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ABSTRACT It is shown that if x(t) is the solution of a second order differential
equation, with real negative characteristic roots (not necessarily distinct), which
exhibits an extremum at t = T, then Tlx(T) I/IA < l/e where A is the area
under the x(t) curve. This result is compared to a special case previously derived
by M. Morales and applications of the theorem to formal kinetic problems are
discussed.

Many years ago, Morales (1) proved, in a formal kinetic context, a little noted
theorem. We have had occasion to broaden and apply this theorem and it seems
of interest to point out the original version and compare it to the present one.

Consider the system

X1 = -klxl, Xl(O) = X4 > 0 [1]

x2 = klxl - k2x2, x2(0) = 0 [2]

where dots denote time derivations and k, and k2 are positive and distinct. The well
known solutions are

xI= xekt [3]

x2= -k (ek 1
- ek1) [4]

If the single maximum of x2 (t) occurs at t = T, then from [2] and [3]
0

x2(T) = ki xI e-k1T [5]
k2

But the integral A = fO x2(t)dt has, from [4], the value x°/k2, and since kiTe-klT
is not more than l/e, [5] can be put in the form

Tx2(T)/A < l/e. [6]
This is the theorem referred to (we have essentially paraphrased Morales' proof)
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and it states that the area of the rectangle Tx2(T) is not more than l/e of the area
under the curve x2(t).

Equation [4] describes the concentration of the intermediate X2 in the scheme

Xl L+ X2 aX [7]
under the initial conditions given in [1] and [2]. If one has data on such a supposed
species (or corresponding information in any of a variety of analogues to the chem-
ical kinetic situation) from which the maximum value, x2(T), and the area, A,
can be estimated, then, if these estimates infringe the inequality [6] one must aban-
don the hypothesis that the model [7] gave rise to the data. On the other hand if
[6] is obeyed the model [7] may or may not obtain and we include in what follows
a more general model which exhibits the property [6].

Consider the function

x(t) = alel(t) + a2e2(t) [8]

where e4(t) = exp(-X\t), the Ai are positive and distinct, and the as are constants
which later will be tacitly restricted. We proceed to show that the inequality [6]
actually stems from the fact that the sign of function

cb(t) = x + x--Blel A [9]
2

where A is the integral f ' x(t) dt, is strictly determined by the sign of x(0). In fact
for all I ' 0,

x(O) 2 0 implies 4'(t) 0 [10]

x(O) : 0 implies 4P(t) 0.
For, from [8] and its derivative

x +-x= Xielal[---][11]X2 Xl X2
But

A a, + a2
XI X

x(O)- a + a2
and hence

x + = Xiei(A - x(0)) [12]

from which the stated properties of 4(t) follow at once.
If, in [12] we set x(O) = x(T) = 0, a generalization of [5] is obtained and if

A > 0 the corresponding generalization of [6] follows. In fact if x(0) _ 0 and
A > 0 then for any t such that xA(t) ' 0 we have

tx(t)/A . lle. [13]
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In general if *(T) = 0 (and for Xi real as assumed, there is just one such T) it
follows from [12] that

TIx(T)I/IAI . 1/e [14]
and this is a property of a solution of a linear second order differential equation
with constant coefficients and negative characteristic roots provided that solution
exhibits an extremum.

Equation [12] holds if the subscripts 1 and 2 are interchanged, as is clear from
its derivation, and it also holds if A1 = A2 = A > 0. For then we must take x(t)
to be

x(t) = ae't + bte-"
from which

x b -xtx + X = x2 Xe

x(O) = a

a b
A > + x22

and thus

x + A = Xe`t[A -x()/X],x
the inequality [14] following as before

Obviously equality in [14] cannot hold if x(0) # 0, since A -x(O)/x4 = IA!
if and only if x(0) = 0. However, given x(0) = 0, equality obtains in [14] if
X,T = 1, for one of the A's in case they are distinct, or if AT = 1, in case A1 =
A2 = A. But in the distinct case' this value of T will not satisfy x(T) = 0.
We can summarize the only case of real interest in chemical kinetics as follows:-
The non-negative solution2 of a linear second order differential equation with real

negative characteristic roots obeys

Tx(T)/A < l/e
where x(T) = 0, with equality if and only if x(0) = A1-A2 = 0.
The above theorem applies to the concentration of either X1 or X2 (whichever

exhibits a maximum) in the scheme

X4 - Xl = X2 - X3.

