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Abstract

A family of classification algorithms generated from Tikhonov regularization schemes are considered.
They involve multi-kernel spaces and general convex loss functions. Our main purpose is to provide sat-
isfactory estimates for the excess misclassification error of these multi-kernel regularized classifiers when
the loss functions achieve the zero value. The error analysis consists of two parts: regularization error and
sample error. Allowing multi-kernels in the algorithm improves the regularization error and approximation
error, which is one advantage of the multi-kernel setting. For a general loss function, we show how to bound
the regularization error by the approximation in some weighted Lq spaces. For the sample error, we use a
projection operator. The projection in connection with the decay of the regularization error enables us to
improve convergence rates in the literature even for the one-kernel schemes and special loss functions: least-
square loss and hinge loss for support vector machine soft margin classifiers. Existence of the optimization
problem for the regularization scheme associated with multi-kernels is verified when the kernel functions
are continuous with respect to the index set. Concrete examples, including Gaussian kernels with flexible
variances and probability distributions with some noise conditions, are used to illustrate the general theory.
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1. Introduction

We study binary classification algorithms generated from Tikhonov regularization schemes
associated with general convex loss functions and multi-kernel spaces. These algorithms pro-
duce binary classifiers C : X → {1, −1}, from a compact metric space X (called input space)
to the output space Y = {1, −1} (representing the two classes). Such a classifier C yields
for each point x the value C(x) ∈ Y which is a prediction made for x (when X ⊂ Rn, x
is a vector representing an event with each component corresponding to a specific
measurement).

The classifiers considered here have the form C = sgn(f ), defined as sgn(f )(x) = 1 if f (x)�0
and sgn(f )(x) = −1 if f (x) < 0, induced by real-valued functions. These functions are solutions
of some optimization problems associated with a sample z = {(xi, yi)}mi=1, independently drawn
according to a (unknown) probability distribution � on Z = X × Y . The nature of such an
optimization problem (called a Tikhonov regularization scheme) is determined by two objects: a
loss function and a hypothesis space.

Definition 1. A function � : R → R+ is called an activating loss (function) for classification if
it is convex, �′(0) < 0, and inf t∈R �(t) = 0.

Typical examples of activating loss include the hinge loss �h(t) = (1 − t)+ = max{1 − t, 0}
for the support vector machine (SVM) classification and the exponential loss �exp(t) = e−t for
boosting.

Let � be an activating loss. For a real-valued function f, when sgn(f ) is used for classification
or prediction, the local error incurred for the event x and output y will be measured by the value
�(yf (x)). The average of local errors is defined as E�(f ) = ∫

Z
�(yf (x)) d�, called the error or

generalization error.
The convexity of � tells us that the (one-side) derivative �′ is non-decreasing. This in connection

with the condition �′(0) < 0 [3] implies that �′(t)��′(0) < 0 for t < 0. It follows that when
yf (x) < 0, i.e., when sgn(f )(x) predicts the class label y incorrectly, the local error is large:
�(yf (x)) > �(0) > 0. So local errors are possibly small only if yf (x)�0. Hence minimizing
the generalization error is expected to lead to a function predicting the label satisfactorily. This
gives the intuition that � is admissible for classification problems, as verified by many examples
in practice.

Since the generalization error involving the unknown distribution � is not computable, its
discretization is used instead which, computable in terms of the sample z, is de-
fined as

E�
z (f ) = 1

m

m∑
i=1

� (yif (xi))

and called the empirical error. Regularized learning schemes are implemented by minimizing
a penalized version of the empirical error over a set of functions, called a hypothesis space H,
equipped with a functional � : H → R+. The penalty functional � reflects constraints imposed
on functions from the hypothesis space in various desirable forms.

Definition 2. Given a function � : R → R+ and a hypothesis space H together with a penalty
functional �, the regularized classifier generated for a sample z ∈ Zm is defined as sgn(fz), where
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fz is a minimizer of the Tikhonov regularization scheme

fz := arg min
f ∈H

{
1

m

m∑
i=1

� (yif (xi)) + ��(f )

}
. (1.1)

Here � is a positive constant called the regularization parameter. It depends on m : � = �(m), and
usually �(m) → 0 as m becomes large.

Reproducing kernel Hilbert spaces (RKHSs) are often used as the hypothesis space in (1.1).
They play an important role in learning theory because of their reproducing property.

Let K : X × X → R be continuous, symmetric and positive semidefinite, i.e., for any finite
set of distinct points {x1, . . . , x�} ⊂ X, the matrix (K(xi, xj ))

�
i,j=1 is positive semidefinite. Such

a function is called a Mercer kernel.
The RKHS HK associated with the Mercer kernel K is defined (see [1]) to be the completion

of the linear span of the set of functions {Kx = K(x, ·) : x ∈ X} with the inner product 〈·, ·〉K
given by 〈Kx, Ky〉K = K(x, y). The reproducing property of HK is

〈Kx, f 〉K = f (x) ∀x ∈ X, f ∈ HK. (1.2)

The classical soft margin classifier [41,12] corresponds to the scheme (1.1) with H = HK :

fz = arg min
f ∈HK

{
1

m

m∑
i=1

�(yif (xi)) + �‖f ‖2
K

}
. (1.3)

In this paper we introduce a multi-kernel setting where H is the union of a set of RKHSs.

Definition 3. Let K� = {K� : � ∈ �} be a set of Mercer kernels on X. The multi-kernel space
associated with K� is defined to be the union H� =⋃�∈� HK� . For f ∈ H�, we take

‖f ‖� = inf
{‖f ‖K� : f ∈ HK� , � ∈ �

}
, (1.4)

where ‖f ‖K� is the RKHS norm of the function f in the RKHS HK� . Taking H� as the hypothesis
space and �(f ) = ‖f ‖2

� in (1.1) leads to the following scheme in the multi-kernel space H�:

fz = arg min
f ∈H�

{
1

m

m∑
i=1

� (yif (xi)) + �‖f ‖2
�

}
. (1.5)

The corresponding multi-kernel regularized classifier is given by sgn(fz).

Note that H� may not be a linear space. Denote
(HK� , ‖ · ‖K�

)
as (H�, ‖ · ‖�) for simplicity.

The regularization scheme in the multi-kernel space H� can be rewritten as a two-layer mini-
mization problem:

fz = arg min
�∈�

min
f ∈H�

{
1

m

m∑
i=1

� (yif (xi)) + �‖f ‖2
�

}
. (1.6)

It reduces to (1.3) when � contains only one element.
Our study of general multi-kernel schemes is motivated by recent work on learning algorithms

with varying kernels. In [10] SVMs with multiple parameters are investigated. In [22,29] mixture
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density estimation is considered and Gaussian kernels with variance �2 flexible on an interval
[�2

1, �
2
2] with 0 < �1 < �2 < +∞ are used for deriving bounds. Approximation properties of

multi-kernel spaces are studied in [50]. Some algorithms for multi-task learning and learning the
kernel function involve kernels from a convex hull of several Mercer kernels and spaces with
changing norms, e.g. [18,20,27].

The first natural concern about the optimization problem (1.5) or (1.6) is the existence of a
minimizer before efficient algorithms are searched. The existence is assured by the compactness
of the index metric set � and the continuity of K� for � ∈ � in the next result following from
Proposition 1 given in Section 2.

