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Abstract

Suppose that an automorphism group G acts flag-transitively on a finite generalized hexagon or oc-
tagon S , and suppose that the action on both the point and line set is primitive. We show that G is an almost
simple group of Lie type, that is, the socle of G is a simple Chevalley group.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The classification of all finite flag-transitive generalized polygons is a long-standing important
open problem in finite geometry. Generalized polygons, introduced by Tits in [18], are among
the most notable and prominent examples of discrete geometries, they have a lot of applications
and are the building bricks of the Tits buildings. The determination of all finite flag-transitive
examples would have a great impact on many problems, not in the least because of a significant
weakening of the hypotheses of many results. It is generally considered as an “NC-hard” prob-
lem, where NC stands for “No Classification (of finite simple groups allowed).” By a result of Feit

E-mail addresses: csaba.schneider@sztaki.hu (C. Schneider), hvm@cage.ugent.be (H. Van Maldeghem).
URLs: http://www.sztaki.hu/~schneider (C. Schneider), http://cage.ugent.be/~hvm (H. Van Maldeghem).

1 Current address: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal.
0097-3165/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2008.02.004

https://core.ac.uk/display/82048041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


C. Schneider, H. Van Maldeghem / Journal of Combinatorial Theory, Series A 115 (2008) 1436–1455 1437
and Higman [5], we must only consider generalized triangles (which are the projective planes),
generalized quadrangles, generalized hexagons and generalized octagons. In each case there are
nontrivial examples of finite flag transitive geometries, and it is believed that we know all of
them. The most far reaching results are known for the class of projective planes, where the only
counterexamples would have a sharply transitive group on the flags, and the number of points
must be a prime number, see [9]. For generalized quadrangles, besides the well-known classical
(and dual classical, in the terminology of [14]) cases there are exactly two other examples, both
arising from transitive hyperovals in Desarguesian projective planes, namely of respective order 4
and 16 (and the hyperovals are the regular one and the Lunelli–Sce hyperoval, respectively). Both
quadrangles have an affine representation, that is, their point set can be identified with the point
set of a 3-dimensional affine space, and the line set is the union of some parallel classes of lines of
that space (more precisely, those parallel classes of lines that define the corresponding hyperoval
in the plane at infinity). For generalized hexagons and octagons, only the classical (Moufang)
examples are known to exist, and the conjecture is that they are the only flag-transitive ones (and
some even conjecture that they are the only finite ones!). An affine construction similar to the
one above for quadrangles can never lead to a generalized hexagon or octagon, and this observa-
tion easily leads to the nonexistence of generalized hexagons and octagons admitting a primitive
point-transitive group and whose O’Nan–Scott type is HA (see below for precise definitions).

This observation is the starting point of the present paper. Since the classification of finite
flag-transitive generalized polygons is NC-hard, we have to break the problem down to a point
where we must start a case-by-case study involving the different classes of finite simple groups.
One celebrated method is the use of the famous O’Nan–Scott Theorem. This theorem distin-
guishes several classes of primitive permutation groups, one being the class HA above. Another
class is the class AS, the Almost Simple case, and this class contains all known examples of
finite flag-transitive generalized hexagons and octagons. Ideally, one would like to get rid of all
O’Nan–Scott classes except for the class AS. The rest of the proof would then consist of going
through the list of finite simple groups and try to prove that the existing examples are the only
possibilities. In the present paper, we achieve this goal. We even do a little better and prove that
we can restrict to Chevalley groups, that is, we rule out the almost simple groups with alternating
socle, the sporadic groups being eliminated already in [2]. The treatment of the different classes
of Chevalley groups is a nontrivial but—so it appears—a feasible job, and shall be pursued else-
where. Note that the classical hexagons and octagons have a flag-transitive automorphism group
of almost simple type with socle the simple Chevalley groups of type G2, 3D4 and 2F4. Their
construction is with the natural BN-pair. The automorphism group of these polygons is primitive
on both the point-set and the line-set, and it is also flag-transitive.

We note, that our assumptions include primitive actions on both the point and the line set of
the generalized hexagon or octagon. In some case, this can be weakened, and we have stated our
intermediate and partial results each time under the weakest hypotheses. This could be important
for future use when trying to reduce the general case to the primitive one handled in large in this
paper.

A similar treatment for the finite generalized quadrangles seem out of reach for the moment.
Therefore, we restrict ourselves to the cases of hexagons and octagons for the rest of the paper.

2. Setting

Let S = (P , L,I) be a finite point-line geometry, where P is a point set, L is a line set, and I
is a binary symmetric incidence relation. The incidence graph of S is the graph with vertex set
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P ∪ L, where the adjacency relation is given by the incidence relation I. The diameter of S is by
definition the diameter of the incidence graph of S , and the gonality of S is by definition half of
the girth of the incidence graph of S (which is a bipartite graph and therefore has even girth). For
n � 2, the geometry S is a weak generalized n-gon, if both the diameter and the gonality of S are
equal to n. If every point is incident with at least three lines, and every line carries at least three
points, then we say that S is thick, and we call it a generalized n-gon, or generalized polygon. In
this case, there are positive integers s, t � 2 such that every line is incident with s + 1 points, and
every point is incident with t + 1 lines. We call (s, t) the order of S . If n = 2, then S is a trivial
geometry where every point is incident with every line. If n = 3, then S is a projective plane.

A generalized 6-gon (or hexagon) S with order (s, t) has (1 + s)(1 + st + s2t2) points and
(1 + t)(1 + st + s2t2) lines. The number of flags, that is the number of incident point-line pairs,
of S is equal to (1 + s)(1 + t)(1 + st + s2t2). Also, it is well known that st is a perfect square
(see [5,19]). A generalized 8-gon (or octagon) S with order (s, t) has (1 + s)(1 + st)(1 + s2t2)

points and (1+ t)(1+ st)(1+ s2t2) lines. The number of flags of S is equal to (1+ s)(1+ t)(1+
st)(1 + s2t2). Also, it is well known that 2st is a perfect square (see [5,19]). Hence one of s, t is
even and consequently, either the number of points or the number of lines of S is odd.

Let S = (P , L,I) be a generalized hexagon or octagon. A collineation or automorphism of G

is a permutation of the point set P , together with a permutation of the line set L, preserving inci-
dence. The group of automorphisms is denoted by Aut S and is referred to as the automorphism
group of S . If G is a group of automorphisms of S , then G can be viewed as a permutation group
on P and also as a permutation group on L. The main theorem of this paper is the following.

Theorem 2.1. Suppose that G is a group of automorphisms of a generalized hexagon or octagon
S = (P , L,I). If G is primitive on both P and L and G is flag-transitive then G must be an
almost simple group of Lie type.

3. Some preliminary results

The next result will be useful to rule out the existence of generalized polygons with a certain
number of points. Suppose that n is a natural number and suppose that n = 3αp

α1
1 · · ·pαk

k where
the pi are pairwise distinct primes all different from 3, α � 0 and αi � 1 for all i. Then we define
the following quantities:

a(n) = 3max{0,α−1} ∏
pi �≡1 mod 3

p
αi

i ;

b(n) =
∏

pi �≡1 mod 4

p
αi

i .

We obtain the following result about the number of points of a generalized hexagon or octagon.

Lemma 3.1. Suppose that S = (P , L,I) is a generalized hexagon or octagon.

(i) If S is a generalized hexagon, then a(|P |)3 � |P |.
(ii) If S is a generalized octagon, then b(|P |)2 � |P |.

Proof. (i) Suppose that S is a generalized hexagon with order (s, t). Then |P | = (1 + s)(1 +
st + s2t2). As mentioned in the previous section, st is a square, and it was proved in the last
paragraph of [2, p. 90] that if p is a prime such that p|1 + st + s2t2, then p ≡ 1 (mod 3); in
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addition, 1+st +s2t2 is not divisible by 9. Thus a(|P |) must divide 1+s and |P |/a(|P |) must be
divisible by 1+st +s2t2. On the other hand, since t � 2, we obtain that (1+s)2 � (1+st +s2t2),
which implies that a(|P |)2 � |P |/a(|P |), and so part (i) is valid.

(ii) Suppose that S is a generalized octagon with order (s, t). Then |P | = (1 + s)(1 + st)(1 +
s2t2). As mentioned above, 2st is a square, and it was proved in [2, p. 99] that, if p is a prime
such that p|1+s2t2, then p ≡ 1 (mod 4). Thus b(|P |) must divide (1+s)(1+st) and |P |/b(|P |)
must be divisible by (1+ s2t2). On the other hand, since s, t � 2, it follows that (1+ s)(1+ st) �
(1 + s2t2), and so b(|P |) � |P |/b(|P |), and statement (ii) holds. �

We will use the following notation: if x is a point collinear with the point y, that is, x and
y are incident with a common line, then we write x ∼ y. Dually, the notation L ∼ M for lines
L, M means that L and M are concurrent; that is, they share a common point. If x and z are
non-collinear points collinear to a common point y, then, assuming that the gonality is at least 5,
the point y is unique with this property and we write y = x � z.