iThe fact that given x(O) = 0 equality holds in [14] when X1 = X2 suggests a means of dis-
tinguishing between overdamping and critical damping in any second order system. The damped
case, quite different, is considered briefly at the end of this paper and in Note II.
2 It has been shown (3) that necessary conditions for non-negative solutions of ±s = aoixi +
a4,x2, x+(O) _ 0, i = 1, 2, are a, < 0, aq1 ; 0, i 7 j, and it can be shown that these are suffi-
cient and always satisfied in linear kinetic cases. In general for a second order equation it is
necessary and sufficient, if x(O) > 0, 1(0) > 0, for the companion matrix of the character-
istic polynomial to be similar to a matrix [a,,] with a4 < 0, a,1_ O, i # j.
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It was for the purpose (2) of excluding, on the basis of experimental data, such a
model that the above theorem was derived. In the case3 under discussion (2), data
were available on X3 (t) which obeys x3 = kx2. The area A, under the x2 curve, is
given by direct integration as A = [X3(°O) - x3(0)]/k, where x3(°O) is the final
yield of x3, a well defined observable quantity. The maximum value of x2(t) is
given by x2(T) = x3(T)/k, where x3(T) is the slope of x3(t) at the inflection
point exhibited when x2(t) = 0. Thus

Ti3(T)I[X3cx:) -x3(0)] = TX2(T)/A

and observations on the slope of x3(t) at the inflection point, the time t = T at
which it occurs, and the asymptotic value of x3(t) permit a test of the inequality
which is a necessary condition for the model to apply. It should be pointed out that
in practice, T, x(T), and A (whether directly estimated or indirectly as in the above
example) are afflicted with error; thus the test, which can only exclude a given
hypothesis, must be used with care when Tx(T)/A is not very different from lle.
The problem of applying the test in a statistically rigorous manner does not appear
to be a simple one. However, in many cases Tx(T)/A will exceed l/e to such an
extent that, in view of the errors of observation involved, rejection of the model
appears to be quite safe.

It is worth noting, from [1] and [2], that xl + x2 = -k2x2, and integration of
both sides of this relation leads at once to k2A = xl. Now the same is true of the
equations

= -klxl + k-,x2, Xl(O) = Xi [15]

2= klxl - (k_1 + k)x2,. x2(O) = O

which describe X1 and X2 in the scheme X1I X2 -3 X3. Thus the area under the
x2(t) curve is x° /k2 independent of the value of kA1; in particular it is the same
whether or not the conversion of X1 to X2 is reversible. It was this observation
which prompted the present investigation. In fact for the scheme

X, kn .+

it is true that

S l=-knXn
i=l

from which
n

knAn = X4
i-1

The problem here was to set a lower limit on the number of intermediates which occur when
prothrombin is converted to thrombin by biological activators. The only species the time course
of which could be followed was thrombin, the final product. It could be shown (2) by experi-
ment and kinetic analysis of the effect of soybean trypsin inhibitor, that at least one intermediate
occurs. The method which is being outlined here was used to establish that not less than two
intermediates occur.
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where A. is the area under the x"(t) curve. In particular if
0 0

X2 =- X3 =*f-Xn °

then kiA4 = x°, for all i such that Xi is converted irreversibly to Xi1 with rate
constant ki, independent of which, if any, of the steps between X1 and Xi are irre-
versible. This is the basis of the following extension.

Consider the scheme
k-1

X1i X2 ->X- X3** X.+ I
k, ks ki kn

Then if initially only xl(t) is different from zero, xl(t) and x2(t) obey [15], while

X4 = krilxr,- - krxt, xr(o) = 0 [16]

for 3 _ r ' n. The areas Ar are given by

Ar=ol/kr r = 2, 3,***,n [17]

We accept the intuitive facts (see Note I for formal proofs) that for each r . 2
there is a single t such that &r = 0 and that the maximum of x71L occurs at an earlier
time than that of xr. If the maximum of Xr occurs at t = Tr then

Xr(Tr) = 0

xr(Tr) > x,(t), for all t - Tr [18]

T2 < T3 < ... < Tn
From [16], [17], and [18]

x2(T2) > x3(T3) > >_
A2 A3 An

and applying T2x2(T2) . A/e, we have

1 > x2(T2) > x3(T3) > > xn(Tn) [19]
eT2- A2 A3 An

where the first inequality reduces to strict equality if and only if k1, = ki-k2 = 0.
In the special case k1, = ki-kj = 0 for all i, j it can be shown (see Note I) that

Trx(Tr)/ A, _ 1/e [20]

for 2 . r . n, with equality for r = 2. Equations [20] and [19] give the bounds

lle < T7x(T7)/IA, < Tr/eT2 [21]
for n'r> 1.

Finally, we wish to note briefly the very different situation which obtains when
the characteristic roots are not real. If in [8], the xi are complex, with real part
- / < 0, it can be shown (Note II) that if x(t) is real and x(0) = 0, then for
every T > 0, such that x*(T) = 0, it is true that Tlx(T)I > ,UTe,T IAJ. This is
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in contrast to the fact that when the x, are real and negative (distinct or not), we
have the equality Tlx(T)I = XTe T IAI which (with XTe-T < l/e) is the basis
of inequality [14] when x(T) = x(O) = 0.

