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Abstract

Using a symmetrizing operator, we give a new expression for the Omega operator used by MacMa-
hon in Partition Analysis, and given a new life by Andrews, Paule and Riese. Our result is stated in
terms of Schur functions.
© 2004 Elsevier Inc. All rights reserved.

In his book “Combinatory Analysis”, MacMahon introduced an Omega operator. This
operator has been the subject of many recent articles, among {lhiédh We show in
Theorem4 that the Omega operator can be expressed by a symmetrizing operator, due in
fact to Cauchy and Jacoffi]. As a consequence, we can formulate:

Q )/ [la-x 1‘[(1— )
xeX yeY

in terms of Schur functions & andY (and therefore in terms of the elementary symmetric
functions inX andY).
Recall the definitions of MacMahon’s Omega opera}mnd of the symmetrizing oper-

atorm,.
Definition 1.
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where the domain of tha,, _, is the field of rational functions ové? in several complex
variables and the; are restricted to a neighborhood of the cirglg = 1.

By iteration, it is sufficient to treat the case of one variabtmly .

Definition 2 (Lascoux6]). GivenX = {x1, x2, ..., x,} of cardinality CardX) = n, the
symmetrizing operatot,, is defined by:

X

VEGL X)) T f (LX) = Y o( Y ORI

oceS(X)

f(xlv--wxn) n—1 0)

writing A(X) for the Vandermondg[; . ; _ ; <, (xi—x;), the sum being over all permutations
g in the symmetric grou@(X).

Recall that complete symmetric functiofis(X) are defined by the generating function:

o . 1
(A0S Y S —
2500 = i —n

Complete symmetric functions are compatible with union of alphabets (denoted ‘+’).
GivenY = {y1, y2, ..., ym}, We have:

S"(X +Y) = Z SEX) 8" R (Y.
k=0

Schur functions have two classical expressions:

Su(X)

S
= xl.
<ij<n

ACQ = |81 ()| :
/ACX) ( )1<i,jgn
wherey = [uq, - .., g, With gy >pp > - -+ >p, >0. We denote byt — ' the conjugation
of partitions.

From the definition oft,,, we get[6] :

+j—1
nw‘xill,..x#n — xiﬂ_ﬂw ‘ A = S, (X). (1)
1<i,j<n
This formulais still valid ifu € 72", uy > —n, ..., u, > —1:
T X4 xh = S,u(X), 2)

the Schur functiors,,, still defined as the determinamﬂi*"*j|1<,-,j<n, being either null
or equal tot a Schur function indexed by a partition.
Notice that by conventions; (X) = 0,i < 0. However,S_12(X) = —S1.0(X) # 0,
and indeed, in Theoredh, we need to use vector-indexed Schur functions with possibly
negative components.
Symmetrizing firstinco, . . ., x,, one also has, with the same hypotheseg:on

T X1 Sy, (X2, <y X)) = Sp(X). (3)
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Lemma 3. GivenX, Y and k such thab<k < Card X), then one has
e . . 0 . .
o | xS | =3 7008 (). @)
j=0 j=0
Proof. Since powers of; range from—k to co, we can apply2):
© . . © .
o | D ST W) | =308, 40200 87 (V).
j=0 j=0

The terms such that < k are all null, being determinants with two identical rows, and the
sum reduces to the expression stated in the lemnia.

Let us remark that the action of the operaf>brrelative toxs, ..., x, can be obtained
from the action of the operaton, ..., x4/, r>/0 by specializingc, 1, ..., x,4, to O.

Therefore we can suppose thats bigger than any given integer. This allows us in the
following theorem to suppose that> k.

Theorem 4. Given two alphabetX = {x1,x2,...,x,} andY = {y1, y2,..., yu} Of
cardinality nand mlet B =1+ Y = {1} U Y. If 0<k < n, then we have

ok
Q S
> (1-—xd) - A—xHd-%).-1-2)

o —DIHS, (B)S_k 1(X)
_ J=k qj _ Z,u( 1 Iz k,
= Ty ;xl S/(B) = R XB)

: ®)

whereR(1, XY) is equal to]_[xex_,yey(l — xy), and the sum is over all partitions (the
sum is in fact finite The vectol—k, uy, ..., u,_1]1is denoted-k, u.

Proof. We first recall Cauchy’s formulg, p. 65}

R(LXY) =Y (=DM, (X)S, (V).
n
2k
A—x1d) - (A= A(d— 3 (1-%)
© i+k ) 0 ‘
=) S0 Y Sy =) S 0STHRm)
i=0 j=0

i=0

o0
i j i—jtk _
s; 'ZOS (X)S7 (Y) /. _g
i,j=

=) SIS/ (B).
j=0

On the other hand, LemnBallows us to write this last sum ars, (Z;‘;O x{_ksi (B)). We

shall now directly compute the action of, on Z?’;ox{_ksf([ﬁ%), denoting
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X\xlz{x2,...,xn}.

Mo Y 3] “8T(B) =nu 2% Y xS (B)
j=0 j=0
x x ¥R, (X\ x1)B)
CRLaB) T R(LXB)
o (xl 3 (DS, (B) Su(X \ xp)
- R(L, XB)
DS (B) S_g 1 (X)
R(L, XB)

and the theorem is proved. ]
The result can be expressed in terms of elementary symmetric functions bec&i)se
¢; (Y)+e;—1(Y) and Schur functions are determinants in elementary symmetric functions.
Theoremd allows us to recover the “fundamental recurrence” givejdjiTheorem 2.1]
Let us remark that a different algorithm is provided 1i.
In [5, Theorem 1.4]Guo-Niu Han expresses the Omega operator in terms of Lagrange
interpolation:

}k n {z—l—k

X
o J A — E ! , 6
> AWBOTY S A=x)BO) [T (i —x)) ©

where
A =[]A=xh). B =]]A-y;d.
i=1 j=

To relate his result to our expression, let us first recall the definj@pof the Lagrange
operatorL .

Definition 5.
S, X\ x)
VieGymdn—1), Lxf(x1,...,x,) = Z e arl
where Sym(1jn — 1) is the space of polynomials img, xo, ..., x,, symmetrical in

X2, ..., Xy, andR(x, X \ x) = ]_[X/ex\x(x —x).
We can express the Lagrange operator in termg,of

Lemma 6. Vf € Sym(1ljn — 1), we have

nwf(xl,...,xn):Lx<f(x1,.. L Xn) X] 1). 7
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Proof. f(x1,x2,...,x,) can be written as sums of powers xf [6], with coefficients
symmetrical inx1, ..., x,. Checking

L (x§ x; 71 = o (x1) = S5(X),

is immediate. O

Formula ) shows that the Lagrange operator in formua ¢an be replaced by,,;
therefore]5, Theorem 1.4]s a consequence of Theoren

One does not need to suppose that allkifeeare distinct. Indeed, in a Schur function, one
may specializer, . .., x; to the same valua. This is more of a problem in the Lagrange
interpolation formula, where one has to use derivatives of different orders.

Let us finish with a small explicit example, fot = {x1, x2}, Y = {y}, andk = 1.

L —DlHS, (B)S_1 1(X
o Zx{_lS](B) :Z“( ) ,u( ) 1,,u( )

= R(1, XB)
_ =81(B)S_1,1(X) + 51.1(B)S_1,2(X)
B R(1, XB)
_ (1+y) — ylx1+x2)
(1—x1) (1 —x2)(1—x1y)(1 — x2y)
A
=Q - .
> (1—x) (A — Ax2)(A — y/A)
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