If G is a permutation group acting on a set Ω then the image of ω ∈ Ω under g ∈ G is denoted
by ωg, while the stabilizer in G of ω is denoted by Gω. The group G is said to be semiregular if
Gω = 1 for all ω ∈ Ω , and it is said to be regular if it is transitive and semiregular.

Lemma 3.2. If S = (P , L,I) is a generalized hexagon or octagon with order (s, t), then the
following is true.

(i) If gcd(s, t) �= 1 and g is an automorphism of S , then either g has a fixed point or there is a
point x ∈ P such that x ∼ xg.

(ii) If gcd(s, t) �= 1 and g is an automorphism of S with order 2, then g has either a fixed point
or a fixed line. In particular, if G is an automorphism group of S with even order, then G

cannot be semiregular on both P and L.
(iii) Let x be a point and let y1 and y2 be two points collinear with x such that y1 is not collinear

with y2. Suppose there are automorphisms g1, g2 mapping x to y1, y2, respectively. If g1
and g2 commute, then y1g2 = y2g1 = x.

(iv) If G is an automorphism group of S which is transitive on P , then CAut S (G) is intransitive
on P .

(v) If G is an automorphism group of S acting faithfully and flag transitively, then |G| � |Gx |12

for all x ∈ P .

Proof. Claim (i) is shown in [16]. To show (ii), let g be an automorphism with order 2 and
assume that g has no fixed point. Then, by (i), there is a point x ∈ P , such that x ∼ xg. Suppose
that L is the line that is incident with x and xg. Then the image Lg of L is incident with xg

and xg2 = x, and so Lg = L. Thus L must be a fixed line of g. If G is an automorphism group
with even order then G contains an automorphism with order 2. If G is semiregular on P then
g has no fixed point in P . Thus, by the argument above, g must have a fixed line, and so G

cannot be semiregular on L. Thus (ii) is proved. In claim (iii), as x ∼ y1, the point y2 = xg2
is collinear with y1g2 = xg1g2. Similarly, y1 = xg1 is collinear with y2g1 = xg2g1 = xg1g2.
Hence if x �= xg1g2, then the gonality of S would be at most 4, which is a contradiction. Let us
now show (iv). Set C = CAut S (G) and assume that C is transitive on P . Let x and y be vertices
of S such that x ∼ y. Then there is some g ∈ G such that xg = y. On the other hand, as S is
thick and its gonality is at least 6, we can choose distinct vertices y1 and y2 such that x ∼ y1,
x ∼ y2, y � y1, and y � y2. By assumption, C is transitive, and so there are c1, c2 ∈ C such that



1440 C. Schneider, H. Van Maldeghem / Journal of Combinatorial Theory, Series A 115 (2008) 1436–1455
xc1 = y1 and xc2 = y2. Then we obtain that y1g = y2g = x, which is a contradiction, and so (iv)
is valid.

Finally, we verify (v). Suppose first that S is a generalized hexagon with order (s, t), let x ∈ P
and let Gx denote the stabilizer in G of x. Since G is flag-transitive, Gx must be transitive on
the t + 1 lines that are incident with x and, in particular, |Gx | � t + 1. Therefore, using the
Orbit–Stabilizer Theorem and the inequality s � t3 (see [7] and [19, Theorem 1.7.2(ii)]),

|G|
|Gx | = |P | = (1 + s)

(
1 + st + s2t2) �

(
1 + t3)(1 + t4 + t8) � (1 + t)11 � |Gx |11,

and the statement for hexagons follows. If S is a generalized octagon with order (s, t), then,
using the inequality s � t2 (see [8] and [19, 1.7.2(iii)]), we obtain similarly that

|G|
|Gx | = |P | = (1 + s)(1 + st)

(
1 + s2t2) �

(
1 + t2)(1 + t3)(1 + t6) � (1 + t)11 � |Gx |11,

and the statement for octagons also follows. �
We note that a generalized hexagon or octagon is a self-dual concept, and so the dual of a true

statement is also true. For instance, taking the dual of statement (iv), we obtain the following fact:
if G is a line-transitive automorphism group of S , then CAutS(G) is intransitive on the lines. In
this paper we do not state the dual of each of the results, but we often use the dual statements in
our arguments.

We will also need the following group theoretic lemma. Recall that a group G is said to be
almost simple if it has a unique minimal normal subgroup T which is non-abelian and simple. In
this case, T is the socle of G and the group G can be considered as a subgroup of the automor-
phism group of T containing all inner automorphisms.

Lemma 3.3.

(a) Let S be an almost simple group with socle T and let H be a maximal subgroup of S such
that T � H . Then NT (H ∩ T ) = H ∩ T .

(b) Suppose that T1, . . . , Tk are pairwise isomorphic finite simple groups and, for i = 2, . . . , k,
the map αi : T1 → Ti is an isomorphism. Then the subgroup

D = {(
t, α2(t), . . . , αk(t)

) ∣∣ t ∈ T1
}

is self-normalizing in T1 × · · · × Tk .

Proof. (a) If S and T are as in the lemma, then H ∩ T � H . Hence H � NS(H ∩ T ). Note
that S can be considered as a primitive group acting on the right coset space [S : H ] with point-
stabilizer H . Since the socle of such a primitive group is non-regular, we obtain that H ∩ T �= 1.
Hence H ∩ T is a proper, nontrivial subgroup of T , which cannot be normal in S. Thus, since H

is a maximal subgroup of S, we obtain that NS(H ∩T ) = H . Hence NT (H ∩T ) = NS(H ∩T )∩
T = H ∩ T .

(b) Let G = T1 × · · · × Tk and let (t1, . . . , tk) ∈ NG(D). Then, for all t ∈ T1,(
t, α2(t), . . . , αk(t)

)(t1,...,tk) = (
t t1, α2(t)

t2 , . . . , αk(t)
tk
) ∈ D.

Thus, for all i ∈ {2, . . . , k}, we obtain that αi(t
t1) = αi(t)

ti . Therefore t1α
−1
i (ti )

−1 ∈ CTi
(t). As

this is true for all t ∈ T1, we obtain that t1α
−1
i (ti)

−1 ∈ Z(T1). As T1 is a non-abelian, finite,
simple group, this yields that αi(t1) = ti . Hence (t1, . . . , tk) ∈ D, and so NG(D) = D. �
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4. Hexagons and octagons with primitive automorphism group

The structure of a finite primitive permutation group is described by the O’Nan–Scott The-
orem (see [3, Sections 4.4–4.5] or [4, Section 4.8]). In the mathematics literature, one can find
several versions of this theorem, and in this paper we use the version that can, for instance, be
found in [1, Section 3]. Thus we distinguish between 8 classes of finite primitive groups, namely
HA, HS, HC, SD, CD, PA, AS, TW. A description of these classes can be found below.

Recall that in a finite group G, the socle of G is the product of the minimal normal subgroups
in G and it is denoted by SocG. In fact, SocG is the direct product of the minimal normal
subgroups of G. As a minimal normal subgroup of G is a direct product of pairwise isomorphic
finite simple groups, the socle of G is also the direct product of finite simple groups.

Suppose that G1, . . . ,Gk are groups, set G = G1 × · · · × Gk , and, for i ∈ {1, . . . , k}, let ϕi

denote the natural projection map ϕi : G → Gi . A subgroup H of G is said to be subdirect with
respect to the given direct decomposition of G if ϕi(H) = Gi for i = 1, . . . , k. If the Gi are non-
abelian finite simple groups then the Gi are precisely the minimal normal subgroups of G. In
this case, a subgroup H is said to be subdirect if it is subdirect with respect to the decomposition
of G into the direct product of its minimal normal subgroups. If G is a finite group then the
holomorph HolG is defined as the semidirect product G � AutG.

The O’Nan–Scott type of a finite primitive permutation group G can be recognized from the
structure and the permutation action of SocG. Let G � SymΩ be a finite primitive permutation
group, let M be a minimal normal subgroup of G, and let ω ∈ Ω . Note that M must be transitive
on Ω . Further, M is a characteristically simple group, and so it is isomorphic to the direct prod-
uct of pairwise isomorphic finite simple groups. The main characteristics of G and M in each
primitive type are as follows.

HA M is abelian and regular, CG(M) = M and G � HolM .
HS M is non-abelian, simple, and regular; SocG = M × CG(M) ∼= M × M and G � HolM .
HC M is non-abelian, non-simple, and regular; SocG = M ×CG(M) ∼= M ×M and G � HolM .
SD M is non-abelian and non-simple; Mω is a simple subdirect subgroup of M and CG(M) = 1.
CD M is non-abelian and non-simple; Mω is a non-simple subdirect subgroup of M and

CG(M) = 1.
PA M is non-abelian and non-simple; Mω is a not a subdirect subgroup of M and Mω �= 1;

CG(M) = 1.
AS M is non-abelian and simple; CG(M) = 1, and so G is an almost simple group.
TW M is non-abelian and non-simple; Mω = 1; CG(M) = 1.