NOTE I

From [16] of the text, it follows by formal integration and a change of variable that

xr(t) = kr1 f xr7l(t - G)er(O) dO, r > 3 [i]
where er(t) = exp(-k,t). It is a remarkable fact that, given k, > 0 for all r, x° > 0,
and the properties of x2(t) deducible from [15] and [8], it follows from the integral equa-
tion [i], that every x,(t) is positive in the interval 0 < t < oo; each x,(t), r > 2, exhibits
a single extremum which is a (relative and absolute) maximum; and the maximum of
x, l precedes in time that of x,.

Differentiation of [i] followed by a change of variable gives

xr(t) = kr-. f 4r-1(0)e,(t - 0) dO, r > 3 [ii]
provided x,(O) = 0 for r > 2, which has been assumed. Clearly *,r(t) can vanish only if
x,_-(9) changes sign in the interval 0 <0 <t. Let t = t. be the first non-zero value of t
for which x,(t) vanishes. Then x,(t) can vanish again for t = t2 > t4 only if *r-1( )
changes signs in the interval t1 < 0 < t2. But x2(t) changes signs only once in the inter-
val 0 < t < oo (since it is of the form [8] with real X,) and it follows that xr(t), r _ 2,
can vanish at most once in that interval and since x,(0) = x,( co) = 0, r > 2, x,(t) > 2,
vanishes at least once. It has been shown Cr(t) can vanish only if x,rl has previously
vanished; thus the single extremum of x, is preceded by that of x, l. Now by the same
kind of argument it follows from [i] that xM(t) can vanish only if x,l has previously
vanished. But x2(t) certainly does not vanish in 0 < t < oo, (for it is initially zero, with,
from [15], x2(0) > 0, it asymptotically approaches zero, and X2(t) can vanish only
once), and it follows that x,(t) is positive for 0 < t < oo and the extrema are abso-
lute maxima. This completes the proof of the assertions in [18].

For the special case k.1 = 0, k== = ... = k,, = k referred to in [20] and [21],
the solutions are

o (ktY1- -ktx,((t)= X r( 1t)! e I r = 1, 2, **,n
from which kTr = r-1 for r _ 2. These relations with [17] give

(r - l) (r1
Trx,(Tr)/A -(A= 1)! e = g(r), r > 2

and it is clear that g(2) = 1/e, g(3) = 4/e2> l/e. That g(r) > l/e for r . 3 is estab-
lished as follows: Consider f(r) = g(r+2)/g(r+1) = (1 + l/r)+l */le. It is to be
shown that f(r) > 1 for r _ 1 and hence l/e = g(2) < g(3) < ... < g(n). It is suffi-
cient to show that In f(r) > 0 for r . 1 and we write

lnf(r) = (r + 1)
1 1/r 1.
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But l/t > (1 + l/r)' in the interval 1 < t < (1 + l/r) and hence

lnf(r) > (r + 1) r 1 = O

(1+ Ir)
This completes the proof of [20].

NOTE II

Let x(t) = a1e1 + a2e,, as in text [8]. If this is the solution of a second order equation
and X1 = a + i43, where i = \/-1, then X2 = a - i4. If x(t) is to be real, then al and a2
are also complex conjugates, say a, = a + ib, a2 = a - ib. In order for A to exist we
must have a < 0 and to keep this case separate from the case of repeated real roots,
already treated, we require /3 #/ 0. For any complex number or function f, of t, we
denote the real part by Re(f). Then x(0) = 2 Re(a1) = 2a. If a = 0,

x(t) = 2 Re (ale,) = - 2be" sin ,Bt [i]

and if x(T) = 0, T must satisfy Re(a1Xlel) = 0, or

a sinlT + , cos ,T = 0 [ii]
From [i] and [ii],

x(T) = -ea Tcos,BT [iii]

The area, A, is

A = 2 Re (a,/Xi) = 2b1/a2[i + (a)] [iv]
From [iii] and [iv]

Ix(T)I = IAl [1 + (A)] ea' Icos 8TI [V]
When [ii] holds, sin ,BT # 0, cos 8iT # 1, and tan ,BT = 8-,/3a, whence [1 + (3,/a)2]
Icos ,/TI = 1/ Icos ,/Tj > 1. Thus from [v]

T Ix(T)I > IA| TIMeT
where - a = u > 0, as asserted in the text.

Received for publication, June 1, 1961.

REFERENCES

1. MORALES, F. M., and SHOCK, N. J. Gen. Physiol., 1944, 27, 155.
2. HEARON, J. Z., and SHULMAN, N. R., data to be published.
3. HEARON, J. Z., Bull. Math. Biophysics, 1953, 15, 121.

JOHN Z. HEARON Second Order Differential Equations 587