Theorem 1. Let � be an activating loss. If the index set � is a compact metric space, and for
each pair (x, y), the function K�(x, y) is continuous with respect to � ∈ �, then a solution fz to
the multi-kernel scheme (1.6) exists.

In particular, fz exists in the one-kernel setting (1.3). We shall assume the existence of the
optimization problem (1.6) throughout the error analysis of multi-kernel regularized classifiers,
the main goal of this paper.

Let (X , Y) be the random variable on X × Y with the probability distribution �. The mis-
classification error for a classifier C : X → Y is defined to be the probability of the event
{C(X ) �= Y},

R(C) = Prob {C(X ) �= Y} =
∫

X

P (Y �= C(x)|x) d�X. (1.7)

Here �X is the marginal distribution on X and P(·|x) is the conditional distribution. Our target
of error analysis is to understand how sgn(fz) approximates the Bayes rule, the best classifier
with respect to the misclassification error: fc = arg inf R(C) with the infimum taken over all
classifiers. Denote �(x) = P(Y = 1|x) and recall the regression function

f�(x) =
∫

Y

y d�(y|x) = P(Y = 1|x) − P(Y = −1|x) = 2�(x) − 1, x ∈ X. (1.8)

Then the Bayes rule is given (e.g. [17]) by the sign of the regression function fc = sgn(f�).
Estimating the excess misclassification error

R(sgn(fz)) − R(fc) (1.9)

for the multi-kernel regularized classification algorithm (1.6) is our main purpose.
For the one-kernel setting (1.3) and special choices of �, the error analysis has been extensively

investigated in the literature, especially when � is strictly separable (with a positive margin).
Examples of loss functions include

(1) hinge loss �h for SVM [41,30,35,13,44];
(2) �q(t) = (1 − t)

q
+ for the SVM q-norm (q > 1) soft margin classifier, see [41,23,11];

(3) least-square loss �ls(t) = (1 − t)2, see e.g. [14,17,19,28,34,37,47];
(4) exponential loss �exp(t) = e−t , see [47,5,24];
(5) logistic regression �(t) = log(1 + e−t ) or 1/(1 + et ), see [47,5].

For the error bounds, we will focus on activating loss functions achieving zeros, which allows
us to provide a powerful analysis.
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Definition 4. An activating loss is called a classifying loss for classification if �(t0) = 0 for some
t0 ∈ R. It is called normalized if 1 is the minimal zero of �.

Examples of classifying loss include the hinge loss �h, the q-norm loss �q for SVM classifi-
cation and the least-square loss �ls(t) = (1 − t)2. They are all normalized.

Our error analysis will be done in Sections 3–5. It uses an error decomposition procedure for
regularization scheme introduced in [11,43], with the aid of an iteration technique [36,43] and
a projection operator hyperlinkbib11[11]. The convergence rates will be stated in terms of the
sample size m with proper choices of the regularization parameter � = �(m) → 0. Our analysis
yields fast convergence rates which might be improved further in some situations [33]. Let us
demonstrate the convergence rates in the SVM case.

Assume X ⊂ Rn and for some s > n, the multi-kernels K� satisfy

sup
�∈�

‖K�‖Cs(X×X) < ∞. (1.10)

It means that {K� : � ∈ �} is a set of Cs Mercer kernels with a uniform bound. Here the Cs norm

equals ‖K�‖Cs(X×X) := max�1+···+�2n � s ‖ ��1+···+�2n

�x
�1
1 ···�x

�n
n �y

�n+1
1 ···�y

�2n
n

K‖C(X×X). The convergence

rate for SVM with such multi-kernels which will be proved in Section 5 can be stated as follows.

Theorem 2. Let � = �h and fz be given by (1.6). Assume that for some 0 < ��1 and c� > 0,
we have

inf
�∈�

inf
f ∈H�

{
‖f − fc‖L1

�X
+ �‖f ‖2

�

}
�c��� ∀� > 0. (1.11)

If (1.10) holds for some s > n, choose �(m) = ( 1
m

)min
{

1
2�+(1−�)n/s

,
2

1+�

}
. For any 	 > 0 and

0 < 
 < 1, there exists a constant c̃ independent of m such that with confidence 1 − 
,

R(sgn(fz)) − R(fc)� c̃

(
1

m

)�

, (1.12)

where � = min
{

�
2�+(1−�)n/s

− 	, 2�
1+�

}
.

In Theorem 2, 	 can be arbitrarily small. Hence the power � in the learning rate (1.12) is

arbitrarily close to min
{

�
2�+(1−�)n/s

,
2�

1+�

}
. When the kernels are C∞ and (1.10) holds for any

s > 0, we see that � can be arbitrarily close to min
{

1
2 ,

2�
1+�

}
which equals to 1

2 when �� 1
3 .

The condition (1.11) measures the approximation power of the multi-kernel space H� in L1
�X

,
acting on the function fc = sgn(f�) which involves only the sign of f�. It can be described by
some interpolation spaces of the pair (H�, L1

�X
).

We only assume conditions on the approximation power (1.11) and the smoothness (1.10) in
Theorem 2. If further information about the distribution � is available, one can expect sharper
error estimates. For example, when � satisfies a so-called Tsybakov noise condition [39]

�X({x ∈ X : 0 < |f�(x)|��t})� t� ∀t > 0, (1.13)

with some � ∈ [0, ∞] and � > 0, then the power � in the error bound (1.12) can be improved to

� = min
{

�(�+1)

�(�+2)+(�+1−�)n/s
− 	, 2�

1+�

}
. This will be shown in Theorem 6 below (in Section 5).
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Note that any distribution satisfies (1.13) with � = 0. The case � = ∞ is the same as |f�(x)|��
or f�(x) = 0, meaning that the two classes are well separated.

Our result is new for the multi-kernel setting. Even for the one-kernel setting H� = HK ,
Theorem 2 provides the best convergence rate for the SVM under the same assumption (1.11)
of the approximation power of HK and the regularity condition of the kernel (K ∈ Cs with
s > n): the capacity independent estimates derived by Zhang [47] yield the learning rate (1.12)
with � = �/(1 + �); under the noise condition (1.13) and some moment conditions on the
probability distribution, Steinwart and Scovel [36] obtained the learning rate (1.12) with � =

2�(�+1)

(2+�+�n/s)(1+�)
− 	. Since s > n, our rate is sharper than theirs.

2. Optimization problem for regularization with multi-kernels

We divide the study of the optimization problem (1.6) in two steps.
First, fix � ∈ �. Denote the optimal solution in the RKHS H� as

fz,� = arg min
f ∈H�

{
1

m

m∑
i=1

�(yif (xi)) + �‖f ‖2
�

}
.

To solve this problem by a dual argument in optimization theory, we define the dual function
 : R → R of � by

(v) = sup
u∈R

{vu − �(u)} , v ∈ R. (2.1)

By the reproducing property (1.2), the optimization problem for solving fz,� on H� can be reduced
into one on Rm. The following relation between the primal problem and its dual is well known
(see e.g. [46]):

inf
f ∈H�

{
1

m

m∑
i=1

�(yif (xi)) + �‖f ‖2
�

}
= sup

�∈Rm

{
R̂(�, �)

}
,

where

R̂(�, �) := − 1

m

m∑
i=1

(−�iyi) − 1

4m2�

m∑
i,j=1

�iK�(xi, xj )�j , � ∈ Rm.