We pay special attention to the groups of type AS. In this class, the group G has a unique
minimal normal subgroup which is non-abelian and simple. Therefore G is isomorphic to a
subgroup of AutT which contains all inner automorphisms. Such an abstract group is referred to
as almost simple. The next result shows that under certain conditions a primitive automorphism
group of a generalized hexagon or octagon must be an almost simple group.

Theorem 4.1. If G is a point-primitive, line-primitive and flag-transitive group of automorphisms
of a generalized hexagon or octagon, then the type of G must be AS on both the points and the
lines. In particular, G, as an abstract group, must be almost simple.

Theorem 4.1 is a consequence of the following lemma.
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Lemma 4.2. If G is a group of automorphisms of a generalized hexagon or octagon S =
(P , L,I) then the following holds.

(i) If G is primitive on P then the type of G on P is not HA, HS, HC. Dually, if G is primitive
on L then the type of G on L is not HA, HS, or HC.

(ii) If G is flag-transitive and it is primitive on P then the type of G on P is not PA or SD.
Dually, if G is flag-transitive and it is primitive on L then the type of G on L is not PA
or SD.

(iii) If G is flag-transitive and it is primitive on both P and L, then the O’Nan–Scott type of G

on P and on L is not SD or TW.

Proof. Let S and G be as assumed in the theorem. Suppose further that G is primitive on P and
let M be a fixed minimal normal subgroup of G. In this case, M = T1 × · · · × Tk where the Ti

are finite simple groups; let T denote the common isomorphism type of the Ti .
(i) As M is transitive on P , Lemma 3.2(iv) implies that CG(M) must be intransitive. Since

CG(M) is a normal subgroup of G, we obtain that CG(M) = 1. Hence the O’Nan–Scott type of
G on P is not HA, HS, HC. The dual argument proves the dual statement.

(ii) Assume now that G is flag-transitive and it is primitive on P . We claim that the O’Nan–
Scott type of G on P is not PA or CD. Assume by contradiction that this O’Nan–Scott type is
PA or CD. In this case P can be identified with the Cartesian product Γ � in such a way that G

can be viewed as a subgroup of the wreath product H wr S� where H is a primitive subgroup of
SymΓ and the projection of G into S� is transitive. Set N = SocH and let γ ∈ Γ . We must have
that N�, considered as a subgroup of H wr S�, is a subgroup of G, and, in fact, N� = SocG = M .
Further, we have the following two possibilities:

PA If the type of G is PA then the type of H is AS and we have that N ∼= T , � = k and Nγ is a
proper subgroup of N .

CD If the type of G is CD, then the type of H is SD, N ∼= T s where s � 2 and s = k/�. In this
case, Nγ is a diagonal subgroup in N which is isomorphic to T .

Since H is primitive on Γ , the normal subgroup N must be transitive on Γ . If γ ∈ Γ , then
Hγ is a maximal subgroup of H . Thus Lemma 3.3 implies that NN(Nγ ) = Nγ (part (a) of the
lemma applies in the PA case, and part (b) applies in the CD case). Suppose that γ , δ ∈ Γ such
that Nγ = Nδ . Then there is n ∈ N such that γ n = δ, and (Nγ )n = Nδ = Nγ . Hence n normalizes
Nγ , and so n ∈ Nγ , and we obtain that γ = δ. Therefore different points of Γ must have different
stabilizers in N .

Let α be an arbitrary element of Γ and consider the point x ∈ P represented by the �-tuple
(α,α, . . . , α). We claim first that there exists a point y ∼ x such that every entry of the �-tuple
representing y is equal to α, except for one entry. Indeed, let y be any point collinear with x.
Then, if the claim were not true, we may assume without loss of generality that y is represented
by (β1, β2, . . .), where β1 �= α �= β2. By the argument in the previous paragraph, the stabilizers
in N of α and β1 are distinct, and so there exists g ∈ Nα such that β ′

1 := β1g �= β1. Put g =
(g,1N,1N, . . . ,1N) (� factors) and y′ = yg. Let h ∈ Nβ2 be such that α′ := αh �= α (such an h

exists by the argument in the previous paragraph). Put h = (1N,h,1N,1N, . . . ,1N) (� factors),
and put x′ = xh. Then x′ �= x, and both y and y′ are fixed under h. Since y ∼ x ∼ y′, we deduce
y ∼ x′ ∼ y′. This implies (because the gonality of S is at least 5) that x, x′, y, y′ are incident
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with a common line. But all entries, except the second, of x′ are equal to α. Thus our claim is
proved.

So we may pick y ∼ x with y = (β,α,α, . . . , α) (� entries) and β �= α. By the flag-transitivity,
there exists g ∈ Gx mapping y to a point not collinear with y. There are two possibilities:

(a) We can choose g such that the first entry of yg is equal to α.
(b) For every such g, the first entry of yg differs from α.

In case (a), as x = (α, . . . , α) and g ∈ Gx , we may suppose without loss of generality
that y′ := yg = (α,β ′, α, . . . , α). Choose h,h′ ∈ N such that αh = β , and αh′ = β ′. Put
h = (h,1N, . . . ,1N) and h′ = (1N,h′,1N, . . . ,1N). Then h and h′ commute and Lemma 3.2(iii)
implies that x = xhh′. Hence α = β = β ′, a contradiction.

In case (b), we consider an arbitrary such g and put z = yg. Also, consider an arbitrary g′ ∈ Gx

not preserving the first component of Γ × Γ × · · · × Γ . By assumption, yg′ is incident with the
line through x and y, and we put z′ = yg′. If we now let y and y′ in the previous paragraph play
the role of z and z′, respectively, of the present paragraph, then we obtain a contradiction again.

Thus we conclude that the type of G on P is not PA or CD and the dual statement can be
verified using the dual argument.

(iii) Suppose that S is a generalized hexagon or octagon and G is a group of automorphisms
such that G is flag-transitive and G is primitive on P and L of type either SD or TW. First we
claim that S must be a generalized hexagon and gcd(s, t) = 1. If S is a generalized octagon with
order (s, t), then either |P | or |L| must be odd. However, the degree of a primitive group with
type SD or TW is a power of the size of a non-abelian finite simple group. Therefore S must be a
hexagon as claimed. Assume now by contradiction that gcd(s, t) �= 1 and consider the subgroup
T1 of the socle M . Since G is either SD or TW on P and also on L we have that T1 is semiregular
on both P and on L. However, as T1 is a non-abelian finite simple group, T1 has even order, and
this is a contradiction, by Lemma 3.2(ii).

So we may suppose for the remainder of this proof that S is a generalized hexagon with
parameters (s, t) such that gcd(s, t) = 1. Note that the number of lines is (t + 1)(1 + st + s2t2),
and the number of points is (s + 1)(1 + st + s2t2). If G has the same O’Nan–Scott type on the
set of points and the set of lines, then |P | = |L|, which implies s = t . Since gcd(s, t) = 1, this is
impossible, and we may assume without loss of generality that the type of G is SD on P and it is
TW on L. Hence |P | = (s + 1)(1 + st + s2t2) = |T |k−1 and |L| = (t + 1)(1 + st + s2t2) = |T |k .
Thus |T | = (t + 1)/(s + 1) and so t = s|T | + |T | − 1.

We digress in this paragraph to show that the order of the non-abelian finite simple group T is
divisible by 4. It seems to be well known that this assertion follows immediately from the Feit–
Thompson Theorem which states that |T | is even. The following simple argument was showed
to us by Michael Giudici in private communication. Recall that the right-regular representation
� of T is a homomorphism from T to SymT that maps t ∈ T to the permutation �(t) ∈ SymT

where �(t) is defined by the equation x�(t) = xt for all x ∈ T . It is easy to see that �(T ) is a
regular subgroup of SymT ; that is �(T ) is transitive, and, for all t ∈ T \ {1}, �(t) has no fixed-
points. Now �(T ) ∼= T and �(T ) ∩ AltT is a normal subgroup of �(T ) with index at most 2.
Thus �(T ) � AltT , and so every element of �(T ) is an even permutation on T . By the Feit–
Thompson Theorem referred to above, we have that T contains an involution g. Since �(g) is also
an involution, it must be the product of disjoint transpositions. As �(g) is an even permutation,
the number of transpositions in �(g) must be even. Further, as �(g) has no fixed-points, every
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element of T must be involved in precisely one of these transpositions. This implies that 4 | |T |,
as claimed.

We now continue with the main thrust of the proof. In order to derive a contradiction, we show
that the equations for s, t and |T | above imply that 4 � |T |. Indeed, note that st is a square, and
so, as gcd(s, t) = 1, we have that t must be a square. If 4 divides |T | then t = s|T | + |T | − 1 ≡
3 (mod 4). However, 3 is not a square modulo 4, which gives the desired contradiction. Hence,
in this case, G cannot be primitive with type SD or TW. �

The reader may wonder whether it is possible for an abstract group G to have two faithful
primitive permutation actions, one with type TW and one with type SD. Gross and Kovács in [6]
show that if G is a twisted wreath product of A5 and A6 where the twisting subgroup in A6 is
isomorphic to A5, then G is isomorphic to the straight wreath product A5 wr A6. Hence in this
case G can be a primitive permutation group of type TW and also of type SD.

