limits 
lim,,, Xj(t) exist and equal the limits lim t+l yIj(t). In step (III), the common 
value of these limits is shown to be oj by estimating -4i(t), B,(t), Ad,(t), and 
B,(t) for large t. 

(I) Subtracting (16) from (17) gives 

fi = - Dlfj + Blgj t (28) 

where D, = A, + Cr. Since (Xj - ej)* = Xj, (16) can be written as 

.jj = -BIgj + Alfj * (29) 

Equations (28) and (29) are special cases of the following simple but basic 
lemma. 

LEMMA 3. Let the functions f and g satisfy the differential equations 

f = af + bg 

g = cf + dg, 
where a, b, c, and d are continuous functions and the off-diagonal coeflcients b 
and c are nonnegative. Then f and g change sign at most once and not at all if 
f (0) g(0) > 0. Moreover f (0) g(0) > 0 implies f (t) g(t) > 0 for all t > 0. 

Lemma 3 can be geometrically visualized by Fig. 7 which shows the (f, g) 
plane. The direction of the arrows indicates the path of the (f,g) point 
through time. 

PROOF. Clearly (fg)’ = (a + d) fg + bg2 + cf” > (a + d) fg by the non- 
negativity of b and c. Thus for any t, i;: 0, (fg) (to) > 0 implies (fg) (t) 3 0 
for all t > t, . More can be said. Let (fg) (to) :i 0, \I-here f (t,) > 0 (say), 
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and let t = t, > t, be the first zero off, or g, or both (off, say). Thenf and g 
are both nonnegative in [t, , ti], so f > gf in [t,, , t,], and 

0 =f(tJ > eatt-*Jf(to) > 0, 

which is a contradiction. Thus (fg) (t) > 0 for all t > t, if (fg) (to) > 0. 
Only the case (fg) (0) < 0 remains, where f(0) < 0 (say). Then either 

f(t) -=I 0 <g(t) f or all t 3 0, or there is a first tr > 0 when f, or g, or both 
have a zero. If such a t, exists, we are in a previous case, so that f and g 
change sign at most once. 

Lemma 3 can be directly applied to (28) and (29) by letting f = fj , 
g=gj,a=-Dr,b=Bi,c=-4r,andd=-Br.Weconcludethat 
fj and gj change sign at most once and not at all if (fjgj) (0) > 0. Moreover, 
(figj) (0) > 0 implies ( figi) (t) > 0 for all t > 0. 

BY (17), 
J&=-c&.. 

Since C, is nonnegative, j,j also changes sign at most once and not at all if 
(fjgi) (0) 3 0. In particular, there exists a Tl such that ru(t) is a monotonic 
function for t > Tl . yij is also bounded and continuous. Thus lim,,, yij(t) 
exists for allj f 1. 

(II) Using the facts proved in (I), we now show that the limits lim,,= Xj(t) 
exist. The first step in this proof is to establish various estimates for the 
coefficients A, , B, , and C, which appear in (16) and (17). The purpose of 
these estimates is to show that &(li(t) is bounded for sufficiently large t. This 
fact, in turn, will be needed to prove that lim,,, jrj(t) = 0, from which it 
will follow with the help of the estimates that lim,,, Xj(t) exists and equals 
liw,, Ydt>- 

The estimates needed for A, , B, , and C, are the following. We shall 
find positive constants hi , i = 1, 2, 3, 4, 5, and a time T, such that for 
t 3 T, , the inequalities A1 < Cl(t) < A, , A,(t) < Aa , B,(t) < A, , and 
) cl(t) ( < A, hold. To establish these estimates, we make comparable 
estimates on the functions .ri , x(r), and z’l) from which A, , B, , and C, 
are constructed. Firstly we establish lower bounds for these functions for 
large t. 

By hypothesis, there exist positive constants c and To such that 

i 

t 
e-a(f-uJll(v) dv > c for t 3 To. 

0 

Thus by integrating (10) we find 

xl(t) > e-G,(O) + C B C for t> To. 
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Substituting this inequality into the integrated form of (14) gives for 
t 3 2(T, + r), 

.> - ] _ e-s(T~+T)) s d > 0. 
p 

Substituting these inequalities into the integrated form of (15) we find for 
t > 3(T, + r) that 

(z”‘(0) --t- J 
2(To+r) 

Z”‘(f) > e-u’ e”“.~l(~ -- T) G(v) dw -I- fled 
0 I 

t 
euv dv 1 2(Tu+7) 

, !z (1 _ ,-a+~)) = .N -e . > 0 
21 

Upper bounds for JC~ , s(r), and z(r) follow by the boundedness of I, and 
P. Letting M = sup{&(t) : t > 0) and IW) = sup{l(t) : t > 0}, we readily 
find that 

xl(t) < x,(O) + ? = M < 03, 

O(t) < x’l’(0) + 8 (M + M’“) = N < 03, 
a 

and 

Let T, = 3(To + T). Then the following definitions of the Xi , i = 1,2,3,4 
obviously suffice for t > T, : A, = @d/R, A, = /3MN/e, A, = PM/d, and 
A, = M’l’/d. 

kr , @I, and z?(r) can also be shown to be bounded by simple estimates of 
the above kind. Using these estimates along with those derived above readily 
shows that there exists a A, < cc such that 1 C;(t) 1 < A, for all t > T, . 

These various estimates on the functions A, , B, , C, , and C, suffice to 
show that 1 j;,,(t) 1 is bounded for t >, T2 , since by (16) and (17), 

I jili I = I G(Xj - Yld + ClC% - 9lJ I 

~2!~,I+IC,I[(A,$-C,)Iy,,--X,I+B,l~i--Xi!) 
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To show that lim,,, $rj(t) = 0, we need the following simple lemma. 

LEMMA 4. Suppose f(t) + OL < cc as t + co and 3 is bounded. Then 

f(t) - 0 ast+m. 

PROOF. Suppose not. Then for some B > 0, there exists a sequence {tn} 
with lim n+m tn = co such that If(t,J ( > E for all 11. We can supposef(t,J 3 E 
for all n without loss of generality. Since 3 is bounded, there exists a 8 such 
that f 3 (42) on infinitely many nonoverlapping intervals 1, = [un , u, + S] 
of length 8, where limn+m Us = co. Thusf(u, + 8) -f(u,J > (42) for all 
n, and f + OL < co as t + co, which is a contradiction. 

Replacing f by yli in Lemma 4 immediately shows that lim,,, j,,(t) = 0. 
We can now show the existence of lim,,, Xj(t). By (I) we can assume that 

j,,(t) > 0 and thus that (Xi - yri) (t) 3 0 for t > T,, without loss of 
generality. Also Cl(t) > h, > 0 for t > T, . Thus by (17). 

. . 
for t > max (T, , T,). Smce hm,,, j,, (t) = 0, it follows immediately that 
lim,,,(X,(t) - yli(t)) = 0. We also know that lim,,, yrj(t) exists, by (I). 
Thus Qj E Km,, Xj(t) exists and equals lim,,,y,i(t). 

(III) Letting Xj(‘) = Xi - Bj and Flf = A,(yv - Xj), we integrate (16) 
to find for every T > 0 and t > T that 

x!e’(q = ,-Sk Bldu 3 [X(8’(T) + ,:. es: “*Fl, dv] . 