Moreover, both optimizers exist. If �̂� = arg max�∈Rm R̂(�, �), then (�̂�)iyi �0 and

fz,�(x) = 1

2�m

m∑
i=1

(
�̂�
)
i
K�(xi, x).

Next, consider the multi-kernel scheme (1.6). A solution fz can be represented as

fz(x) = 1

2�m

m∑
i=1

�̂iK�̂(xi, x)
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if an optimal point (�̂, �̂) of the following “dual problem” exists:

(�̂, �̂) = arg min
�∈�

max
�∈Rm

{
R̂(�, �)

}
. (2.2)

We show that under some mild condition, (2.2) can be solved.

Proposition 1. Under the conditions of Theorem 1, an optimal point (�̂, �̂) of (2.2) can be
achieved. Hence an optimal solution fz to the multi-kernel regularization scheme (1.5) always
exists.

The proof of Proposition 1 will be given in the Appendix.

Example 1. Let � = [�1, �2] with 0 < �1 ��2 < ∞ and K� be the Gaussian kernel K�(x, y) =
exp

{
−|x−y|2

2�2

}
on a compact subset X of Rn. Then a solution to the optimization problem (1.6)

exists.

It would be interesting to consider the existence when � = (0, ∞).

3. Error analysis: a general framework

In this section, we give a general framework of our error analysis, consisting of a comparison
theorem (reducing (1.9) to an excess generalization error), a projection operator (making random
variables uniformly bounded) and an error decomposition procedure (decomposing the excess
generalization error into a sum of a regularization error and a sample error). Then the framework
provides bounds for the excess misclassification error in terms of a regularization error and a
sample error, studied in the next two sections separately.

3.1. Comparison theorems

Similar to the learning rate stated in Theorem 2, the error analysis aims at bounding the excess
misclassification error R(sgn(fz)) − R(fc). But the algorithm is designed by minimizing a

penalized empirical error E�
z associated with the loss function �. Knowledge of regularization

schemes or empirical risk minimization processes would only lead us to expect the convergence of
E�(fz) as m → ∞. So relations between misclassification error and generalization error become
crucial. Some work on this topic includes [5,47,3]. Here we only mention some comparison
theorems which will be used in the paper.

Denote R = R ∪ {±∞}. Define

f
�
� = arg min E�(f )

with the minimum taken over all functions f : X → R. Note that f
�
� always exists since �

is convex. It satisfies sgn(f
�
� ) = fc, an admissible condition for the loss function, see [34,3].

Comparison theorems enable us to bound the excess misclassification error (1.9) by estimates for

the excess generalization error E�(f ) − E�(f
�
� ).

Proposition 2. Let � = �h be the hinge loss. We have f
�h
� = fc and for every measurable

function f : X → R,

R(sgn(f )) − R(fc)�E�h(f ) − E�h(fc). (3.1)
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Proposition 3. If an activating loss � satisfies �′′(0) > 0, then there exists a constant c� > 0
such that for any measurable function f : X → R, there holds

R(f ) − R(fc)�c�

√
E�(f ) − E�(f

�
� ).

The fact fc = f
�h
� was proved in [42]. The relation (3.1) in the first comparison theorem,

Proposition 2, was proved in [47].
The second comparison theorem, Proposition 3, deals with general activating loss functions. It

was explicitly given in [11] following the general results in [3]. Note that if �′′(0) exists then the
convexity of � implies �′′(0)�0.

Tighter comparison bounds are possible under some noise conditions. We say that � has a
Tsybakov noise exponent ��0 if for some c� > 0 and every measurable f : X → Y ,

�X ({x ∈ X : f (x) �= fc(x)}) �c� (R(f ) − R(fc))
� . (3.2)

All distributions satisfy (3.2) with � = 0 and c� = 1. The following sharper comparison
bound for � > 0 follows immediately from [3] which can also be seen from [5, Lemma 6] and
Proposition 3.

Corollary 1. Let � be a classifying loss satisfying �′′(0) > 0. If � satisfies the Tsybakov noise
condition (3.2) for some � ∈ [0, 1] and c� > 0, then

R(sgn(f )) − R(fc)�
{

2c�c�

(
E�(f ) − E�(f

�
� )
)}1/(2−�) ∀f : X → R.

3.2. Projection operator

By comparison theorems, we only need to bound the excess generalization error E�(fz) −
E�(f

�
� ) in order to study the performance of the classifier sgn(fz). But we can do better using the

special feature of a classifying loss that it achieves a zero. A key technical tool here is a projection
operator.

To simply the notations and statements, we will restrict our discussion only for normalized

classifying loss functions. For such a loss function �, we can choose a minimizer f
�
� of E�(f )

such that f
�
� (x) ∈ [−1, 1] on X. To see this, we set a univariate convex function Q for x ∈ X as

Q(t) = Qx(t) :=
∫

Y

�(yt) d�(y|x), t ∈ R. (3.3)

Its one-side derivatives exist, are non-decreasing and satisfy Q′−(t)�Q′+(t) for every t ∈ R.
Denote

f −
� (x) = sup

{
t ∈ R : Q′−(t) < 0

}
, f +

� (x) = inf
{
t ∈ R : Q′+(t) > 0

}
.

Theorem 3. Let � be a normalized classifying loss function. Then

(a) for eachx ∈ X, the univariate function Q given by (3.3) is strictly decreasing on (−∞, f −
� (x)],

strictly increasing on [f +
� (x), +∞), and is constant on [f −

� (x), f +
� (x)].
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(b) f
�
� : X → R is a minimizer of the generalization error E�(f ) if and only if for almost every

x ∈ (X, �X), f
�
� (x) is a minimizer of Q, that is, there holds

f −
� (x)�f

�
� (x)�f +

� (x). (3.4)

(c) We may choose a minimizer f
�
� of E� satisfying f

�
� (x) ∈ [−1, 1] for each x ∈ X.

Proof. Let x ∈ X. Consider the univariate continuous function Q given by (3.3). It is strictly
decreasing on the interval (−∞, f −

� (x)), since Q′−(t) < 0 on this interval. In the same way,
Q′+(t) > 0 for t > f +

� (x), so Q is strictly increasing on (f +
� (x), +∞). For t ∈ (f −

� (x), f +
� (x)),

we have 0�Q′−(t)�Q′+(t)�0, hence Q is constant which is the minimal value of Q on R. This
proves (a).

Since E�(f ) = ∫
X

Qx(f (x)) d�X(x), the statement (b) follows directly from (a).
By the assumption, � is convex and has minimal zero 1. This implies that � is strictly decreasing

on (−∞, 1] and non-decreasing on [1, +∞). So Q(t)�Q(1) for t > 1 and Q(t)�Q(−1) for

t < −1. So a minimum of Q can always be achieved on [−1, 1]. Hence we may choose f
�
� such

that f
�
� (x) ∈ [−1, 1]. This proves the statement (c). �

In what follows we shall always choose f
�
� with |f �

� (x)|�1 for normalized classifying loss
functions. Then we can make full use of the projection operator introduced in [11].

Definition 5. The projection operator � is defined on the space of measurable functions f : X →
R as

�(f )(x) =
⎧⎨⎩

1 if f (x) > 1,

−1 if f (x) < −1,

f (x) if − 1�f (x)�1.