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. Suppose that G is a point-primitive, line-primitive and flag-transitive
group of automorphisms of a generalized hexagon or octagon. Using parts (i)–(iii) of Lemma 4.2,
we obtain that the type of G on both the points and lines must be AS. In particular G, as an
abstract group, must be almost simple. �
5. Hexagons and octagons with an almost simple automorphism group

In this section we prove the following theorem.

Theorem 5.1. If S is a generalized hexagon or octagon and G is a flag-transitive and point-
primitive automorphism group of S , then G is not isomorphic to an alternating or symmetric
group with degree at least 5.

Our strategy to prove Theorem 5.1 is to show that a maximal subgroup of an alternating or
symmetric group cannot be a point-stabilizer. To carry out this strategy, we need some arithmetic
results about the maximal subgroups of An and Sn.

Lemma 5.2. If n ∈ N and n � 107 then

n12+12
log2 n� � n!/2. (1)

Proof. Checking the numbers between 107 and 208, we can see that (1) holds for all n ∈
{107, . . . ,208}. So suppose without loss of generality in the remaining of this proof that n

is at least 209. The Stirling Formula gives, for each n � 1, that there is ϑn ∈ [0,1] such that
n! = (n/e)n

√
2πneϑn/(12n) (see [10, Theorem 2, Chapter XII]), which gives that (n/e)n � n!/2.

We claim that nn/2 � (n/e)n for n � 8. Easy calculation shows that the inequality holds for
n = 8. We assume that it holds for some n and prove by induction that it holds for n + 1. Let us
compute that

(
(n + 1)(n+1)/2

n/2

)2

= (n + 1)n+1

n
= (n + 1)

(
n + 1

)n
n n n
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and (
((n + 1)/e)n+1

(n/e)n

)2

= e−2
(

(n + 1)n+1

nn

)2

= e−2(n + 1)2
(

n + 1

n

)2n

.

This shows that

(n + 1)(n+1)/2

nn/2
� ((n + 1)/e)n+1

(n/e)n
,

and the assumption that nn/2 � (n/e)n gives the claimed inequality for n+1. Therefore it suffices
to show that n12+12
log2 n� � nn/2, and, in turn, we only have to show that 12 + 12 log2 n � n/2
for n � 209. Again, easy computation shows that the inequality holds for n = 209. Since x 
→
12 + 12 log2 x is a concave function and x 
→ x/2 is a linear function, the inequality must hold
for all n � 209. �
Lemma 5.3. Suppose that G is an alternating or symmetric group with degree n (n � 5) and H

is a primitive and maximal subgroup of G such that |H |12 � |G|. Then G and H must be as one
of the groups in Table 1 of Appendix A.

Proof. Suppose that H is a primitive and maximal subgroup of G. Using the classification of
maximal subgroups of the alternating and symmetric groups [11] and Maróti’s theorem [13,
Theorem 1.1], we have that one of the following must hold:

(1) n = k� for some k � 5 and � � 2 and H is permutationally isomorphic to (Sk wr S�) ∩ G in
product action;

(2) G is isomorphic to Mn for n ∈ {11,12,23,24} in its 4-transitive action;
(3) |G| < n1+
log2 n�.

Suppose that case (1) is valid and let H be permutationally isomorphic to the group
(Sk wr S�) ∩ G in product action for some k � 5 and � � 2. Then we obtain that

|H |12 � (k!)12� · (�!)12.

We claim that (k!)12� · (�!)12 < (k�)!/2 except for finitely many pairs (k, �). First note that all
primes p dividing (k!)12� · (�!)12 will also divide (k�)!/2. For an integer x, let |x|p denote the
largest non-negative integer α such that pα|x. It suffices to show that there are only finitely many
pairs (k, �) such that |(k!)12� · (�!)12|p � |(k�)!/2|p , where p is an arbitrary prime which is not
greater than max{k, �}. It is routine to check that if x is an integer then

|x!|p =
∞∑

u=1

⌊
x

pu

⌋
�

∞∑
u=1

x

pu
= x

p

∞∑
u=0

1

pu
= x

p
· p

p − 1
= x

p − 1
. (2)

Thus ∣∣(k!)12� · (�!)12
∣∣
p

� 12�
k

p − 1
+ 12

�

p − 1
= 12�k + 12�

p − 1
� 24�k + 24�

p
.

Clearly, k� � 8. Further, as k � 5, � � 2, and p � max{k, �}, we obtain that p2 � k�. Hence we
obtain from the first equality in (2) that

∣∣(k�
)!/2

∣∣
p

� k�

.

p
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Routine computation shows that the set of pairs (k, �) for which k � 5 and � � 2 and 24�k +
24� � k� is {5, . . . ,48} × {2} ∪ {5, . . . ,8} × {3}. Then checking finitely many possibilities it
is easy to compute that (k!)12� · (�!)12 � (k�)!/2 if and only if (k, l) ∈ {5, . . . ,10} × {2}. In
particular, the degree of H is at most 100.

(2) Easy computation shows that |Mn|12 � n!/2 for n ∈ {11,12,23,24}.
(3) Lemma 5.2 shows that if n � 107 then n12+12
log2 n� � n!/2. Hence if n � 107 and H is a

maximal subgroup of An or Sn which is as in part (3) of the theorem, then |H |12 < n!/2. Thus,
in this case, the degree of H must be at most 106.

Summarizing the argument above: if H is a primitive maximal subgroup of G such that
|H |12 � |G| then the degree of H is at most 106. It remains to prove that H must be one of
the groups in Table 1 in Appendix A. Various classifications of primitive groups of small degree
can be found in the literature; for convenience we use the classification by Roney-Dougal [15],
as it can be accessed through the computational algebra system GAP [17]. In what follows
we explain how we obtained Table 1 in Appendix A using the GAP system. First, for a fixed
n ∈ {5, . . . ,106}, let Pn denote the list of primitive groups with degree n. For H ∈ Pn we check
whether or not H � An. Then we check whether |H |12 � |G| where G is either An (if H � An)
or Sn (otherwise). If H satisfies this condition then we keep it in Pn, otherwise we erase it
from Pn. The next step is to eliminate those groups which are clearly not maximal subgroups
in An or Sn. If H1,H2 ∈ Pn such that H1,H2 � An and H1 < H2 then H1 is erased from Pn.
Similarly, if H1,H2 � An such that H1 < H2, then H1 is thrown away. We do this calculation for
all n ∈ {5, . . . ,106} and the subgroups H that we obtain are in Appendix A. �

Let us note that Lemma 5.3 is not an “if and only if” statement. Indeed, Table 1 in Appendix A
may be redundant in the sense, that a subgroup in Table 1 may not be maximal in An or Sn.

Let us now prove Theorem 5.1.

Proof of Theorem 5.1. Suppose that S = (P , L,I) is a generalized hexagon or octagon and G

is a point-primitive, flag-transitive automorphism group of S such that G is isomorphic to An or
Sn with some n � 5. By Buekenhout and Van Maldeghem [2], we may assume that n � 14. Let
x ∈ P . Then Gx , as a subgroup of Sn, is either intransitive, or it is transitive and imprimitive, or
it is primitive. We consider these three cases below.

Gx is intransitive. Here, Gx is the stabilizer in G of a partition of the underlying set into
two blocks, one with size k and one with size �, where k + � = n, k �= �. Let us also allow
here the case when k = �, though in this case Gx may not be intransitive. Assume without loss
of generality that k � �. Then Gx contains a subgroup isomorphic to (Ak × A�) � C2. Hence
the points of S can be labelled with the subsets of {1,2, . . . , n} of size k. We may label x as
{1,2, . . . , k}. Let k1 < k be maximal with the property that there is a point y of S collinear with
x and the label of y intersects {1,2, . . . , k} in k1 elements. Without loss of generality, we may
assume that y ∼ x has label {1,2, . . . , k1, k +1, . . . ,2k − k1}. First suppose that k1 = k −1. Note
that, since the permutation rank of G is at least 4, we may assume k � 3. By transitivity of Gx

on {1,2, . . . , k}, and by transitivity of the pointwise stabilizer of {1,2, . . . , k} on the complement
{k + 1, k + 2, . . . , n}, every point with a label sharing exactly k − 1 elements with {1,2, . . . , k}
is adjacent with x. An arbitrary element g of Gx now maps y onto a point y′ with label, without
loss of generality, either {1,2, . . . , k − 1, k + 2} or {2,3, . . . , k, k + 1} or {2,3, . . . , k, k + 2}. In
the first two cases y′ is collinear with y. Since, by flag-transitivity, we can choose g such that
it does not preserve the line xy, and hence does not map the point y onto a collinear point, we
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may assume that the point y′ with label {2,3, . . . , k, k + 2} is not collinear with y, and hence
has distance 4 to y (in the incidence graph). But now the automorphism (1 k + 1)(k k + 2) (if
k′ = k + 1) fixes both y and y′, but not x = y � y′′. Hence k1 < k − 1.