TO establish the equality Qi = dj , we must prove limb, Xi’)(t) = 0. To do 
this, we will find positive constants p and v such that for t > T, , 

From this follows that for every fixed T3 > T, , 

lim e -.I-’ r0 
t+n 

B1d” [Xje’(Tn) + JI es;, ‘ldwFlj dv] = 0. 

It remains only to show that there exists a T, such that 

-f B,dv t s” Bl* $ieTo IeTo Flj dv = 0. 
TS 
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Since A, is bounded and 

Thus for every E :> 0 there is a Ts ~3 2”,) such that 1 F,,(t) / < W--L’ for 
t > T3 , and we find 

It remains only to estimate J: B, &I. Since B, = I/s’“, we consider x(l). \Ye 
know that 

s'l'(t) = e-at [s"'(O) + J-1 P$3S,(W - T) -c~ Z(0)) d"3 , 

where 

Thus 

[ 

.U-7 
uv,(t~ -.. T) == eeaU x1( - Tj + e-a7 ex”‘Zl(zu) dw . 

- -7 1 

~t.dl)(t) = a”‘(O) + J‘: P~Z(V) dv 

+ /3x,(- T) t + IgecrrT ]ll’ dv J‘“, e”‘“Zl(w) dw. 

We estimate @x(l)(t) term-by-term. Since I, is bounded, there exists a 
constant C such that 

Thus 

! 

.t 
t?“Z,(w) dw < CPt. 

0 

and we can find a constant k such that 

Thus for t 3 T,, , 

It- s -der ’ e~Z,(w) dw S. kt+. 
--r -7 

pwIl(w) dw < 3 I’ PI(V) dv. 
? 
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Also there is certainly a K such that for t > T,, , 

t<KPt<K 
I 

t 

c 0 
PI(V) dv. 

From these estimates, we readily find constants wr and wa such that 

s 
t ewyt) < w, + w 2 &(v) dv 
0 

for t > 0. By the nonnegativity of Ir and x1(- T), it is also immediate that 

Thus 

P It+ 

w1+ w2 I 

t < B,(t) < 
PI(v) dv 

0 

x(l)(O) + 1“ e”“I(v) dv ’ 
0 

or 

& $ log (y + w2 ,: e=V(v) dv) < B,(t) < $ log (xc’)(O) + j: PI(V) dv) 

Integrating, we find 

$ log (1 + 2 ,I PHI dv) < ,I B, dv d log (1 + & ,I e”“f(v) dn) . 

Thus for t > To , 

from which the existence of constants p and v such that 

p+at< jtBldv<v+at 
0 

for t > To readily follows, and the proof is complete. 
The following corollary to Theorem 2 will have a useful prediction thee- 

retie interpretation. This corollary discusses the effect of choosing II(t) and 
I(t) to be periodic successions of “input pulses,” where ‘an input p&e J(t) 

is a nonnegative and continuous function which is positive in a finite interval, 
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COROLLARY 3, Let the functions II(t) and I(t) of Theorem 2 be de$ned as 
follows. 

zl(t) == f Jl(t ~- h(w 4- W)) and I(r) = f J2(t -- ?I.’ -~ k(w ~,- W)), 
I:=0 I:==0 

where Ji(t) is an arbitrary input p&e which is positive in an interval (0, Ai), 
hi >. 0, i = 1, 2, and w and W are nonnegative numbers whose sum is positive. 
Then all the conclusions of Theorem 2 hold. 

PROOF. It is obvious that I1 and Z are nonnegative, continuous, and bounded 
functions. It remains only to find positive constants c and To such that, 
for example, 

Q(t) = ,: e-x(t-v)ll(v) dv > c for t 2 2‘” . 

Writing p = w + W, let 

F(t) = ]I-, e-~(f+‘)ll(v) dv, t 2 p. 

Then for any n > 1 and t E [np, (n + 1) p), 

D(t) 3 F(t) + e**F(t - p) + .-- + e-ain-l)pF(t - (n - 1)p). 

Clearly F(t) > F(t - p) for all t >, 2p, since Ii(t) > Il(t - p). Thus 

@(t) > (1 + e-@ + *+. + e*(n-l)P)F(t - (n - 1)p) 

b F(t - (n - 1) P), 

for any t E [np, (n + 1) p). Since F,(t) = F(t - (n - 1) p) is a positive and 
continuous function of t E [p, 2p], letting c = inf(Fn(t) : t E [p, 2p]} (> 0) 
and T, = p completes the proof. 

7. OUTSTARS WHOSE BORDER EVENTUALLY BECOMES INPUT-FREE 

In the previous section, we considered outstars subjected to inputs to 
border vertices of the form Ij(t) = 0,1(t) which take on positive values at 
arbitrarily large times. Such an outstar is said to be a G(m) outstar, and we 
affix the superscript “(co)” to each of its functions. For example, we write 
1, as I:@, xj as xim), and so on. 

The border of Gtm) never becomes input-free. In this section, we consider 
outstars whose border does eventually become input free. Given any outstar 
of type GcX)), we shall construct an infinite sequence of outstars G(l), Gf2),..., 
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G(N),..., each with the same initial data as G(m), and each with a border 
which eventually becomes input-free. We shall then study the limiting and 
oscillatory behavior of the functions of GfN) as N and t are permitted to 
become large by comparing these functions with those of Gfrn) and of outstars 
with input-free borders. GtN) is defined in terms of a given outstar of type 
Gtrn) and two given functions U,(N) and U(N) of N > 1 which are positive 
and monotone increasing with lim,,, U,(N) = lim,,, U(N) = co. 
GcN) has the same initial data as G(m). The input functions of GfN) are 

IiN’ = Z(t) x(t - U(N)), 

where X(W) = 1 - B(w). GtN) is called an N-tmncation of Gcrn) because its 
functions agree with those of G(*) in the interval [0, min(U,(N), U(N))]. 
The border of GcN’ is also eventually input-free since no inputs reach the 
border in the interval [U(N), a]. We denote the Xj and yu functions of 
G(N) by X!N’ and y’!’ I I, , respectively. The following theorem holds for these 
functions. 

(7A) THE PROBABILITY DISTRIBUTIONS OF AN OUTSTAR GfNJ 
&MAIN ESSENTIALLY FIXED FOR LARGE TIMES 

THEOREM 5. Let G(l), G(z),..., GcN),... be any sequence of N-truncations 
of any outstay of type G(w). Then 

(I) for every N = 1, 2,..., the limits lim,,, XjN’(t) and lim,,,y:~‘(t) 
exist and are equal, j # 1, 

(II) for every N = 1, 2,..., and all t 3 U(N), XjN’(t) and y:;‘(t) are 
contained in an interval [mjN), M:N’], where 

lim mjN’ = 
N+m ’ lim MjN) = Qj , 

N-K.2 
j# 1. 

Zn particular 

lim lim Xi”‘(t) = Jili k% y::‘(t) = Bj, N-m t-m j # 1. 