(3.5)

It is easy to see that �(f ) and f induce the same classifier, i.e., sgn(�(f )) = sgn(f ). Apply
this fact to comparison theorems. It is sufficient for us to bound the excess generalization error
for �(fz) instead of fz. This leads to better estimates, as we will see later.

The following property of the projection operator is immediate from the definition of �.

Proposition 4. If � is a normalized classifying loss function, then there holds almost surely

�(y�(f )(x))��(yf (x)). (3.6)

Hence for any measurable function f, we have E�(�(f ))�E�(f ) and E�
z (�(f ))�E�

z (f ).

3.3. Error decomposition

Now we can present the error decomposition which leads to bounds of the excess generalization
error for �(fz). Define

f� = arg min
f ∈H�

{
E�(f ) + �‖f ‖2

�

}
.
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Proposition 5. Let � be a normalized classifying loss and fz given by (1.6). Then

E�(�(fz)) − E�(f
�
� ) + �‖fz‖2

� �D(�) + Sz,�, (3.7)

where D(�) is the regularization error of the multi-kernel space H� defined [32] as

D(�) = inf
�∈�

inf
f ∈H�

{
E�(f ) − E�(f

�
� ) + �‖f ‖2

�

}
(3.8)

and

Sz,� =
{
E�(�(fz)) − E�

z (�(fz))
}

+
{
E�

z (f�) − E�(f�)
}

. (3.9)

Proof. Write E�(�(fz)) − E�(f
�
� ) + �‖fz‖2

� as{
E�(�(fz)) − E�

z (�(fz))
}

+
{(

E�
z (�(fz)) + �‖fz‖2

�

)
−
(
E�

z (f�) + �‖f�‖2
�

)}
+
{
E�

z (f�) − E�(f�)
}

+
{
E�(f�) − E�(f

�
� ) + �‖f�‖2

�

}
.

By Proposition 4, E�
z (�(fz))�E�

z (fz). This in connection with the definition of fz tells us that
the second term is �0. Note that Sz,� is just the sum of the first and third terms. By the definition
of f�, the last term equals to D(�). This proves (3.7). �

The regularization error term D(�) in the error decomposition (3.7) is independent of the sample
and will be discussed in Section 4.

The last term Sz,� in (3.7) is called the sample error. Without projection, it is well understood
because of the vast literature in learning theory, see [7] and references therein. We are able to
improve the sample error estimates, stated in Theorem 5 below, because of the projection operator.

Comparison theorems and the error decomposition help switch the goal of the error analysis
to the estimation of the regularization error and the sample error. For instance, to prove Theorem
2, we first apply Proposition 2 to �(fz) and then Proposition 5. It tells us that R(sgn(fz)) −
R(fc)�D(�) + Sz,�.

4. Estimating regularization error and approximation error

In this section, we discuss the estimation of the regularization error D(�) which is non-random
and is also called the approximation error. The convexity of � implies that �′−(t) = �′+(t) = �′(t)
for almost every t ∈ R.

Theorem 4. Let � be a normalized classifying loss. Then

E�(f ) − E�(f
�
� )�‖�′‖L∞[−‖f ‖∞,‖f ‖∞]‖f − f

�
� ‖L1

�X
.

If moreover, � is C1 and �′ is absolutely continuous on R, we have

E�(f ) − E�(f
�
� )�‖�′′‖L∞[−‖f ‖∞−1,‖f ‖∞+1]‖f − f

�
� ‖2

L2
�X

.

Proof. With the function Q = Qx defined in (3.3), write E�(f ) − E�(f
�
� ) as

E�(f ) − E�(f
�
� ) =

∫
X

{
Q(f (x)) − Q(f

�
� (x))

}
d�X.
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Since �′(0) < 0 and �(t)�0, we have �(0) > 0 and �′±(t) < 0 for t < 0. Let P(t) =
max

{
�′±(t), −�′±(−t)

}
for t > 0. We only need to prove

Q(f (x)) − Q(f
�
� (x))�P(|f (x)|)|f (x) − f

�
� (x)| (4.1)

for those x with Q(f (x)) − Q(f
�
� (x)) > 0. According to Theorem 3, such a point x satisfies

f (x) /∈ [f −
� (x), f +

� (x)].
If f (x) > f +

� (x), then Q is strictly increasing on [f (x), +∞). Hence f (x) > f
�
� (x). By

Theorem 3, we have

Q(f (x)) − Q(f
�
� (x))�Q′−(f (x))

(
f (x) − f

�
� (x)

)
.

The convexity of � implies that the one-side derivatives �′+ and �′− exist, are non-decreasing,
and satisfy �′−(t)��′+(t) for any t ∈ R. Note that Q(t) = �(x)�(t) + (1 − �(x))�(−t). Hence

Q′−(f (x)) = �(x)�′−(f (x)) − (1 − �(x))�′+(−f (x))

� max
{
�′±(|f (x)|), −�′±(−|f (x)|)}

no matter whether f (x)�0 or not. Thus, (4.1) holds true when f (x) > f +
� (x).

In the same way, if f (x) < f −
� (x), then Q is strictly decreasing on (−∞, f (x)]. Hence

f (x) < f
�
� (x). Theorem 3 yields again

Q(f (x)) − Q(f
�
� (x))� − Q′+(f (x))

(
f

�
� (x) − f (x)

)
.

Since −Q′+(f (x)) = −�(x)�′+(f (x)) + (1 − �(x))�′−(−f (x))�P(|f (x)|), we see that (4.1)
also holds when f (x) < f −

� (x). This proves the first statement.

If � is C1 and �′ is absolutely continuous on R, we know from Theorem 3 that Q′(f �
� (x)) = 0.

Hence

Q(f (x)) − Q(f
�
� (x)) =

∫ f (x)

f
�
� (x)

Q′(u) − Q′(f �
� (x)) du� ‖Q′′‖L∞(I )

2
|f (x) − f

�
� (x)|2,

where I is the interval between f
�
� (x) and f (x). Then the second statement follows. �

In the above, L
q
�X

is the Lq space with norm ‖f ‖L
q
�X

= {∫
X

|f (x)|q d�X

}1/q . Thus, we can
use the rich knowledge from approximation theory to estimate the regularization error. See [11]
for details on bounding the regularization error for the SVM q-norm soft margin classifiers by
means of K-functionals in L

q
�X

.
One advantage of multi-kernel algorithms is the improvement of regularization errors compared

with the one-kernel setting. Let us show this by the example of Gaussian kernels and least-square
loss �ls. Here �ls(yf (x)) = (1 − yf (x))2 = (y − f (x))2 since y2 = 1 for y ∈ Y . So we know

[41] that f
�
� = f� and E�ls(f ) − E�ls(f�) = ‖f − f�‖2

L2
�X

.
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Example 2. Let � = �ls and K� be the Gaussian kernel K�(x, y) = exp
{
−|x−y|2

2�2

}
on a compact

domain X of Rn with piecewise smooth boundary. Assume �X is the Lebesgue measure on X.

(1) If � = {�} corresponding to a single Gaussian kernel with variance � > 0, then D(�) = O(�	)

for some 	 > 0 only if f� ∈ C∞(X).

(2) If � = (0, ∞) and f� ∈ C1(X), then D(�) = O(�
1

n+1 ).