Now the automorphism (k − 1 k)(k + 1 2k − k1 + 1) belongs to Gx and maps y to a point
z whose label shares k − 1 elements with y. Hence z cannot be collinear with y (otherwise,
mapping y to x, the image of z produces a point with a label contradicting the maximality
of k1 which is less than k − 1). On the other hand, z is collinear with x. If k1 > 0, then the
automorphism (1 k + 2)(k − 1 k) belongs to G, preserves y and z, but not x = y � z. Now
suppose that k1 = 0. If 2k + 1 < n, then the automorphism (1 2k + 2)(2 3) fixes y and z, but not
x = y � z, a contradiction. If 2k +1 = n, then, by the maximality of k1, and the transitivity of Ak ,
we see that there are precisely k + 1 points collinear with x on which Gx acts 2-transitively. This
easily implies that either s = 1 or t = 0, either way a contradiction.

Gx is imprimitive. Here Gx is the stabilizer of a partition of the underlying set into � blocks
each with size k. Let x be a point of S , which we may assume without loss of generality to corre-
spond to the partition of {1,2, . . . , n} into � subsets of size k given by {ik+1, ik+2, . . . , ik+k},
0 � i < �. We may assume that � > 2, the case � = 2 being completely similar to the intransi-
tive case, as noticed above. (If � = 2 then, as the number of point is greater that 4, we may also
assume that k � 3.)

We first claim that there is some point y ∼ x such that y corresponds to a partition sharing at
least one partition class with x (we will identify the points with their corresponding partition). Let
y be any point collinear with x and suppose that y has no partition class in common with x. If k =
2, then � > 6 and so the automorphism (1 2)(3 4) destroys at most 4 classes of y, while it fixes
x. Hence the image z of y has at least three classes {i1, i2}, {i3, i4}, {i5, i6} in common with y,
and therefore we may assume that y � z. The group generated by (i1 i2)(i3 i4), (i1 i3)(i2 i4) and
(i1 i5)(i2 i6) fixes both y and z but cannot fix x, a contradiction. Suppose now k > 2. Then the
automorphism (1 2 3) destroys at most 3 classes of y and maps y to a point z sharing at least
� − 3 classes with y. This is at least one if � > 3. If � = 3, then k > 3 and hence some class of
y shares at least two elements with some class of x. Without loss of generality, we may assume
that 1,2 are in some class of y and hence the automorphism (1 2 3) destroys at most two classes
of y, resulting in the fact that z shares at least one class with y again. Let this common class be
given by {i1, i2, i3, . . .}, where we may suppose without loss of generality that i1, i2, i3 do not
belong to a common class of x. The automorphism (i1 i2 i3) fixes both y and z, but not x = y �z,
a contradiction. Our claim is proved.

Now let �1 be maximal with respect to the property that there exist two collinear points sharing
�1 classes. By the foregoing, �1 > 0, and we may assume that the class {1,2, . . . , k} belongs to
the point y ∼ x. Suppose that �1 < � − 2. In particular, it follows from our assumptions that
� � 4. It also follows from our assumptions that there is a transposition (j1 j2) fixing x and not
fixing y. Hence the automorphism (1 2)(j1 j2) preserves x and maps y to a point z sharing � − 2
classes with y. By the maximality of �1, we see that y � z. Also, y and z contain a common
class which is not a class of x. So there exist elements j3, j4 contained in a common class of
both y and z, but belonging to different classes of x. The automorphism (1 2)(j3 j4) fixes y and
z, but not x = y � z, a contradiction. We have shown that �1 = � − 2, and this now holds for
all � � 3.

Now let k1 be the maximal number of elements in the intersection of two distinct classes
of two collinear elements sharing � − 2 classes. Note that k1 � k/2 > 0. First we show that
k1 < k − 1. So we assume by way of contradiction that k1 = k − 1. By transitivity of Gx , every
point with a partition sharing � − 2 classes with x and for which the distinct classes share k − 1
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elements, is collinear with x. By flag-transitivity and thickness, at least two such points y′, y′′ are
not collinear with y. If the different classes of y′ (compared with the classes of x) are the same as
those of y, then, for k > 2, the same arguments as in the intransitive case lead to a contradiction.
For k = 2, y′′ does not have this property (since there are only three points with � − 2 given
partition classes), and we switch the roles of y′ and y′′ in this case. So y′ differs from y in three
or four classes. We distinguish between two possibilities.

(1) y and y′ differ in exactly three partition classes. We may assume that y contains the
classes {1,2, . . . , k − 1, k + 1} and {k, k + 2, k + 3, . . . ,2k} (and the other classes coincide with
classes of x). Without loss of generality, there are two possibilities for y′. Either y′ contains the
classes {1,2, . . . , k − 1,2k + 1} and {k,2k + 2,2k + 3, . . . ,3k} (and the other classes coincide
with classes of x), or y′ contains the classes {1,2, . . . , k − 2, k,2k + 1} and {k − 1,2k + 2,2k +
3, . . . ,3k} (and the other classes coincide with classes of x). In the first case the automorphism
g = (k + 1 2k + 1 k) maps y onto y′, and y′ onto a point collinear with x. Since y′g is not
collinear with yg = y′, we see that g must preserve y � y′ = yg � y′g = x. But it clearly does
not, a contradiction. In the second case the automorphism (k − 1 2k + 1)(k k + 1) interchanges
y with y′, but does not fix x = y � y′, a contradiction.

(2) Hence y and y′ differ in four partition classes. We take y as in (1), and we can assume
that y′ contains the classes {2k + 1,2k + 2, . . . ,3k − 1,3k + 1} and {3k,3k + 2,3k + 3, . . . ,4k}.
Now the automorphism (k k + 1) (3k 3k + 1) interchanges y with y′ without fixing x = y � y′,
a contradiction.

Hence we have shown k1 < k −1. But now the rest of the proof is similar to the last paragraph
of the intransitive case, where the subcase k1 = 0 cannot occur. We conclude that Gx is primitive
on {1,2, . . . , n}.

Gx is primitive. By Lemma 3.2(v), |G| � |Gx |12, and so Lemma 5.3 implies that G and Gx

must be in Table 1 of Appendix A. Set u = |P | = |G : Gx | and let a(u) and b(u) be the quantities
defined before Lemma 3.1. Then Lemma 3.1 implies that if S is a hexagon then a(u)3 � u and,
if S is an octagon, then b(u)2 � u. For each pair (G,Gx) in Appendix A, one can compute
using, for instance, the GAP computational algebra system, the quantities u, a(u), and b(u). The
computation shows that a(u)3 > u and b(u)2 > u holds in each of the cases. The computation of
a(u) and b(u) are presented in Appendices B and C. Therefore none of the groups in Appendix A
can occur, and so we exclude this case as well.

Thus G cannot be an alternating or symmetric group. �
Now we can prove our main theorem.

Proof of Theorem 2.1. Suppose that S and G are as in the theorem. Then Theorem 4.1 implies
that G must be an almost simple group. Let T denote the unique minimal normal subgroup of G.
Note that T is a non-abelian simple group. By [2], T cannot be a sporadic simple group, and by
Theorem 5.1, T cannot be an alternating group. Thus T must be a simple group of Lie type and
G must be an almost simple group of Lie type. �
6. Directions of future work

Now that Theorem 2.1 is proved, the next step in the full classification of generalized hexagons
and octagons satisfying the conditions of Theorem 2.1 is to treat the class of almost simple groups
of Lie type. It is not our intention to be as detailed as possible regarding these groups, as we
think the only worthwhile job now is to complete the classification in full. We noted in the proof
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Lemma 4.2 that in a generalized octagon either the number of points or the number of lines is
odd. Therefore it is meaningful to investigate which almost simple groups of Lie type with odd
degree can occur in Theorem 2.1. Another possible task is to use Lemma 3.2 to characterize the
case when the parameters are not co-prime. We conclude this paper by presenting a couple of
examples to illustrate that Lemmas 3.1 and 3.2 can be used, to some extent, in this direction.
However, our examples also show that a complete treatment of these groups is beyond the scope
of this paper and will probably require new ideas.

Let us assume that G is an almost simple group of Lie type with socle T and that G is a
group of automorphisms of a generalized hexagon or octagon S = (P , L) acting primitively
both on the point set and on the line set, and transitively on the set of flags. Suppose, in addition,
that the number |P | of points is odd and let x be a point. The possibilities for T and the point
stabilizer Tx can be found in [9,12]. One possibility, for instance, is that q = 32m+1 with some
m � 1, T ∼= 2G2(q) and |Tx | = q(q2 − 1). We claim that it follows from our results that this case
cannot occur. Note that |P | = q2(q2 − q + 1). If S is a hexagon, then Lemma 3.1 implies that
a(q2(q2 − q + 1))3 � q2(q2 − q + 1) (the function a is defined before Lemma 3.1). However,
a(q2(q2 − q + 1))3 � 312m+3 which would imply that 312m+3 � 38m+4 which does not hold for
m � 1. Thus such a hexagon does not exist, and similar argument shows that neither does such
an octagon.