(III) for every N = 1,2,... and j # 1, the functions f i”’ = yiy) - XjNJ, 
and j:y) change sign at most once and not at all if 
ivl oreover, f IN’(O) gjN’(0) > 0 implies f iN’(t) dN’(t) > 0 

and y:;(t) is monotonic for ail t > 0. Before proving the theorem, we illustrate 
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its claim pictoriaZ!v in Fig. 8 for the special case of a sequence of GtN”s with 
inputs 

and 

IjN’(t) = sj, Ni1 Jz(t - w - k(7o + IV)), 

I;=0 

j f 1. Such a sequence is obviously derivedfrom the Gc*) outstar in Corollary 3. 
The Figure compares two outstars G’“” and GcNJ with M Q K. 

pT;, 

/ 
N(w+Wl 

M<<N 

FIG. 8 

PROOF. We carry out the proof in the case Bj = Ai, . The same method 
goes through in general, but it is more tedious. The idea of the proof is to 
try to divide the time interval [0, a) of each GcN’ into two parts [0, yN) 
and [yN , co), where lim,,, yN = co. In [0, yN), the functions of GtN) agree 
with those of G(m) and we can apply Theorem 4 to them. In [yN , co), GcN) 
has an input-free border and we can apply Theorem 2 to its functions within 
this interval. This goal can be accomplished with but one technical reservation 
which appears in Case 2 below. 

In every GtN), no input pulses reach the border during the time interval 
[U(N), co), and we can therefore apply the results of Theorem 2 in this 
time interval. Thus, ~$‘)(t) and XjN’(t) are monotonic in opposite senses and 
(r:?(t) - XiN’(t) ( decreases monotonically to zero for t > U(N). 
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Letting 

Mi(N) = max{yy( U(N)), Xj’N’( U(N))} 

and 

m!N’ = min(y$)( U(N)), Xy’( U(N))}, 3 

we conclude in particular that &“(t) and Xj”‘(t) are contained in the 
interval [mj (N), MiN’] for all t 3 U(N). We must now distinguish two cases. 

CASE 1. U(N) < U,(N). Clearly 

XjfJ’(f) = X(“‘(f) and A%) = J&‘(t) 

for t E [0, U(N)]. By Theorem 4, 

j f 1. Since U(N) increases to infinity with N, 

km- Xi'N'(U(N)) = lii$)(U(N)) = &, (30) 

j f 1, and thus 

lim A@) 
N-m ’ 

= $i mjN’ = Sj, , 

j # 1, In particular, 

lim lim X!N’(t) = lim lim r$‘(t) = $a , 
N-+wt-*x, ’ N-m t-M3 

CASE 2. U(N) > U,(N). In this case, the conclusion of Case 1 still 
holds, but we need more information to reach it. By (16) and (17), 
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where A:“‘, BiN’, and Ci”) are nonnegative. If j$’ < 0, then by (17), 
IN) YIZ - Xi”) > 0 and so, by (16), kiN) > 0. If j$” 3 0, then by (17) 

XtN’ >, y:!‘. In either case it is clear that zYiN’(t) and y$“(t) exceed 
mk{X~N)(t,), yir)(t,)} f or any t and t, in [U,(N), L;(;V)] with t > t, . In 
particular XiN)( U(N)) and y:f)( U(N)) exceed min{XiN’( r?,(N)), y:z’( Ui(N))J. 
To show that (30) holds in this case, it therefore suffices to show that 

This follows readily from Theorem 4 and the identities 

In both cases, we have therefore shown that by taking N and then t suf- 
ficiently large, Xi”)(t) and y::‘(t) can be brought as close to 1 as we please, 
and will thereafter remain there, even though no input pulses whatsoever 
occur at large times. 

The conclusions of (III) follow simply by pasting together the results 
from Theorems 2 and 4. That is, we consider GtNt to be a G(~) for small times 
and an outstar with input-free border for large times. 

This completes the proof that as Ai is taken increasingly large, the prob- 
ability distributions XjN’ and yir’ of GfN) approximate the &, distribution 
(or more generally any fixed probability distribution ej) with increasingly 
good accuracy for all large t. 

(7B) THE OUTPUTS OF EACH G(N) ARE NOT A GOOD INDEX OF 

THE STABILITY OF ITS PROBABILITIES 

We will now show that in each GtN), the behavior of the output functions 
xiN’(t) can differ radically from the behavior of the ratios XiN’(t) as t -+ CCI. 
In Theorem 5 we showed that the ratios X;N)(t) remain essentially fixed for 
large times t in each GfN). Now we show that the output functions z:“‘(t) 
can be made to decay to zero at an exponential rate as t -+ co. This contrast 
between-ratios Xi”) and outputs xj (N), though technically simple to establish, 
will have a significant prediction theoretic meaning. 

PROPOSITION 1. In each GtN), the outputs xiN1 decay exponentially to ZYO 
if cx > 0 and u > 0. 
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PROOF. Since GtN) is input-free in [h(N), co), where 

WV = max{Ul(W, WV), 
(10) implies that 

.pyt> = - xp(t) for t 3 qw, 

which proves the Proposition for xi (N)? Similarly, forj f 1 and t > h(N) + T, 

and thus 

tip’(t) = - wjN’(t) + f%p(t - T)yIy(t), 

- cx!cy’(t) < *y’(t) < - mj’N’(t) -t px;N)(t - T)* 

Since the behavior as t + CO of “yiN) is already known, the Proposition follows 
immediately for all @” j f 1. 

The assumptions* ‘, ; 0 and u > 0 are realized in those outstars whose 
outputs .ziN)(t) eventually die out whenever the inputs IjN’(t) die out as well, 
and whose cross-correlations z$“‘(t) weight past .Q(W - T) xi(w) values with 
an exponentially decaying term e- u(~-~). This is the case for which our equa- 
tions have a prediction theoretic interpretation. 

(7C) THE EFFECT OF FIXED RATIOS ON OUTPUTS 

In (B) we showed that even though the ratios XiN)(t) remain essen- 
tially fixed for large t, the outputs xiN’(t) can decay exponentially to zero as 
t - co. It therefore seems that the absolute magnitudes of the ratios and the 
outputs are completely unrelated as t - co. This is not always true, but 
we must modify our outstars GtN) slightly to see this. For simplicity we 
again restrict attention to outstars GcN) with inputs 

N-l 

dN’w = 1 /1(t - k(w + W)) 
k=O 

and 

zi’Nyt> = 5,2 Nf’ J2(t - w - k(w + W)). 
k-0 

To modify G(*), let fN(t) be any nonnegative and continuous function which 
is positive only in the interval [U(N), co). Such an fN is called admissible. 
Given any sequence f = (fi , fi ,..., fn ,...) of admissible fN’s, we shall now 
construct a sequence G”*f), G(sJ),..., GtNJ),... of outstars that is close13 
related to the sequence G(l), Gt2),..., GcN),... of outstars. For each 
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N = 1) 2,..., G’N,f) is defined in terms of G ‘N) bv thi: following prescrip- 

tions: (1) The initial data of G’N.f) is the same as that of GIN’ (and hence 
that of G’z)). (2) The input functions of G’NJ) are 

and 

z(N.f) :- p f 1 -i- N 

We say that the sequence G’l*f’, G’2J),... is derioed from f and G’zi. An> 

derived sequence of this kind obeys the following theorem: 

THEOREM 5(f). Let G’l*f), G’2J),..., G’N,j),... be atzy sequence of outstars 
derivedfrom any GtT ’ and any admissible f, Then all the conclusions of Theorem 5 
hold for this sequence with superscripts “(N, f )” replacing superscripts “(N)“. 