The first statement follows from the analysis in [31] or [16] on the approximation error, since
‖f�‖K� �1/

√
� and D(�) = O(�	) implies inf‖f ‖K� �R{‖f − f�‖2

L2
�X

} = O(R−2	). The error

bound in the second statement was achieved [45] by � = �
1

2n+2 ∈ (0, ∞). For details on deriving
satisfactory learning rates in the case � = (0, ∞), see [45] where the sample error analysis was
done by means of empirical covering numbers. Note that the uniform smoothness condition (1.10)
with s > 0 does not hold in this case.

More examples and discussion can be found in [50,36,31,45].

5. Sample error estimates and learning rates

We are in a position to estimate the sample error and derive the learning rates. Throughout this
section, we assume that the kernels are uniformly bounded in the sense that

� := sup
�∈�

‖K‖C(X×X) < ∞. (5.1)

To state our result, we need to further introduce several concepts and notations.

The quantity E�(�(fz)) − E�
z (�(fz)) in the sample error (3.9) needs to be estimated by some

uniform law of large numbers. To this end, we need the capacity of the hypothesis space, which
plays an essential role in sample error estimates. In this paper, we use the covering numbers
measured by empirical distances.

Definition 6. Let F be a set of functions on Z and z = {z1, . . . , zm} ⊂ Z. The metric d2,z is
defined on F by

d2,z(f, g) =
{

1

m

m∑
i=1

(f (zi) − g(zi))
2

}1/2

.

For every ε > 0, the covering number of F with respect to d2,z is defined as

N2,z(F, ε) = inf

{
� ∈ N : ∃{fi}�i=1 ⊂ F such that F =

�⋃
i=1

{ f ∈ F : d2,z(f, fi)�ε}
}

.

The function sets in our situation are balls of the multi-kernel space in the form of BR =
{f ∈ H� : ‖f ‖� �R} = ⋃

�∈� {f ∈ H� : ‖f ‖� �R}. We need the empirical covering number
of B1 defined as

N (ε) = sup
m∈N

sup
x∈Xm

N2,x (B1, ε) . (5.2)
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Note that for any function set F ⊂ C(X), the empirical covering number N2,x (F, ε) is bounded
by N (F, ε), the (uniform) covering number of F under the metric ‖·‖∞, since d2,x(f, g)�‖f −
g‖∞. So in the multi-kernel setting, the behavior of the covering number N (ε) can be estimated
by the uniform smoothness of kernels in � according to [49].

Example 3. If the set � of kernels on X ⊂ Rn satisfies (1.10) for some s > 0, then there is a
constant cs > 0 such that log N (ε)�cs (1/ε)2n/s for any ε > 0.

For a function f : Z → R, denote Ef = ∫
Z

f (z) d�.

Theorem 5. Let � be a normalized classifying loss. Assume the following conditions with expo-
nents q > 0, � ∈ [0, 1] and p ∈ (0, 2):

(1) an increment condition for � with a constant cq > 0,

|�(t))|�cq |t |q ∀|t |�1, (5.3)

(2) a variance–expectation bound for the pair (�, �) with the exponent � and some c� > 0,

E

{(
�(yf (x)) − �(yf

�
� (x))

)2
}

�c�

{
E�(f ) − E�(f

�
� )
}� ∀‖f ‖∞ �1, (5.4)

(3) a capacity condition for the function set B1 with a constant cp > 0

log N (ε)�cp

(
1

ε

)p

∀ε, R > 0, m ∈ N. (5.5)

If D(�)�c��� for some 0 < ��1 and c� > 0, then for any 	 > 0 and 0 < 
 < 1, there exists

a constant c̃ independent of m such that, with � = �(m) = ( 1
m

)�
, we have

E�(�(fz)) − E�(f
�
� )� c̃

(
1

m

)�

(5.6)

with confidence 1 − 
, where

� = min

{
2

�(4 − 2� + p�) + p(1 − �)
,

2

2� + q − �q

}
, (5.7)

� = min

{
2�

�(4 − 2� + p�) + p(1 − �)
− 	,

2�

2� + q − �q

}
. (5.8)

The proof of Theorem 5 will be given at the end of this section by using a local Rademacher
process.

The increment condition (5.3) is satisfied for many useful loss functions including the hinge
loss and least-square loss.

The variance–exponent condition (5.4) for the pair (�, �) always holds for � = 0 with

c� = (max{�(−1), �(1)})2. This can be seen from the fact that |�(yf (x)) − �(yf
�
� (x))|�

max{�(−1), �(1)}. Larger exponents � are possible when � has high convexity (such as �ls in
Theorem 7 below) or when the distribution � satisfies some conditions (such as the Tsybakov
noise condition (1.13) in Theorem 6 below).
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Besides Example 3, the capacity condition (5.5) always holds with p�2 if K� contains only
one kernel.

The regularization error D(�) decays to zero once H� is dense in C(X). By the discussion in
Section 4, the decay rate with an exponent � can be estimated if some a priori knowledge on the
distribution is available; see [11] for explicit examples.

Let us now show how to apply Theorem 5 to derive learning rates.
Recall Proposition 3 and Corollary 1. A direct corollary of Theorem 5 is as follows.

Corollary 2. Under the assumption of Theorem 5, if �′′(0) > 0, then for any 	 > 0 and 0 < 
 <

1, there is a constant c̃ independent of m such that with confidence 1 − 
,

R(sgn(fz)) − R(fc)� c̃

(
1

m

)�/2

, (5.9)

where � = ( 1
m

)�
, �, � are given by (5.7) and (5.8), respectively. If, in addition, � satisfies the noise

condition (3.2) with 0 < ��1, the power �
2 in (5.9) can be improved to 1

2−��.

Next we consider two classical classification algorithms: SVM classification and least-square
method.

5.1. Learning rates for the SVM classification

For the SVM classification with the hinge loss, we illustrate, as in [4,3], how noise condi-
tions on the distribution � raise the variance–expectation exponent � in (5.4) from 0 (for general
distributions) to � = �/(� + 1) > 0.

Theorem 6. Let � = �h and the multi-kernels {K� : � ∈ �} satisfy (5.5). Assume

inf
�∈�

inf
f ∈H�

{
E�h(f ) − E�h(fc) + �‖f ‖2

�

}
�c��� ∀� > 0 (5.10)

with 0 < ��1, c� > 0, and that � satisfies the noise condition (1.13) with � ∈ [0, ∞] and � > 0.

Choose � = �(m) = ( 1
m

)min

{
2(�+1)

�(�+2)+p(�+1−�)
,

2
�+1

}
. For any 	 > 0 and 0 < 
 < 1, there exists

a constant C	 > 0 independent of m such that with confidence 1 − 
,

R(sgn(fz)) − R(fc)�C	

(
1

m

)�

, � = min

{
2�(� + 1)

2�(� + 2) + p(� + 1 − �)
− 	,

2�

1 + �

}
.

Proof. Observe that �h satisfies the increment condition (5.3) with q = 1 and cq = 2.
Because of the noise condition (1.13), we know from [36,43] that the condition (5.4) is valid

with the exponent � = �
�+1 and the constant c� = 8

( 1
2�

)�/(�+1)
. Then the conclusion follows

from Theorem 5 and Proposition 2. �

Theorem 2 stated in the Introduction is a special case of Theorem 6 with multi-kernels having
a uniform bound in Cs .