Another case is that T ∼= F4(q), |Tx | = q16(q2 − 1)(q4 − 1)(q6 − 1)(q8 − 1), and so |P | =
q8(q8 + q4 + 1). Computer calculation shows that among the prime-powers that are smaller
then 104, there are 626 values of q such that a(|P |)3 � |P |, and there are 625 such values with
b(|P |)2 � |P |. Therefore Lemma 3.1 cannot directly be used to exclude this case.

We conclude this paper with an example that shows how Lemma 3.2 may be applied. Let
S = (P , L) be as above and let us assume that the parameters s and t of S are not co-prime. By
Lemma 3.2(ii), an involution in G either fixes a point or fixes a line. Now if G is isomorphic to An

or Sn with some n � 5, then, by possibly taking the dual polygon, we may assume that a double
transposition (in the natural representation of G) is contained in a point stabilizer Gx . Therefore,
as a subgroup of Sn, Gx has minimal degree at most 4 (see [4, p. 76] for the definition of the
minimal degree). Now if Gx is primitive then [4, Example 3.3.1] shows that n � 8, and hence G

is ruled out by [2]. This argument shows that under the additional condition that gcd(s, t) �= 1,
the proof of Theorem 5.1 can be significantly simplified.
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Appendix A

The following Table 1 contains the primitive maximal subgroups H of An and Sn (n � 5)
such that |H |12 � n! and |H |12 � n!/2 if H � An. Note that Table 1 may contain non-maximal
subgroups; see the remarks at the end of the proof of Lemma 5.3. Table 1 was automatically
generated from a GAP output, and so the notation follows the GAP system.

Table 1
C(5)� A5 D(2*5)� A5 AGL(1, 5)� S5 PSL(2,5)� A6

PGL(2,5)� S6 7:3� A7 L(3, 2)� A7 AGL(1, 7)� S7
ASL(3, 2)� A8 PSL(2, 7)� A8 PGL(2, 7)� S8 3^2:(2’A(4))� A9

PGammaL(2, 8)� A9 AGL(2, 3)� S9 A(5)� A10 M(10)� A10
S(5)� S10 PGammaL(2, 9)� S10 11:5� A11 M(11)� A11

AGL(1, 11)� S11 M(11)� A12 M(12)� A12 PSL(2, 11)� A12
PGL(2, 11)� S12 13:6� A13 L(3, 3)� A13 AGL(1, 13)� S13
PSL(2,13)� A14 PGL(2,13)� S14 PSL(4, 2)� A15 2^4.PSL(4, 2)� A16

17:8� A17 L(2, 2^4):4 = PGammaL(2, 2^4)� A17 AGL(1, 17)� S17 PSL(2,17)� A18
PGL(2,17)� S18 19:9� A19 AGL(1, 19)� S19 PSL(2,19)� A20
PGL(2,19)� S20 A(7)� A21 PGL(3, 4)� A21 PGL(2, 7)� S21

S(7)� S21 PGammaL(3, 4)� S21 M(22)� A22 M(22):2� S22
23:11� A23 M(23)� A23 AGL(1, 23)� S23 M(24)� A24

PSL(2, 23)� A24 PGL(2, 23)� S24 ASL(2, 5):2� A25 (A(5) x A(5)):2^2� A25
AGL(2, 5)� S25 (S(5) x S(5)):2� S25 PSigmaL(2, 25)� A26 PGammaL(2, 25)� S26
ASL(3, 3)� A27 PSp(4, 3):2� A27 AGL(3, 3)� S27 PGammaL(2, 8)� A28

PGammaU(3, 3)� A28 PSp(6, 2)� A28 S(8)� A28 PSL(2, 27):3� A28
PGammaL(2, 27)� S28 29:14� A29 AGL(1, 29)� S29 PSL(2,29)� A30

PGL(2,29)� S30 L(3, 5)� A31 L(5, 2)� A31 AGL(1, 31)� S31
ASL(5, 2)� A32 PSL(2, 31)� A32 PGL(2, 31)� S32 PGammaL(2, 32)� A33

S(8)� A35 PGammaU(3, 3)� A36 PSp(4, 3):2� A36 PSp(6, 2)� A36
A(9)� A36 S(9)� S36 (S(6) x S(6)):2� S36 (S(5) x S(5)):2� S36

PSL(2,37)� A38 PGL(2,37)� S38 PSp(4, 3):2� A40 PSp(4, 3)� A40
PSL(4, 3)� A40 PSp(4, 3):2� S40 PGL(4, 3)� S40 PSL(2,41)� A42
PGL(2,41)� S42 PSL(2,43)� A44 PGL(2,43)� S44 S(10)� A45

PSp(4, 3):2� S45 (A(7) x A(7)):4� A49 (S(7) x S(7)):2� S49 PSU(3, 5):2� A50
Alt(11)� A55 Sym(11)� S55 PSL(3, 7).3� A57 PSL(6, 2)� A63
AGL(6, 2)� A64 Sym(8) wreath Sym(2)� A64 Sym(12)� A66 Sym(13)� S78

Alt(9)^2.2^2� A81 Sym(9) wreath Sym(2)� S81 Sym(10) wreath Sym(2)� S100
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Appendix B

The following Table 2 contains the values of u and a(u) where u = |G : H |, G and H are as
in Appendix A, and degG = degH � 14. One can read off that in each of the cases a(u)3 > u,
which implies that G cannot be an automorphism group of a flag-transitive generalized hexagon
with point stabilizer H . See the proof of Theorem 5.1.