PROOF. Since ZiNVf’ = ZiN) + fb, , the functions of G’NJ) agree with 
those of G’NJ in [0, C,(N)]. Since ZIN.f) = ZjN), j 7 1, G’N.f’ has an input- 
free border in [U(N), co). The rest of the proof is non just as in Theorem 5. 

We now consider special choices off which show some of the effects which 
the fixed ratios Xj(N*f) (t) can have on the outputs xiNsf’(t) for large t. 

(1) fN(t) = J(t - A(N)) where A(N) > X(h). For this choice of fx , 
G’N.” differs from GIN) only in the occurrence of an input pulse J(t - A(lV)) 
at the source of G’N.f) at time t = A(N). In particular, G’NJ’ is the same 
as G’N) in [0, /l(N)], and so G’N*f) is input-free in [h(N), A(N)]. By Proposi- 
tion 1, the outputs .dN,f)(t) decay exponentially towards zero for 
t E [h(N), A(N)]. Since AIN) > X(N), we can assume that all the outputs 
s!~J) are very small at time t = A(N), and we write x~“*~‘(A(A’)) g 0. 
j’= 1,2 ,,.., n. This is true for every N > 1. 

By Theorem 5(f), we can by taking N sufficiently large guarantee that 
y::“(t) approximates Sj2 as closely as we wish for t 2 h(N). In particular. 
we can write y’N*,) (t) s aj, for t 3 A(N). We are now ready to discuss the 
effects which t!he input pulse fN(t) = J(t - A(N)) has on the outputs of 
G’N.f). 

The first fact of interest is that fN(t) h as essentially no effect whatsoever 
on the outputs .vjN.“, j f 1, 2. By (11), we have for t 2 A(N) and j -7 1, 2 

that 

Ye - &NJ) k fix1 I (N.f)(t - 7) . 0 

LV.f) 
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- 0. = 

By contrast,&(t) has a substantial effect on the output xiNmf). By (I I), we 
have for t > A(N) 

and thus 

@f)(t) s x6”*“(LqN)) e-u(t-A(N)) -+ /j jt 

A(N) 

e-~(~-~)X~N.f)(w _ T) dw 

,.& /j Ii,,, p(t-v)X;NJ)(w - Tj dv. 

But by (10) we have for t 2 A(N) that 

zp)(t) = - cxs;NJ)(t) + J(t - A(N)), 

and thus 

@f)(t) zz .~;~+l(jV)) e-Y(t-n(N)) + j:,,, e-“(t-U)J(w - A(N)) dv 

s 

t 
z A(N) e-a(t-+)J(w - A(N)) dv 

t-A(N) 
= e-a(t-AIN)) 

s 
te’J(w) dw. 

0 

Substituting (32) into (31) gives for t E [A(N), A(N) + 71 that 

*pqq z 0 

and for t > A(N) + 7 that 

xiNsf’(t) E /3 j:,,,, e-a(t-v)x~Nsf)(w - T) dw 

ew J(w) dw. 

(31) 

(32) 

Thus ~$‘-~‘(t) grows substantially in the interval (A(N) + T, A(N) + T + A), 
where A = sup{t : J(t) > Oj-, and then decays once again at an exponential 
rate to zero. 
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We summarize these statements in Fig. 9. 
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FIG. 9 

These facts can be stated heuristically as follows. If only the vertices q and 
va are each perturbed periodically by N input pulses, where N is a large 
number, then a later test input pulse to vi creates a large output only from 
va . The inputs to the vertices v1 and v, channel most of the mass 
C:;=ayiFf)(t) of the edges elk into the edge era , and then e,, channels a later 
test input pulse to or along ela and thence to va . 

Suppose that the probability distribution $a is replaced by an arbitrary 
probability distribution Bj in the inputs Ij WJ) Then the outputs from each vj . 
with Bj > 0 are affected by the input pulse fN no matter how Iarge N is 
taken. Clearly, for N taken sufficiently large, the output from vi is approxi- 
mately 8JBj times as large as the output from vj . 

The ratios y:Tf) (t) have a curious effect on the outputs ~i“‘.~)(t) when both 
N and then t are taken sufficiently large. This effect depends on the following 
simple fact. 

COROLLARY 4. Let G(**f) be chosen with Bi = Sj, . Then for all su.ciently 
large N and t > rniN’, y:Tf) (t) is monotone increasing and y!?“(t) is monotone 
decreasing, j f 1. 

PROOF. It suffices to consider yia (*sf) t ( ). By Theorem 4, y!:‘(t) is monotonic 
for all sufficiently large t. Since y$“(t) < 1 and lim,,, y::‘(t) = 1, y::‘(t) 
is monotone increasing for these t. Since also the sign of jg)(t) agrees with 
that of XLm)(t) -y:;‘(t), Xi”‘(t) > y:;‘(t) f or sufficiently large t. Obviously 
yp(t) = y:;‘(t) and XLN.f)(t) = XL”‘(t) for t E [0, miNN’] where 
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lim,, nzlN' = co. Thus XiN*f’ (miN’) > JJ:~*~‘(~;~‘) for all sufficiently 
large N. By (16) and (17) it now follows readily that $2”(t) > 0 for t > Y@’ 
and all sufficiently large N. 

Using Corollary 4, we consider two derived sequences G(N*fl’ and GcNSf2’, 
N = 1, 2,..., which differ only in their choice of -‘l(N), say cl,(N) <</la(N). 
In both sequences we can assume that ~i~~~“‘(t) z 0 for t > d,(N); i = 1, 2; 
and j = 1, 2,..., n. By Corollary 4, for all sufficiently large N and t > A,(N), 
y:Tf2’(t) > y:zfl’(t). By (10) and (11) this means that the output created by 
Jl(t - A,(N)) at oa in G (N~f2’ will exceed the output created by Jr(t - /l,(N)) 
at ~1s in G(N*fl’. This fact is remarkable because h(t - /l,(N)) occurs later 
in time than Jl(t - L&(N)), and thus after the outstar has had a greater 
opportunity to recover from the effect of prior inputs. Speaking heuristically, 
we therefore say that after sufficiently many input pulses have occurred at 
V~ and vs , a new input pulse to T:~ creates outputs from B which “spontane- 
ously” seek the Sj, distribution that the prior inputs have sought to establish. 
This “spontaneous facilitation” will, of course, be most evident when the 
gap 1 y:Tf’(U(N)) - X$“Sf’(U(N)) 1 is substantial. 

(2) fN(t) = C& J(t - cl,(N)), X(N) < A,(N) Q A,(N) < ..’ . In this 
case, infinitely many input pulses occur at the source at large time separations 
t = /l,(N), /l,(N) ,... . For this choice offN , we again readily conclude that 
the output functions x;~*~‘, j # 1,2, are not affected by fN if N is taken 
sufficiently large. Again the interest centers in ~h~*~’ for large N. 