122 Q. Wu et al. / Journal of Complexity 23 (2007) 108–134

Proof of Theorem 2. By Example 3, (5.5) holds with p = 2n/s. Since �h is Lipschitz, Theorem
4 yields E�h(f ) − E�h(fc)�‖f − fc‖L1

�X
. Hence (1.11) implies (5.10). Take � = 0 since no

assumption on the noise is made. We see Theorem 2 follows from Theorem 6. �

5.2. Learning rates with the least-square loss

Turn to the least-square loss �ls(t) = (1 − t)2 [37]. The high convexity of �ls ensures a large
variance–expectation exponent � in (5.4). In fact, it was proved in [21] (see also [14]) that (5.4)
holds true with � = 1 and C� = 1. The increment condition (5.3) for �ls is true with q = 2.
Putting all these into Proposition 3 and Corollary 2, we obtain the following learning rate.

Theorem 7. Consider (1.6) with � = �ls and multi-kernels {K� : � ∈ �} satisfying (5.5) with
some p ∈ (0, 2). Assume that for some 0 < ��1 and c� > 0,

inf
�∈�

inf
f ∈H�

{
‖f − f�‖2

L2
�X

+ �‖f ‖2
�

}
�c��� ∀� > 0. (5.11)

Then by choosing � = �(m) = ( 1
m

)min
{

2
2�+p

,1
}
, for any 	 > 0 and 0 < 
 < 1, there exists a

constant C	 independent of m such that with confidence 1 − 
,

R(sgn(fz)) − R(fc)�C	

(
1

m

)�

with � = 1

2
min

{
2�

2� + p
− 	, �

}
. (5.12)

If moreover, � satisfies (3.2), then � can be improved to 1
2−� min

{
2�

2�+p
− 	, �

}
. In particular,

when infx∈X |f�(x)| > 0, (5.12) holds with � = min
{

2�
2�+p

− 	, �
}

.

The above learning rate is better than those in the literature, e.g. [15,28,8,47]. When the kernels
are C∞ with (1.10) valid for any s > 0, we may take p in Theorem 7 to be arbitrarily small and
the power � in (5.12) becomes min{ 1

2 − 	, �/2}.

Example 4. Let �(t) = (1 − t)2, � = [�1, �2] with 0 < �1 ��2 < ∞ and K� be the Gaussian

kernel K�(x, y) = exp
{
−|x−y|2

2�2

}
on X ⊂ Rn. Assume (5.11). Let 	 > 0 and � = �(m) =( 1

m

)min
{

1
�−	,1

}
. Then with confidence 1 − 
, we have

R(sgn(fz)) − R(fc)� c̃

(
1

m

)�/2

, � = min {1 − 	, �} .

If � satisfies the noise condition (3.2) with 0 < ��1, then �/2 can be improved to 1
2−�� =

1
2−� min {1 − 	, �}. When infx∈X |f�(x)| > 0, we can replace �/2 by min{1 − 	, �}.

5.3. Proof of the main result

To end this section, we prove our main result, Theorem 5. To this end, we shall use the following
concentration inequality.
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Proposition 6. Let F be a set of measurable functions on Z, and B, c > 0, � ∈ [0, 1] be constants
such that each function f ∈ F satisfies ‖f ‖∞ �B and E(f 2)�c(Ef )�. If for some a > 0 and
p ∈ (0, 2),

sup
m∈N

sup
z∈Zm

log N2,z(F, ε)�aε−p ∀ε > 0, (5.13)

then there exists a constant c′
p depending only on p such that for any t > 0, with probability at

least 1 − e−t , there holds

Ef − 1

m

m∑
i=1

f (zi)�
1

2
�1−�(Ef )� + c′

p� + 2

(
ct

m

)1/(2−�)

+ 18Bt

m
∀f ∈ F,

where

� := max

{
c

2−p
4−2�+p�

( a

m

) 2
4−2�+p�

, B
2−p
2+p

( a

m

) 2
2+p

}
.

Other concentration inequalities [25] might be used for the error analysis of multi-kernel
schemes.

To prove Proposition 6, we need to make some preparation as in [2].

Definition 7. A function  : R+ → R+ is sub-root if it is non-negative, non-decreasing, and if
(r)/

√
r is non-increasing.

For a sub-root function  and any D > 0, the equation (r) = r/D has a unique positive
solution.

The following proposition is given in [2], see also [4].

Proposition 7. Let F be a class of measurable, square integrable functions such that Ef −f �b

for all f ∈ F . Let  be a sub-root function, D be some positive constant and r∗ be the unique
solution to (r) = r/D. Assume that

E

⎡⎢⎢⎣max

⎧⎪⎪⎨⎪⎪⎩0, sup
f ∈F

Ef 2 � r

Ef − 1

m

m∑
i=1

f (zi)

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎦ �(r) ∀r �r∗.

Then for all t > 0, and all K > D/7, with probability at least 1 − e−t there holds

Ef − 1

m

m∑
i=1

f (zi)�
Ef 2

K
+ 50K

D2 r∗ + (K + 9b)t

m
∀f ∈ F .

We need to find the sub-root function  in our setting. To this end, introduce the Rademacher
variables εi, i = 1, . . . , m. Then

E

⎡⎢⎢⎣ sup
f ∈F

Ef 2 � r

∣∣∣∣∣Ef − 1

m

m∑
i=1

f (zi)

∣∣∣∣∣
⎤⎥⎥⎦ �2E

⎡⎢⎢⎣ sup
f ∈F

Ef 2 � r

∣∣∣∣∣ 1

m

m∑
i=1

εif (zi)

∣∣∣∣∣
⎤⎥⎥⎦ . (5.14)
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The right-hand side is called the local Rademacher process. It can be bounded by using empirical
covering numbers and the entropy integral. See [40,26].

The following result is a scaled version of Proposition 5.4 in [36] where the case B = 1 is
given.

Proposition 8. Let F be a class of measurable functions from Z to [−B, B]. Assume (5.13) for
some p ∈ (0, 2) and a > 0. Then there exists a constant cp depending only on p such that

E

⎡⎢⎢⎣ sup
f ∈F

Ef 2 � r

∣∣∣∣∣ 1

m

m∑
i=1

εif (zi)

∣∣∣∣∣
⎤⎥⎥⎦ �cp max

{
r1/2−p/4

( a

m

)1/2
, B

2−p
2+p

( a

m

)2/(2+p)
}

.

According to Proposition 8 and (5.14), in applying Proposition 7, one should take

(r) = 2cp max

{
r1/2−p/4

( a

m

)1/2
, B

2−p
2+p

( a

m

)2/(2+p)
}

. (5.15)

Then the solution r∗ to the equation (r) = r/D satisfies

r∗ � max

{
(2cpD)

4
2+p , 2cpDB

2−p
2+p

}( a

m

) 2
2+p

. (5.16)

Proof of Proposition 6. Let  be defined by (5.15) and r∗ be the solution to (r) = r/D. Since
‖f ‖∞ �B, we have Ef − f �b := 2B for each f ∈ F . Choose K = D/5. By Proposition 7
and the condition Ef 2 �c(Ef )� we know that with probability at least 1 − e−t there holds

Ef − 1

m

m∑
i=1

f (zi)�
5c

D
(Ef )� + 10

D
r∗ + (D

5 + 18B)t

m
∀f ∈ F . (5.17)

Recall that r∗ satisfies (5.16). Take D = 10c��−1 where � is given in our statement. Then 5c
D

=
1
2�1−�. The expression of � in connection with the bound (5.16) for r∗ tells us that 10

D
r∗ � c̃p�

where c̃p is a constant depending only on p and cp, hence only on p. Observe from the choice of
D that

Dt

5m
= 2ct

m�1−� �2 max

{
�,

(
ct

m

)1/(2−�)
}

,

according to whether ��
(

ct
m

)1/(2−�). Take c′
p to be the constant c̃p + 2 depending only on p.