Table 2

PSL(2,13)� A14

a(u)3 ≈ 6.86 · 1018

u ≈ 3.99 · 107

PGL(2,13)� S14

a(u)3 ≈ 6.86 · 1018

u ≈ 3.99 · 107

PSL(4, 2)� A15

a(u)3 ≈ 1.67 · 1015

u ≈ 3.24 · 107

2^4.PSL(4, 2)� A16

a(u)3 ≈ 1.67 · 1015

u ≈ 3.24 · 107

17:8� A17

a(u)3 ≈ 3.20 · 1026

u ≈ 1.30 · 1012

L(2, 2^4):4 = PGammaL(2, 2^4)� A17

a(u)3 ≈ 1.85 · 1020

u ≈ 1.08 · 1010

AGL(1, 17)� S17

a(u)3 ≈ 3.20 · 1026

u ≈ 1.30 · 1012

PSL(2,17)� A18

a(u)3 ≈ 3.20 · 1026

u ≈ 1.30 · 1012

PGL(2,17)� S18

a(u)3 ≈ 3.20 · 1026

u ≈ 1.30 · 1012

19:9� A19

a(u)3 ≈ 6.44 · 1033

u ≈ 3.55 · 1014

AGL(1, 19)� S19

a(u)3 ≈ 6.44 · 1033

u ≈ 3.55 · 1014

PSL(2,19)� A20

a(u)3 ≈ 6.44 · 1033

u ≈ 3.55 · 1014

PGL(2,19)� S20

a(u)3 ≈ 6.44 · 1033

u ≈ 3.55 · 1014

A(7)� A21

a(u)3 ≈ 2.17 · 1034

u ≈ 1.01 · 1016

PGL(3, 4)� A21

a(u)3 ≈ 1.57 · 1030

u ≈ 4.22 · 1014

PGL(2, 7)� S21

a(u)3 ≈ 7.34 · 1037

u ≈ 1.52 · 1017

S(7)� S21

a(u)3 ≈ 2.17 · 1034

u ≈ 1.01 · 1016

PGammaL(3, 4)� S21

a(u)3 ≈ 1.57 · 1030

u ≈ 4.22 · 1014

M(22)� A22

a(u)3 ≈ 4.25 · 1031

u ≈ 1.26 · 1015

M(22):2� S22

a(u)3 ≈ 4.25 · 1031

u ≈ 1.26 · 1015

23:11� A23

a(u)3 ≈ 8.12 · 1042

u ≈ 5.10 · 1019

M(23)� A23

a(u)3 ≈ 4.25 · 1031

u ≈ 1.26 · 1015

AGL(1, 23)� S23

a(u)3 ≈ 8.12 · 1042

u ≈ 5.10 · 1019

M(24)� A24

a(u)3 ≈ 4.25 · 1031

u ≈ 1.26 · 1015

PSL(2, 23)� A24

a(u)3 ≈ 8.12 · 1042

u ≈ 5.10 · 1019

PGL(2, 23)� S24

a(u)3 ≈ 8.12 · 1042

u ≈ 5.10 · 1019

ASL(2, 5):2� A25

a(u)3 ≈ 1.31 · 1047

u ≈ 1.29 · 1021

(A(5) x A(5)):2^2� A25

a(u)3 ≈ 9.51 · 1045

u ≈ 5.38 · 1020

AGL(2, 5)� S25

a(u)3 ≈ 1.31 · 1047

u ≈ 1.29 · 1021

(S(5) x S(5)):2� S25

a(u)3 ≈ 9.51 · 1045

u ≈ 5.38 · 1020

PSigmaL(2, 25)� A26

a(u)3 ≈ 1.31 · 1050

u ≈ 1.29 · 1022

PGammaL(2, 25)� S26

a(u)3 ≈ 1.31 · 1050

u ≈ 1.29 · 1022

ASL(3, 3)� A27

a(u)3 ≈ 2.81 · 1051

u ≈ 3.59 · 1022

PSp(4, 3):2� A27

a(u)3 ≈ 3.21 · 1049

u ≈ 1.05 · 1023

AGL(3, 3)� S27

a(u)3 ≈ 2.81 · 1051

u ≈ 3.59 · 1022

PGammaL(2, 8)� A28

a(u)3 ≈ 2.84 · 1058

u ≈ 1.00 · 1026

PGammaU(3, 3)� A28

a(u)3 ≈ 5.54 · 1055

u ≈ 1.26 · 1025

PSp(6, 2)� A28

a(u)3 ≈ 3.21 · 1049

u ≈ 1.05 · 1023

S(8)� A28

a(u)3 ≈ 1.49 · 1054

u ≈ 3.78 · 1024

PSL(2, 27):3� A28

a(u)3 ≈ 8.41 · 1057

u ≈ 5.17 · 1024

PGammaL(2, 27)� S28

a(u)3 ≈ 8.41 · 1057

u ≈ 5.17 · 1024

29:14� A29

a(u)3 ≈ 3.57 · 1064

u ≈ 1.08 · 1028

AGL(1, 29)� S29

a(u)3 ≈ 3.57 · 1064

u ≈ 1.08 · 1028

PSL(2,29)� A30

a(u)3 ≈ 3.57 · 1064

u ≈ 1.08 · 1028

(continued on next page)
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Table 2 (continued)

PGL(2,29)� S30

a(u)3 ≈ 3.57 · 1064

u ≈ 1.08 · 1028

L(3, 5)� A31

a(u)3 ≈ 1.09 · 1062

u ≈ 1.10 · 1028

L(5, 2)� A31

a(u)3 ≈ 1.92 · 1060

u ≈ 4.11 · 1026

AGL(1, 31)� S31

a(u)3 ≈ 5.58 · 1070

u ≈ 8.84 · 1030

ASL(5, 2)� A32

a(u)3 ≈ 1.92 · 1060

u ≈ 4.11 · 1026

PSL(2, 31)� A32

a(u)3 ≈ 5.58 · 1070

u ≈ 8.84 · 1030

PGL(2, 31)� S32

a(u)3 ≈ 5.58 · 1070

u ≈ 8.84 · 1030

PGammaL(2, 32)� A33

a(u)3 ≈ 1.50 · 1072

u ≈ 2.65 · 1031

S(8)� A35

a(u)3 ≈ 5.70 · 1078

u ≈ 1.28 · 1035

PGammaU(3, 3)� A36

a(u)3 ≈ 9.86 · 1084

u ≈ 1.53 · 1037

PSp(4, 3):2� A36

a(u)3 ≈ 3.65 · 1080

u ≈ 3.58 · 1036

PSp(6, 2)� A36

a(u)3 ≈ 5.70 · 1078

u ≈ 1.28 · 1035

A(9)� A36

a(u)3 ≈ 2.92 · 1081

u ≈ 1.02 · 1036

S(9)� S36

a(u)3 ≈ 2.92 · 1081

u ≈ 1.02 · 1036

(S(6) x S(6)):2� S36

a(u)3 ≈ 3.65 · 1077

u ≈ 3.58 · 1035

(S(5) x S(5)):2� S36

a(u)3 ≈ 1.70 · 1082

u ≈ 1.29 · 1037

PSL(2,37)� A38

a(u)3 ≈ 8.72 · 1090

u ≈ 1.03 · 1040

PGL(2,37)� S38

a(u)3 ≈ 8.72 · 1090

u ≈ 1.03 · 1040

PSp(4, 3):2� A40

a(u)3 ≈ 5.05 · 1087

u ≈ 7.86 · 1042

PSp(4, 3)� A40

a(u)3 ≈ 4.04 · 1088

u ≈ 1.57 · 1043

PSL(4, 3)� A40

a(u)3 ≈ 6.92 · 1084

u ≈ 6.72 · 1040

PSp(4, 3):2� S40

a(u)3 ≈ 4.04 · 1088

u ≈ 1.57 · 1043

PGL(4, 3)� S40

a(u)3 ≈ 6.92 · 1084

u ≈ 6.72 · 1040

PSL(2,41)� A42

a(u)3 ≈ 8.79 · 1097

u ≈ 2.03 · 1046

PGL(2,41)� S42

a(u)3 ≈ 8.79 · 1097

u ≈ 2.03 · 1046

PSL(2,43)� A44

a(u)3 ≈ 3.87 · 10107

u ≈ 3.34 · 1049

PGL(2,43)� S44

a(u)3 ≈ 3.87 · 10107

u ≈ 3.34 · 1049

S(10)� A45

a(u)3 ≈ 5.83 · 10101

u ≈ 1.64 · 1049

PSp(4, 3):2� S45

a(u)3 ≈ 4.66 · 10105

u ≈ 2.30 · 1051

(A(7) x A(7)):4� A49

a(u)3 ≈ 6.52 · 10116

u ≈ 1.19 · 1055

(S(7) x S(7)):2� S49

a(u)3 ≈ 6.52 · 10116

u ≈ 1.19 · 1055

PSU(3, 5):2� A50

a(u)3 ≈ 2.43 · 10125

u ≈ 6.03 · 1058

Alt(11)� A55

a(u)3 ≈ 1.62 · 10142

u ≈ 3.18 · 1065

Sym(11)� S55

a(u)3 ≈ 1.62 · 10142

u ≈ 3.18 · 1065

PSL(3, 7).3� A57

a(u)3 ≈ 8.06 · 10156

u ≈ 3.59 · 1069

PSL(6, 2)� A63

a(u)3 ≈ 1.12 · 10164

u ≈ 4.91 · 1076

AGL(6, 2)� A64

a(u)3 ≈ 1.12 · 10164

u ≈ 4.91 · 1076

Sym(8) wreath Sym(2)� A64

a(u)3 ≈ 2.35 · 10167

u ≈ 1.95 · 1079

Sym(12)� A66

a(u)3 ≈ 7.71 · 10174

u ≈ 5.68 · 1083

Sym(13)� S78

a(u)3 ≈ 5.28 · 10214

u ≈ 1.81 · 10105

Alt(9)^2.2^2� A81

a(u)3 ≈ 2.97 · 10220

u ≈ 2.20 · 10109

Sym(9) wreath Sym(2)� S81

a(u)3 ≈ 2.97 · 10220

u ≈ 2.20 · 10109

Sym(10) wreath Sym(2)� S100

a(u)3 ≈ 2.74 · 10293

u ≈ 3.54 · 10144
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Appendix C

The following Table 3 contains the values of u and b(u), where u = |G : H |, G and H are as
in Appendix A, and degG = degH � 14. One can read off that in each of the cases b(u)2 > u,
which implies that G cannot be an automorphism group of a flag-transitive generalized octagon
with point stabilizer H . See the proof of Theorem 5.1.