We can treat XiNsf’ . lust as we did in case (1) for times t E [0, A,(N)]. 
Treating cl,(N) as the A(N) of case (l), we conclude that xiNrn’ grows sub- 
stantially in the interval (A,(N) + T, /l,(N) + 7 + A) and then decays 

Uhf1 
XI 

X(N.f) 

2 

A(N) 
A(N)+ T 

* 

FIG. 10 
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exponentially towards zero in [A,(N) + T + A, A,(V)]. Since A,(V) > A,(N), 
J~J) we can suppose Lx2 (1 4 1 V)) s 0 Now we iterate this process. Lv:e treat 

A,(N) as the A(N) of case (1) and ir(X) as the X(,V) of case (1). W7e conclude 
that xFf’ grows substantially in the interval (/l,(N) + 7, A,(:V) + T i- X) 

and then decays exponentially towards zero in [A(:V) i 7 + A, Al3(:V)]. 
This process is iterated infinitely often, and we arrive at Fig. 10. The heuristic 
point of this example is that we can perturb the source as often as we wish 
with input pulses without distorting the output, just so long as the rate with 
which the pulses occur is sufficiently slow. This remark must of course be 
qualified by the spontaneous improvement effect noted in (1). 

(7D) THE NONLINEAR TREND IN THE INDIVIDUAL OUTPUTS IS 

NOT SEEN IN THE LINEAR AVERAGE OUTPUT 

In Sections (7A)-(7C), we have shown that there exists a distinctive trend 
in the outputs of a sequence GoJ), GcPJ),..., G’“‘*f),... of outstars if, for exam- 
ple, we let fN(t) = J(t - A(N)), rh 1% ere A(N) > X(N). This trend is partic- 
ularlv evident if we let Gtrn) have initial data of the form ~~~(0) = 6 > 0, 
and Ixj(0) == y, for all j f 1, and choose Bj = sj, . Then in every G(N.“, 
the output from each vertex of the border is the same at time t = 0, and we 
say that the output is uniformly distributed at time t = 0. In Guf), the 
distribution of outputs from the border never deviates too far from this 
uniform distribution since only one input pulse reaches zll and @a . In G’2*f’, 
the distribution of outputs from the border is slightly more peaked at z’% 
for times t > A(2) than it is in G (l*f) for times t c> A(l). By the time we 
reach a G’,“,f) for which N is very large, practically all the output from the 
border comes from vertes z’s for times t 2 A(N). We diagram this trend in an 
idealized way in Fig. 11, where we have set ZL‘ = T for simplicity. 

We now ask how much of this striking trend is visible in the average output 

of each outstar Go”.“, N = I, 2 ,... . We will show that this trend need not 
appear at all in these averages for large times. 

PROPOSITION 2. For any 
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I 
A(N)+ T 

t 

FIG. 11 

where 
4,,(N) - 4(N) = &+1(M) - &(W > 07 

and R is a?zy nonnegative integer, including ccj, 

.+qt + A,(M)) z x’N*f)(t + A,(N)) 

forallt >OandallM,N= I,2 ,... . 

PROOF. We prove the proposition only for the case R = 1. The generali- 
zation to other values of R will then be obvious. The proof relies on the fact 
from Corollary 1 that the average x tN*f) obeys a linear equation which is 
independent of the probability distribution y:?“. We omit the subscript 
“1” in Al(N) for simplicity. From Corollary 1 we find that 

Since also 

.(N,f) _ 
x1 - -Cal (NJ) + /(t - A(N)), 

,$“‘f) = -.- &NJ) -~ _ +‘)(t __ T) 4. m!m J(t _ ;d(N)). B 

n n (33) 
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[ntegrating (33) gives for t 3 cl(N), 

,&v Ott) _ .\.‘N,f’(/q~)) e-d-“(N)) 

1 
J 

.t 
+--- 

n 
e-“(t-v)[,%~N”)(v - T) -c /(v - A(N))] dv 

A(N) 

B .t 
-I - - n J A(N) 

1 
J 

.t-.4(N) 
+ _ e--.a’f-“‘N” 

I2 
em’](v) dv, 

0 

and since 

,y;N.l)(t) ~ e-‘(t-” N)) :A’N’ e”VJ(v) &, 

dv*j’(t) z (- X(t - A(N) - T) ,:- dv j-1 e”“J(zc) dw 

1 .t-.4(N) 
4 _ e-a’t-A’N” 

II 
e*“/(v) dv. 

‘0 
Thus for any t > 0, 

.PJ’(t + A(N)) gg X’~~f’(t + A(M)). 

The heuristic point of Proposition 2 can be stated for the case in which 
R =: CO in the following way. Suppose that an experimentalist wants to find 
out how outstars work by collecting data from them. A standard rule of 
prudence when confronted with an unknown system is to first study the 
long time average output of the system. Given the outstar GIN.f), this average 
is 

1 .t 

cl J 
dN-f)(v) dv, 

where t > 0. The experimentalist will readily observe that each average 
output .@*f) obevs a simple linear equation. He will also note that 

1 t 
cl I 

$NJ)(v) dv s + 1: .@f)(v) dv 

for t sufficiently large and all M, N = 1, 2,..., since 

dNJ’(t + A(N)) s x-f’(t + A(M)), 

and an infinite amount of massf, reaches the source vertex for times t 3 /1(N) 
in every GCN*f). A plausible inference from this data is that all the outstars . 
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G’lJ’,..., GcNJ’ ,..a obey a linear equation and that these outstars are essentially 
copies of one another. Both of these conclusions are totally wrong! 

8. ELIMINATING BACKGROUND NOISE IN OUTPUTS: 
THE ENTROPY OF AN OUTSTAR 

In this section, we will show how the outputs of an outstar can be modified 
to eliminate background noise. We again consider the special case of N-trun- 
cations GcN) with inputs 

IiN’ =$y(t - k(w + W)) 
C=O 

and 

zpqt> = sj, y J2(t - ea - k(w + W)), i# 1. 
k=O 

For simplicity, we also require that each G tN) have an initially uniform border; 
i.e., z,(O) = 6 > 0 and ~$0) = y > 0, j f 1. 

The need to modify the outputs xjN’(t) is suggested by Theorem 5. This 
theorem says that 

I& l.i.i XjN'(t) = ,litli li,i y$)(t) = Sj.2 

or that the outputs from GtN) come increasingly from va as N and then t are 
taken large. By contrast, if xiN)(to) > 0 for any to > 0, then xjN’(t) > 0 for 
every t > to . Thus outputs from vertices vs , v4 ,..., v.~ cannot be entirely 
eliminated in finite time and produce background noise. We now introduce 
one way of modifying the outputs to eliminate this noise and several other 
difficulties. 

Given any probability distribution p = (p, , p, ,..., p,-r), let the entropy 
H(p) of p be defined by 

H(P) = - y P&,P, , 

where it is understood that OZnaO = 0. This concept of entropy is familiar 
from information theory, and it provides a rigorous measure of the amount 
of information in a scheme of events [S]. Using this familiar notion of entropy, 
we can define two kinds of entropy in any outstar G(N), N = 1,2,..., co. Let 

zLp(t> = zz(Xp’(t),..., XiN’(t)) 
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be the z*ertes (or state) entrop>p of the border of G’*” at time t. Let 

HtN’(t) = H(V’N’(t) I _ 12 ,..., YE' (f)) 

be the e&e (or interaction) entropy of the border of G(J’) at time t. These 
entropy functions have the following properties. 