Then the desired inequality holds for each f ∈ F . This proves Proposition 6. �

We now turn to our key analysis and prove Theorem 5. Let us first explain our main ideas.

In the sample error term of (3.7), the quantity E�
z (f�) − E�(f�) is easy to handle. It can be

estimated by the one-side Bernstein inequality for the single random variable �(yf�(x)) on Z.
This will be done in the first step of the proof with a mild technical modification: consider the

random variable � = �(yf�(x)) − �(y, f
�
� (x)) instead of �(yf�(x)).
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The quantity E�(�(fz)) − E�
z (�(fz)) is more difficult and we need Proposition 6 to estimate.

Here the function set will be F =
{
� (y�(f )(x)) − �

(
yf

�
� (x)

)
: f ∈ BR

}
with such a radius R

that BR contains fz, i.e., R is a bound of ‖fz‖�. On the other hand, smaller radius R yields better
estimates. Hence good bounds for ‖fz‖� play an important role for the sample error estimates.

A rough bound for ‖fz‖� immediately follows from the definition of fz. By choosing f = 0,

we find �‖fz‖2
� �E�

z (fz) + �‖fz‖2
� �E�

z (0) + � · 0 = �(0). This proves

Lemma 1. For every � > 0, there holds ‖fz‖� �
√

�(0)/�.

We may use the bound
√

�(0)/� as R in F and apply Proposition 6 to get some rough estimates

for E�(�(fz)) − E�
z (�(fz)). However, the empirical error E�

z (f ) is a good approximation of the
generalization error E�(f ). Hence the penalty value ‖fz‖� is expected to be close to ‖f�‖� which
is bounded by

√D(�)/�:

�‖f�‖2
� �E�(f�) − E�(f

�
� ) + �‖f�‖2

� = D(�). (5.18)

This expectation will be realized by an iteration technique used in [36] and [43]. By this technique,
we shall show under some assumptions that with high confidence ‖fz‖� has a bound arbitrarily
close to

√D(�)/� (in the order of �).
We are in a position to estimate the sample error and prove Theorem 5.

Proof of Theorem 5. Write the sample error as

Sz,� =
{(

E�(�(fz)) − E�(f
�
� )
)

−
(
E�

z (�(fz)) − E�
z (f

�
� )
)}

+
{(

E�
z (f�) − E�

z (f
�
� )
)

−
(
E�(f�) − E�(f

�
� )
)}

:= S1 + S2.

We divide our estimation into three steps. Take t �1 which will be determined later. Denote
B = max{�(−1), �(1)}.

Step 1: Estimate S2. Consider the random variable � = �(yf�(x)) − �(yf
�
� (x)) on Z. Denote

� = �1 + �2 =
{
�(yf�(x)) − �(y�(f�)(x))

}
+
{
�(y�(f�)(x)) − �(yf

�
� (x))

}
.

First we bound �1. By (1.2), (5.1) and (5.18), we have ‖f�‖∞ ��‖f�‖� ��
√D(�)/�. We may

assume the last quantity to be greater than one since otherwise �1 ≡ 0. Then the increment
condition on � tells us 0��1 �B� := cq�q (D(�)/�)q/2. Hence |�1 − E(�1)|�B�. Applying the
one-side Bernstein inequality to �1, we know that for any ε > 0,

Prob

{
1

m

m∑
i=1

�1(zi) − E�1 > ε

}
� exp

{
− mε2

2
(
�2(�1) + 1

3B�ε
)} .

Solving the quadratic equation

mε2

2
(
�2(�1) + 1

3B�ε
) = t
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for ε, we see that there exists a subset U1 of Zm with measure at least 1 − e−t such that for every
z ∈ U1,

1

m

m∑
i=1

�1(zi) − E�1 �
1
3B�t +

√( 1
3B�t

)2 + 2m�2(�1)t

m
� 2B�t

3m
+
√

2t

m
�2(�1).

But the fact 0��1 �B� implies �2(�1)�B�E(�1). Therefore, we have

1

m

m∑
i=1

�1(zi) − E�1 � 7B�t

6m
+ E�1 ∀z ∈ U1.

Next we consider �2. Since both y�(f�)(x) and yf
�
� (x) are on [−1, 1], �2 is a random variable

satisfying |�2|�B.Applying the one-side Bernstein inequality as above, we know that there exists
another subset U2 of Zm with measure at least 1 − e−t such that for every z ∈ U2,

1

m

m∑
i=1

�2(zi) − E�2 � 2Bt

3m
+
√

2t�2(�2)

m
.

By (5.4), we have �2(�2)�C�(E�2)
�. Applying the elementary inequality

1

q
+ 1

q∗ = 1 with q, q∗ > 1 �⇒ a · b� 1

q
aq + 1

q∗ bq∗ ∀a, b�0

with q = 2
2−� , q∗ = 2

� and a =
√

2tCM

m
, b = √(E�2)

�, we see that√
2t�2(�2)

m
�
√

2tC�

m
·√(E�2)

� �
(

1 − �

2

)(2tC�

m

) 1
2−� + �

2
E�2.

Hence

1

m

m∑
i=1

�2(zi) − E�2 � 2Bt

3m
+
(

2tC�

m

) 1
2−� + E�2 ∀z ∈ U2.

Combine the above estimates for �1 and �2 with the fact E�1 + E�2 = E��D(�)�c���. We
conclude that

S2 � 7B�t + 4Bt

6m
+
(

2tC�

m

) 1
2−� + D(�) ∀z ∈ U1 ∩ U2. (5.19)

Step 2: Estimate S1. By Proposition 5, one has

�z := E�(�(fz)) − E�(f
�
� ) + �‖fz‖2

� �S1 + S2 + D(�). (5.20)

Let R > 0. Apply Proposition 6 to the function set

F =
{
� (y�(f )(x)) − �

(
yf

�
� (x)

)
: f ∈ BR

}
.
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Since |� (y�(f )(x)) − � (y�(g)(x))| � |�′−(−1)||�(f )(x) − �(g)(x)|� |�′−(−1)||f (x) −
g(x)|, there holds

N2,z(F, ε)�N2,z

(
BR,

ε

|�′−(−1)|
)

.

Hence (5.5) yields (5.13) with a = cp|�′−(−1)|pRp.

Since � (y�(f )(x)) �B and �
(
yf

�
� (x)

)
�B, we know that ‖f ‖∞ �B for every f ∈ F . The

assumption (5.4) tells us that Ef 2 �c(Ef )� with c = C�.
Thus all the conditions in Proposition 6 hold, and we know that there is a subset V(R) of Zm

with measure at least 1 − e−t such that for every z ∈ V(R) and every f ∈ BR ,(
E�(�(f )) − E�(f

�
� )
)

−
(
E�

z (�(f )) − E�
z (f

�
� )
)

� 1

2
�1−�
R

(
E�(�(f )) − E�(f

�
� )
)� + c′

p�R + 2

(
C�t

m

) 1
2−� + 18Bt

m
, (5.21)

where �R = � is given in Proposition 6 with c = C� and a = cp|�′−(−1)|pRp, i.e.,

�R = max

⎧⎨⎩C

2−p
4−2�+p�
�

(
cp|�′−(−1)|pRp

m

) 2
4−2�+p�

, B
2−p
2+p

(
cp|�′−(−1)|pRp

m

) 2
2+p

⎫⎬⎭ .