Table 3

PSL(2,13)� A14

b(u)2 ≈ 3.61 · 1012

u ≈ 3.99 · 107

PGL(2,13)� S14

b(u)2 ≈ 3.61 · 1012

u ≈ 3.99 · 107

PSL(4, 2)� A15

b(u)2 ≈ 1.41 · 1010

u ≈ 3.24 · 107

2^4.PSL(4, 2)� A16

b(u)2 ≈ 1.41 · 1010

u ≈ 3.24 · 107

17:8� A17

b(u)2 ≈ 4.68 · 1017

u ≈ 1.30 · 1012

L(2, 2^4):4 = PGammaL(2, 2^4)� A17

b(u)2 ≈ 3.25 · 1013

u ≈ 1.08 · 1010

AGL(1, 17)� S17

b(u)2 ≈ 4.68 · 1017

u ≈ 1.30 · 1012

PSL(2,17)� A18

b(u)2 ≈ 4.68 · 1017

u ≈ 1.30 · 1012

PGL(2,17)� S18

b(u)2 ≈ 4.68 · 1017

u ≈ 1.30 · 1012

19:9� A19

b(u)2 ≈ 3.46 · 1022

u ≈ 3.55 · 1014

AGL(1, 19)� S19

b(u)2 ≈ 3.46 · 1022

u ≈ 3.55 · 1014

PSL(2,19)� A20

b(u)2 ≈ 3.46 · 1022

u ≈ 3.55 · 1014

PGL(2,19)� S20

b(u)2 ≈ 3.46 · 1022

u ≈ 3.55 · 1014

A(7)� A21

b(u)2 ≈ 7.79 · 1022

u ≈ 1.01 · 1016

PGL(3, 4)� A21

b(u)2 ≈ 1.35 · 1020

u ≈ 4.22 · 1014

PGL(2, 7)� S21

b(u)2 ≈ 1.75 · 1025

u ≈ 1.52 · 1017

S(7)� S21

b(u)2 ≈ 7.79 · 1022

u ≈ 1.01 · 1016

PGammaL(3, 4)� S21

b(u)2 ≈ 1.35 · 1020

u ≈ 4.22 · 1014

M(22)� A22

b(u)2 ≈ 1.21 · 1021

u ≈ 1.26 · 1015

M(22):2� S22

b(u)2 ≈ 1.21 · 1021

u ≈ 1.26 · 1015

23:11� A23

b(u)2 ≈ 4.04 · 1028

u ≈ 5.10 · 1019

M(23)� A23

b(u)2 ≈ 1.21 · 1021

u ≈ 1.26 · 1015

AGL(1, 23)� S23

b(u)2 ≈ 4.04 · 1028

u ≈ 5.10 · 1019

M(24)� A24

b(u)2 ≈ 1.21 · 1021

u ≈ 1.26 · 1015

PSL(2, 23)� A24

b(u)2 ≈ 4.04 · 1028

u ≈ 5.10 · 1019

PGL(2, 23)� S24

b(u)2 ≈ 4.04 · 1028

u ≈ 5.10 · 1019

ASL(2, 5):2� A25

b(u)2 ≈ 2.58 · 1031

u ≈ 1.29 · 1021

(A(5) x A(5)):2^2� A25

b(u)2 ≈ 4.49 · 1030

u ≈ 5.38 · 1020

AGL(2, 5)� S25

b(u)2 ≈ 2.58 · 1031

u ≈ 1.29 · 1021

(S(5) x S(5)):2� S25

b(u)2 ≈ 4.49 · 1030

u ≈ 5.38 · 1020

PSigmaL(2, 25)� A26

b(u)2 ≈ 2.58 · 1033

u ≈ 1.29 · 1022

PGammaL(2, 25)� S26

b(u)2 ≈ 2.58 · 1033

u ≈ 1.29 · 1022

ASL(3, 3)� A27

b(u)2 ≈ 1.99 · 1034

u ≈ 3.59 · 1022

PSp(4, 3):2� A27

b(u)2 ≈ 1.01 · 1033

u ≈ 1.05 · 1023

AGL(3, 3)� S27

b(u)2 ≈ 1.99 · 1034

u ≈ 3.59 · 1022

PGammaL(2, 8)� A28

b(u)2 ≈ 9.31 · 1038

u ≈ 1.00 · 1026

PGammaU(3, 3)� A28

b(u)2 ≈ 1.45 · 1037

u ≈ 1.26 · 1025

PSp(6, 2)� A28

b(u)2 ≈ 1.01 · 1033

u ≈ 1.05 · 1023

S(8)� A28

b(u)2 ≈ 1.30 · 1036

u ≈ 3.78 · 1024

PSL(2, 27):3� A28

b(u)2 ≈ 4.13 · 1038

u ≈ 5.17 · 1024

PGammaL(2, 27)� S28

b(u)2 ≈ 4.13 · 1038

u ≈ 5.17 · 1024

29:14� A29

b(u)2 ≈ 1.08 · 1043

u ≈ 1.08 · 1028

AGL(1, 29)� S29

b(u)2 ≈ 1.08 · 1043

u ≈ 1.08 · 1028

PSL(2,29)� A30

b(u)2 ≈ 1.08 · 1043

u ≈ 1.08 · 1028

(continued on next page)
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Table 3 (continued)

PGL(2,29)� S30

b(u)2 ≈ 1.08 · 1043

u ≈ 1.08 · 1028

L(3, 5)� A31

b(u)2 ≈ 2.28 · 1041

u ≈ 1.10 · 1028

L(5, 2)� A31

b(u)2 ≈ 1.54 · 1040

u ≈ 4.11 · 1026

AGL(1, 31)� S31

b(u)2 ≈ 1.46 · 1047

u ≈ 8.84 · 1030

ASL(5, 2)� A32

b(u)2 ≈ 1.54 · 1040

u ≈ 4.11 · 1026

PSL(2, 31)� A32

b(u)2 ≈ 1.46 · 1047

u ≈ 8.84 · 1030

PGL(2, 31)� S32

b(u)2 ≈ 1.46 · 1047

u ≈ 8.84 · 1030

PGammaL(2, 32)� A33

b(u)2 ≈ 1.31 · 1048

u ≈ 2.65 · 1031

S(8)� A35

b(u)2 ≈ 3.19 · 1052

u ≈ 1.28 · 1035

PGammaU(3, 3)� A36

b(u)2 ≈ 4.59 · 1056

u ≈ 1.53 · 1037

PSp(4, 3):2� A36

b(u)2 ≈ 5.11 · 1053

u ≈ 3.58 · 1036

PSp(6, 2)� A36

b(u)2 ≈ 3.19 · 1052

u ≈ 1.28 · 1035

A(9)� A36

b(u)2 ≈ 2.04 · 1054

u ≈ 1.02 · 1036

S(9)� S36

b(u)2 ≈ 2.04 · 1054

u ≈ 1.02 · 1036

(S(6) x S(6)):2� S36

b(u)2 ≈ 5.11 · 1051

u ≈ 3.58 · 1035

(S(5) x S(5)):2� S36

b(u)2 ≈ 6.62 · 1054

u ≈ 1.29 · 1037

PSL(2,37)� A38

b(u)2 ≈ 4.23 · 1060

u ≈ 1.03 · 1040

PGL(2,37)� S38

b(u)2 ≈ 4.23 · 1060

u ≈ 1.03 · 1040

PSp(4, 3):2� A40

b(u)2 ≈ 2.94 · 1058

u ≈ 7.86 · 1042

PSp(4, 3)� A40

b(u)2 ≈ 1.17 · 1059

u ≈ 1.57 · 1043

PSL(4, 3)� A40

b(u)2 ≈ 3.63 · 1056

u ≈ 6.72 · 1040

PSp(4, 3):2� S40

b(u)2 ≈ 1.17 · 1059

u ≈ 1.57 · 1043

PGL(4, 3)� S40

b(u)2 ≈ 3.63 · 1056

u ≈ 6.72 · 1040

PSL(2,41)� A42

b(u)2 ≈ 1.97 · 1065

u ≈ 2.03 · 1046

PGL(2,41)� S42

b(u)2 ≈ 1.97 · 1065

u ≈ 2.03 · 1046

PSL(2,43)� A44

b(u)2 ≈ 5.31 · 1071

u ≈ 3.34 · 1049

PGL(2,43)� S44

b(u)2 ≈ 5.31 · 1071

u ≈ 3.34 · 1049

S(10)� A45

b(u)2 ≈ 6.98 · 1067

u ≈ 1.64 · 1049

PSp(4, 3):2� S45

b(u)2 ≈ 2.79 · 1070

u ≈ 2.30 · 1051

(A(7) x A(7)):4� A49

b(u)2 ≈ 7.52 · 1077

u ≈ 1.19 · 1055

(S(7) x S(7)):2� S49

b(u)2 ≈ 7.52 · 1077

u ≈ 1.19 · 1055

PSU(3, 5):2� A50

b(u)2 ≈ 3.89 · 1083

u ≈ 6.03 · 1058

Alt(11)� A55

b(u)2 ≈ 6.40 · 1094

u ≈ 3.18 · 1065

Sym(11)� S55

b(u)2 ≈ 6.40 · 1094

u ≈ 3.18 · 1065

PSL(3, 7).3� A57

b(u)2 ≈ 4.02 · 10104

u ≈ 3.59 · 1069

PSL(6, 2)� A63

b(u)2 ≈ 2.32 · 10109

u ≈ 4.91 · 1076

AGL(6, 2)� A64

b(u)2 ≈ 2.32 · 10109

u ≈ 4.91 · 1076

Sym(8) wreath Sym(2)� A64

b(u)2 ≈ 3.81 · 10111

u ≈ 1.95 · 1079

Sym(12)� A66

b(u)2 ≈ 3.90 · 10116

u ≈ 5.68 · 1083

Sym(13)� S78

b(u)2 ≈ 1.40 · 10143

u ≈ 1.81 · 10105

Alt(9)^2.2^2� A81

b(u)2 ≈ 9.59 · 10146

u ≈ 2.20 · 10109

Sym(9) wreath Sym(2)� S81

b(u)2 ≈ 9.59 · 10146

u ≈ 2.20 · 10109

Sym(10) wreath Sym(2)� S100

b(u)2 ≈ 4.22 · 10195

u ≈ 3.54 · 10144
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