PROPOSITION 3. Let Gfrn) be any outstar with an initially uniform border 
and input functions 

p = q, f Jz(t - 7u - k(zu f W)), j# 1. 
h-0 

Then the state entropy HP) and the interaction entropy HL”’ of G’“) attain 
the maximum entropy ln,(n - 1) at time t = 0 and approach the minimum 
entropy 0 as t 4 00. Moreover, HI;“’ (t) decreases monotonically from maximal 
entropy to minimal entropy as t + VJ, and 

,$i, ‘,1+~ HP’(t) = lim lim HP)(t) = 0. 
.wm t-)SC 

PROOF. The maximum entropy of H(p) is I?z,(n - 1) and is attained when 
p == [l/(n - 1) ,..., l/(n - l)]. By hypothesis, X:%)(O) =1!::“‘(O) =: l/(n - I), 
j + 1. Thus 

HP’(O) = H:‘(O) = Zn,(n - 1). 

The entropy H(p) is also a continuous function of p whose minimum value 0 
is attained when p = (1, 0, O,..., 0) (say). By Corollary 3, 

Thus 

pi xp’(t) = pIiI y;:‘(t) = Sj, . 

fii~ HP’,“‘(t) = fief H,S”)(t) = 0. 

By Theorem 5, we also know that 

lim lim HP’(t) = lim lim HP)(t) = 0, 
&hcc (‘cc ,w+cc t+m 
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To show that H:“‘(t) decreases monotonically, note that 

-sf (A dP1 9&u -A)&(1 -Pl)....~~u -A)) 

log, ( (nl$pl ) 
< 0 if p, 2 & 

= logAn - 1) 
/ 

(34) 

>0 if pi<&. 

Since G:“’ has a uniformly distributed border at t = 0 and I, = 0, j f 1, 2, 

(a) - 
YIS =Y13 

(00) ~ . . . Gyj;n"' and ylj = k2(1 -yl’;‘>, b) j # 1,2. 

Thus 

H?‘(t) = H(y$& (1 - YF),..., & (1 - yl;‘)). 

Differentiating Hkm’ therefore gives 

I;r,‘m’(t> = d w H (Y;;‘, n& (1 - rl’;‘>,..., & (1 -Y:;‘)) 3’::). (35) 

To calculate the sign of 9::’ consider Theorem 4. Since y:;‘(O) = J$‘)(O), 
y:;‘(t) is a monotonic function for all t >, 0. Since 

and liiyl($(t) = 1, 

y:;‘(t) is monotone increasing and y$‘)(t) 3 I/(n - 1). By (34) and (35), 
we therefore find that &f’(t) ,< 0, or that Hi”“(t) is monotone decreasing. 

The decrease of H:“‘(t) from maximum to minimum “lack of information” 
as t + co will be associated in Part II with the increase in Gtrn) from minimum 
to maximum “learning” as t + Co. 

The modified output OjN)(t, I’) of x;“‘(t) is defined in terms of the entropy 
as follows. 

where 

Ojb’(t, r) = max{xi(N’(t) Hju”‘(t) - r, 01, 

@V’(t) = 1 _ HX’N’(t) 
hz&z - 1) ’ 

and ris a fixed positive number called the output threshold. We list several 
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properties of O:N)(t, r) in a G W) with initially uniform border and provide 
a brief intuitive interpretation of each property. 

(1) O:“‘(O, r) = 0 for nil r > 0, no matter how large 6 and y are. No 
vertex is “preferred” at t = 0; thus no output occurs. 

(2) Only OiN)(t, r) ever becomes positive if r is chosen sufficient& 
large. That is, only the “favored” edge e12 ever generates an output. 

(3) o;yt $- w + IV, r) ;? oy(t, r), t 3 0. As inputs to cql and Q 
concentrate more of the mass xk,l y:c’ at e,, in successive input periods, so 
too does the output from z’? become stronger. 

(4) If xIN)(t) ::-: 0, then O!/‘(t, r) is independent of xiN)(t). A vertes 
which has never been “created” by an input influences no output. 

li+i[O~“‘(ta T) -- max(x,(m)(t) - r, O)] -= 0. 

The output from zj2 becomes independent of the outputs XII), J’ f 1, 2, as all 
edges elj lose mass to e12 . In particular, when r = 0, the modified output 
converges to the unmodified output as t --, co. 

In summary, the modified output Oi=‘(t, r) behaves essentially like the 
unmodified output @‘(t) when only y:;)(t) is large, but Oim’(t, r) e 0 when 
all y$‘)(t) are comparable, even when the $‘(t)‘s are very large. 

PART II PREDICTION THEORETIC INTERPRETATION 

I. INTRODUCTION 

We now give the results of Part I a prediction theoretic interpretation. 
Our goal is to construct laws for a machine .&? which can be taught to predict 
the event B whenever the event A occurs. This goal can be stated in several 
related ways. We can say that we wish to teach the machine that the transition 
A -+ B is correct, or that we wish to teach the machine the list AB.Phrased in 
this way, our task can be described by analogy with the task of teaching 
lists of letters to an idealized human subject, who will henceforth be denoted 
by 9’. Suppose that we wish to teach 9 the list of letters AB. A standard 
way of doing this is to repeat the list AB to Y several times. To find out if 9 
has learned the list as a result of these list repetitions, the letter A alone is 
then said to 9. If 9’ responds by saying the letter B in return, and Y does 
this whenever A alone is said, then we have good evidence that 9 has indeed 
learned the list AB. Thus 9’ learns to predict the event B whenever the 
event A occurs as a result of repeated presentations of the list AB. 
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In this section, we suggest one way of translating this intuitive idea of 
learning into formal terms. We can easily think of several desirable properties 
which a machine that learns a list of events in this way might profitably have. 
We state these properties here in a somewhat colorful language to aid the 
reader in comparing and contrasting his intuitive concepts of learning with 
the particular formal translation table that we will set down for these prop- 
erties. The translation table that we shall provide is a very special one, to be 
sure, since it is intended to deal with the particularly simple case of an 
outstar. 

(1) PRACTICE MAKES PERFECT. The more often the list AB of events is 
repeated to the machine A’, the better becomes A’s prediction of B given A. 
Moreover, if the list AB is repeated indefinitely often, then A’s prediction 
of B given rZ comes as close as we wish to a perfect prediction. 

(2) AN ISOLATED SYSTEM SUFFERS No MEMORY Loss. If we succeed in 
teaching the list AB to A%’ to a given degree of accuracy, then A! remembers 
the list with approximately this accuracy just so long as no new teaching 
occurs. 

(3) AN ISOLATED SYSTE~V REMEMBERS AND SOMETIMES FACILITATES ITS 
MEMORY WITHOUT CONTINUALLT PRACTICING. In everyday life, it is a com- 
monplace experience that facts can be remembered for a substantial time 
in the absence of continual overt practice. We shall construct a machine that 
also has a good memory even when it does not practice. Indeed, its memory 
sometimes spontaneously improves even without practice (i.e., “reminis- 
cence” occurs, [9], p. 509). 

(4) THE ACT OF MAKING A CORRECT PREDICTION CAN REOCCUR INDE- 

FINITELY OFTEN WITHOUT RETRAINING. Suppose that ~2’ knows the list AB 
of events. It would be most unpleasant if the very act of predicting B, given ;4, 
erased the record within ,K that B is indeed the correct reply to -4. If this 
were true, we would have to reteach the list AB every time a correct predic- 
tion occurred. In the present system, the act of recall can occur as many times 
as we please without requiring the retraining of .A. 

Properties (l)-(4) show that once a list AB of events is taught to the 
machine A’, retention of the list is quite stable. The next property shows that 
this stability does not prevent A! from adapting to new experiences. 

(5) ALL ERROM CAN BE CORRECTED. Suppose after &Y learns the list 
AB it is found that really the event C should follow the event A. Then B is, 
by fiat, an ~YYOY whenever it follows A. We shall see that this error can always 
be corrected if A’ then practices the list AC sufficiently often, 
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We now make properties (l)-(5) g ri orous by translating them into theo- 
rems of Part I about outstars. 

2. THE ~LWHINE 

The machine A? we construct here obeys the equations (lo)-(13) of an 
outstar. Once this machine is understood, the same basic concepts can be 
applied to a system given by any semistochastic matrix P, as defined in 
Section 2. .A consists of 71 states, namely the n vertices zji of the outstar, and 
these states interact with one another along the directed edges en . The 
machine ..N is manipulated by an experimenter t- whose goal is to teach .,/I 
to predict the event B given the event -4. The esperimental manipulations 
created by C are represented by the input vector function C --_ (I, , I, ,..., I,J. 
The outputs which these manipulations produce are represented by the 
output vector function X = (x r , xg ,..., .t-,,j. In particular, the input function 
lj represents the total history of experimental manipulations performed on 
state vuj . 

Suppose for example that 

and 

Ij = 0, f Jz(t - w - k(w -t It')), j f 1. 
k=O 

Then A? is an outstar of type G(m), as treated in Corollary 3. Each function 
/r(t - k(w f W)) and O,Jz(t -- w - k(w + W’)) pignifies the occurrence 
of an experimentally created event. jI(t - k(w + W)) is an event which 
begins at the source vertex z’r at time t = k(z + W) and lasts until time 
t = k(zo + W) $- A, . The function I, = ~~zo ll(t - k(zu + W)) signifies 
the occurrence at the source 2)X of a periodic succession of identical events 
with the waveform Jr at the times t = 0, w + W, 2(z0 + IV),... . These 
events each last X, time units. Similarly, the function 

Ii = ei f J2( t - .zu - k(w + W)) 
?I=0 

signifies the occurrence at the border vertices of a periodic succession of iden- 
tical events with waveform Bj Js at the times t = w, 2w + W, 3w + 2 W,... . 
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These events each last ha time units. Every vertex Vj of the border receives 
a periodic succession of events whose waveform is identical except for the 
weights Bi . That is, the experimenter distributes a fraction Bj of the wave- 
form Ja to each vertex vj of the border at periodic intervals. Corollary 3 
assures the experimenter that his unceasing labors do not go unnoticed by 
the outstar. Indeed the normalized vertex functions Xj and the normalized 
edge functionsy,j are both responsive to the experimenters’s choice of weights 
I!?~ and gradually adopt these weights as their own no matter what their 
weights were initially. 

3. REPEATING THE LIST AB N TIMES 

Now that we know what an event means in an outstar, it is simple to trans- 
late into formal terms the intuitive idea of presenting a list AB of events to 
the outstar N times. Firstly we must assign a state of the outstar to each 
symbol of an event. If for example we are given twenty-six symbols A, B, 
C ,..., Z, then we assign v1 to A, va to B, va to C, and so on down to vaa and Z. 
Given this assignment of symbols to states, suppose that an experimenter 
wishes to teach an outstar to predict B given A. He must indicate to the 
outstar in some way that B is the “correct” successor of A. He does this by 
repeating the desired sequence AB several times. The only way to say a 
sequence AB to an outstar is to create perturbations at the vertices vu1 and ~1% 
which stand for A and B, respectively. Thus one occurrence of the sequence 
AB is translated into an outstar’s mechanism by the arrival of an input pulse 
/(t - 4w + w> at v, and of an input pulse /(t - w - k(w + IV)) at va 
w time units later. N periodic presentations of the sequence AB, starting 
at time zero, is translated into an outstar’s mechanism as an input function 

N-l 

I;N’(t) = c J(t - k(w i- W)) 

L=O 

for vertex a, , an input function 

p(t) = y Jet - w - k(w + W)) 
k=O 

for vertex vz , and input functions Ii w I 0 for all other vertices j f 1, 2; 
that is, as an N-trunction GfN). G(N) is thus the outstar which results when 
AB is repeated N times at a fixed rate by the experimenter. 

To test whether or not GtN) has learned to predict B given A, the experi- 
menter presents A to GfN) at a later time and sees whether or not GIN) knows 
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that B is the correct prediction. That is, the experimenter creates an input 
pulse at V~ and waits to see if the output created in this way comes only from 
z’? . As soon as A occurs, however, the outstar is no longer of type GfN). 

Suppose, for example, that .-l occurs in G(“) at time t :m .4(N). This means 
that the input pulse fN(t) = J(t - /l(N)) occurs at the source z’~ . The total 
input to the source is therefore xr<t J(t - ~(zL. - II-)) +fJt). This is 
the input of an outstar of type GfNJl. This outstar of type GcNJJ, n-here 
&(t) -= J(t - (1(,1:)), is thus a machine subjected to S presentations of the 
list A4B followed by a single presentation of d on a test trial. 

4. “PRACTICE MAKES PERFECT" 

Suppose now that a machine of type GtN.f) is given. That is, the experi- 
menter has presented AB to the machine A’ times and then presents rZ alone. 
The experimenter wants the machine to predict B after A occurs. This 
means that the output from the border created byf, ought to come only from 
z.~ if the machine knows the list JB. Theorem 5(f) shows that the output 
comes increasingly from V, as N increases. This means that the machine learns 
to predict B given d with ever greater precision as it receives ever more 
trials on which to practice the sequence &4B. In this sense, the outputs at 
large times from the sequence G”J), G(2.f),..., GINJ’,... of outstars, where 
fN(t) = J(t - !l(iC’)) exemplify the proverb “practice makes perfect” in 
our formal translation table. 

This proverb is the first property stated in Section 1. The second propert! 
is that “an isolated system suffers no memory loss.” An “isolated system” 
is manifestly one that is input-free. Property 2 can thus be stated formal11 
as follows. The probability distributions XIN,f and ?$‘*‘I of an outstar of 
type GcNJ’ remain essentially fixed for all large t. This is proved in Theo- 
rem 5(f). The third property is that “an isolated svstem remembers without 
continually practicing.” This is the statement of Section 5 that the probabilit! 
distributions SiN’ and yl; I“ remain fixed even as the outputs .yJN) decay 
exponentially to zero. A similar remark holds in an outstar of type G(N~~~. 
Consider an experimenter who is studying G (N,f) for times t E [X(N), /l(R)]; 
that is, after .4B has occurred N times and before Lq alone occurs. He will 
certainly observe the rapid exponential decay of all the outputs .v~~J) and 
might well therefore be led to conclude that the effects of saying AB to the 
outstar LV times wear off rapidly. The outstar provides no overt evidence (e.g., 
no “overt practice”) to the experimenter during this time that any record 
whatever of his having presented AB endures. Nonetheless, by Theorem 5(f), 
shortly after -3 is presented to the outstar at time f := A(N), the output is 
produced by B alone if AB has been said sufficiently- often in the past. WC 
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also observed in Corollary 4 that if N is taken sufficiently large, y:Ff)(t) 
increases for t > tlziNN). On a later test trial, therefore, the outstar’s memory 
can be better than it was immediately after training, even though no overt 
practice intervenes. This effect is most pronounced when N is large but not 
so large that / y:r*f)( U(N)) - XkN.f)( Z;(N)) / . IS small; i.e., after “moderate” 
amounts of practice. 

The fifth property of Section 1 is that “all errors can be corrected.” This 
property is discussed in the next section. 

5. ERROR CORRECTION AND GLOBAL THEOREMS 

Suppose that an experimenter has taught an outstar the list AB by pre- 
senting this list N times to the outstar at a fixed rate. If N is taken sufficiently 
large, Theorem 5 guarantees that the list can be learned to an arbitrary degree 
of accuracy. After accomplishing this goal, suppose that another experimenter 
comes upon the outstar. This experimenter wishes to teach the oustar the 
list AC. He tests whether the outstar already knows this list by presenting 
the test pulse Jr(t - Al) to vertex q at time t = fl, . The output created 
in this way comes almost exclusively from B. Because this experimenter 
wants C to be the output instead of B, he interprets the output from B as an 
error. To correct this error, he begins at time t = ~4, to present the list AC 
to the outstar M times at a fixed rate of speed, where M is chosen sufficiently 
large to offset the previous N occurrences of the “incorrect” list AB. 

The input history of this outstar can be written as 

N-l 
rl(t) = C Jl(t - &vu, + WI)) t &t - 111) 

I;=0 

N-I 

&At) = c J& - Wl - k(q + WJ), 
k=O 

M-1 

13(f) = c j,(t - A, - w2 - k(w, + It;)), 

k=O 

&(t) SE 0, .i f I,& 3, 

where Ji and Ji are input pulses that are positive in (0, &) and (0, AJ, re- 
spectively, i = 1,2,3, and wi and Wi are positive numbers, i = 1,2. The basic 
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question is: by repeating AC a sufficiently large number of times 111, can 
the record of previous occurrences of 3B I\;’ times he erased from within the 
outstar? The answer is “yes.” This is because of two facts: (1) the outstar 
has positive data at time t := A, + 1, and in the interval [A, - x, , ~3) the 
inputs are 

and 

Ij EE 0, j F 1,3; 

(2) Theorem 5 is true for any outstar with positive data and inputs of the 
form given in (1). 

Thus the possibility of correcting all errors in an outstar depends on two 
facts: (I) invariance of the set qf all initial data under inputs: no matter what 
inputs occur in a finite time interval, just so long as they are nonnegative the 
functions of the outstar will remain positive; and (2) the limit of ratios of 
sohtions is independent of the initial data: Theorem 5(f) is true no matter 
what the initial data is, just so long as it is positive. 

This discussion completes our formal translation table of the heuristic 
properties (l)-(5) of Section 1 in the case of an outstar. We remark in passing 
that properties (i)-(5) do not hold for systems characterized by arbitrary 
semistochastic matrices P. The way in which a system learns to predict 
depends in an essential way on the matrix P that characterizes it; i.e., on its 
“geometry.” ‘IZ’e will provide another example of this fact in the next paper 
in this series. 

6. IMPROVING THE ACCURACY OF PREDICTIONS 

In Section 5 of Part I, we showed how modifying the outputs of an outstar 
by using the notion of entropy removes background noise from these outputs. 
This modification of the output can now be interpreted prediction theoreti- 
cally. We list the five properties of Section 8 in prediction theoretic termi- 
nology for the convenience of the reader. 

(1) If no event B, C,... is a preferred prediction, given the event A, then 
no prediction is made. 
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(2) A prediction B given A is made only when the machine prefers the 
transition A -+ B on the basis of past experience. 

(3) The strength of the prediction B given A increases as the machine’s 
preference for the transition A -+ B increases with more practice of the list 
AB. 

(4) If an event C has never occurred in the machine’s past, it does not 
influence the prediction of B given A. 

(5) As the list ,4B is practiced indefinitely often, even events C which 
have occurred in the machine’s remote past gradually lose their influence on 
the prediction of B given A. 

7. INFORMATION vs. LEARNING 

In Proposition 3 we showed that the interaction entropy Him’(t) decreases 
monotonically from maximal to minimal entropy as t -+ 0~) in any G@‘) with 
an initially uniform border. From an information theoretic viewpoint, this 
fact means that the “uncertainty” or “lack of information” in the scheme of 
events described by the probabilities (y,‘“‘(t),..., y::‘(t)) decreases as t--t co. 
A parallel interpretation along prediction theoretic lines is also available; 
namely, Gcco) “learns” that ~1~ follows vr with ever increasing accuracy as 
t --f cc. At t = 0, G(m) is in a state of minimal “learning” since all 
y::‘(O) = l/(n - 1) and no transition or + zlj is preferred over any other. 
Also, the “lack of information” HA”)(O) is maximal. As t -+ co, y:;‘(t) -+ 1 
and the learning of the transition zlr -+ va approaches perfection. At the same 
time, the “lack of information” Him’(t) approaches a minimum. 

In the previous section, we showed how the mathematical concept of 
“information” can be used to improve the accuracy of “learned” predictions. 
A forthcoming paper will show how to modify the very laws (2)-(4) to provide 
a comparable improvement in accuracy without directly invoking the entropy 
function. This modification will illustrate a considerably closer tie between 
the mathematical concept of “information” and the idea of “learning” 
herein described. 

8. STATISTICAL vs. DETERMINISTIC PREDICTION 

Our system of equations can be interpreted as a prediction theory in two 
different ways. Firstly it is a deterministic prediction theory in which a 
machine is perturbed by individual inputs and produces individual outputs 
at specified times. Secondly it is a statistical prediction theory which describes 
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how the probability of given predictions evolves through time. This double 
interpretation is particularly evident when, for example, y&(t) ---f 1 as t + co 
in a G@) outstar with Bj = Sj, . Then we can say both that the prediction B 
given A occurs with probability 1 or that it always occurs upon demand 
as t -+ co. The former interpretation describes no particular event in time, 
whereas the latter does. This is the main advantage of a deterministic theory. 

Because of this double interpretation, our theory has a clear limitation, 
which can be described using the outstar of Fig. 12, in which the list AB 

l vp=s 

V, = A 

< l v,=c 

FIG. 12 

occurs 4 of the time, the list AC occurs 4 of the time, and the two lists are 
intermixed evenly in time; i.e., ABACABACABAC *a* occurs. It is then 
highly plausible that the averages (1 /t) si y&w) dv and (1 /t) si yac(w) dw come 
close to 4 as t becomes large (i.e., “statistical” prediction). In particular, it is 
impossible to predict either B or C with perfect accuracy knowing ACA or 
ABA has occurred (i.e., “deterministically”). Because of this, the present 
theory can hope to predict deterministically only lists ABC --- XYZ in 
which no symbol occurs in more than one transition. Otherwise, only 
statistical prediction is possible. 

The modified laws (2)-(4) discussed in the preceding section can be inter- 
preted as a closely related prediction theory which can with some success 
predict alternating patterns deterministically as well as fulfill the general 
goal of predicting individual events, in a fixed order, and at prescribed times. 
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