Let W(R) be the subset of Zm defined by

W(R) = {z ∈ U1 ∩ U2 : fz ∈ BR} .

Let z ∈ W(R) ∩ V(R). Then (5.21) holds for fz. Together with the estimate (5.19) for S2 and
(5.20), we know that

�z � 1

2
�1−�
R

(
E�(�(fz)) − E�(f

�
� )
)� + c′

p�R + 4

(
C�t

m

)1/(2−�)

+19Bt + 3B�t/2

m
+ 2D(�).

When � = 1 this yields

�z �c′′
p�R + 8

(
C�t

m

)1/(2−�)

+ 38Bt + 3B�t

m
+ 4D(�), (5.22)

where c′′
p = max{2c′

p, 1}. Here we have bounded 2c′
p by c′′

p. When 0 < � < 1, we use the
elementary inequality: if a, b > 0 and 0 < � < 1, then

x�ax� + b, x > 0 �⇒ x� max{(2a)1/(1−�), 2b}.
We find that (5.22) still holds.

By the choice of � = �(m) = ( 1
m

)�, one easily checks that

�R �cp,��
� max

{
(R2�1−�)

p
4−2�+p� , (R2�1−�)

p
2+p

}
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for some cp,� > 0. But 4 − 2� + p��2 + p, hence if R > �−(1−�)/2, then

�R �cp,��
�(R2�1−�)

p
2+p = cp,��

p+2�
2+p R

2p
2+p . (5.23)

The choice of � together with the assumption D(�)�c��� and t > 1 on the regularization error
also implies

8

(
C�t

m

)1/(2−�)

+ 38Bt + 3B�t

m
+ 4D(�)�cq,�,�t�� (5.24)

for some cq,�,� > 0.
Putting the estimates (5.24) and (5.23) into (5.22) we obtain

�z �c′′
pcp.��

p+2�
2+p R

2p
2+p + cq,�,�t�� ∀z ∈ W(R) ∩ V(R) (5.25)

whenever R > �−(1−�)/2. This implies that ‖fz‖� �
√

�z/��g(R), where g : R+ → R+ is a
univariate function defined as

g(R) =
√

c′′
pcp,��

�−1
2+p R

p
2+p +√cq,�,�t�(�−1)/2. (5.26)

It follows that

W(R) ∩ V(R) ⊆ W(g(R)) ∀R > �−(1−�)/2. (5.27)

Step 3: By iteration, find a small ball BR that, with high confidence, contains fz.
Lemma 1 means that W(R0) = U1 ∩ U2 for R0 = √�(0)/�.
When R0 > �−(1−�)/2, we use our conclusion (5.27) iteratively.
Denote g[0](R) = R, g[1](R) = g(R) and g[�](R) = g

(
g[�−1](R)

)
for ��2. According to

(5.27), if

g[j ](R) > �−(1−�)/2, j = 0, 1, . . . , � − 1, (5.28)

then

W(R) ∩ V(R) ∩ V(g[1](R)) ∩ · · · ∩ V
(
g[�−1](R)

)
⊆ W(g[�](R)). (5.29)

Observe that g(R) = d0R
p

2+p + d1 with d0, d1 > 0 given in (5.26). Then

g[2](R) = d0

(
d0R

p
2+p + d1

) p
2+p + d1 �d

1+ p
2+p

0 R

(
p

2+p

)2

+ d1 + d0d

p
2+p

1 ,

and in general, for � ∈ N,

g[�](R) � d
1+ p

2+p
+···+

(
p

2+p

)�−1

0 R

(
p

2+p

)�

+ d1 + d0d

p
2+p

1 + d
1+ p

2+p
0 d

(
p

2+p

)2

1

+ · · · + d
1+ p

2+p
+···+

(
p

2+p

)�−2

0 d

(
p

2+p

)�−1

1 .
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This in connection with the expressions for d0 and d1 gives

g[�](R) � d

2+p
2

{
1−
(

p
2+p

)�
}

0 R

(
p

2+p

)�

+
�−1∑
i=0

d

∑i−1
j=0

(
p

2+p

)j

0 d

(
p

2+p

)i

1

� c

2+p
4

0 �
(�−1)

2

{
1−
(

p
2+p

)�
}
R

(
p

2+p

)�

+
�−1∑
i=0

c

2+p
4

0 (c1t)

(
p

2+p

)i

�
(�−1)

2 ,

where c0 = max{1, c′′
pcp,�} and c1 = max{1,

√
cq,�,�}. In particular, for R = R0, there holds

g[�](R0)�c

2+p
4

0 �(�−1)/2

{
(�(0))

1
2

(
p

2+p

)�

�
−�

2

(
p

2+p

)�

+ c1t�

}
.

For 	 > 0, choose �0 ∈ N such that �0 � log 1
2ε

/ log 2+p
p

. Then 1
2

(
p

2+p

)�0
�ε. It follows that

g[�0](R0)�c

2+p
4

0 �(�−1)/2

{
(�(0))

1
2

(
p

2+p

)�0

�−�	 + c1t�0

}

when (5.28) with � = �0 and R = R0 holds.
When (5.28) with � = �0 and R = R0 is not valid, we have g[j0](R0)��(�−1)/2 for some

j0 ∈ {0, 1, . . . , �0 − 1}.
Take �	 = �0 when (5.28) with � = �0 and R = R0 holds and �	 = j0 otherwise. In both cases,

we have

g[�	](R0)�cε�
(�−1)/2−�ε =: Rε, (5.30)

where cε := c

2+p
4

0

(
(�(0))

1
2

(
p

2+p

)�0

+ c1t�0

)
.

Take � = �	 ��0 and R = R0 in (5.29). Since W(R0) = U1 ∩ U2, we know that there is a
subset Vε of Zm with measure at most �0e

−t such that

U1 ∩ U2 ⊆ W(Rε) ∪ Vε.

Then the measure of the set W(Rε) is at least 1 − (�0 + 2)e−t .
Apply (5.22) with R = Rε and notice (5.24). Let z ∈ W(Rε) ∩ V(Rε). We know that

�z �c′′
p�Rε

+ cq,�,�t�(�−1)/2.

It is easy to check that �Rε
�cp,�cε

( 1
m

)�
. Therefore, with the constant c̃ = c′′

pcp,�cε + cq,�,�t ,
there holds

E�(�(fz)) − E�(f
�
� )��z � c̃

(
1

m

)�

.

Taking t = log �0+3

 , the measure of the set W(Rε) ∩ V(Rε) is at least 1 − 
. Then Theorem 5

is proved. �
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6. Extensions

A key point of our analysis is to find essential bounds for penalty functional values of regu-
larization schemes. This approach can be extended to regularization schemes with more general
loss functions and general penalty functionals.

Let the hypothesis space H be a function set containing 0. It is assigned a functional � : H →
R+ satisfying �(0) = 0. Beyond the multi-kernel space H�, such a hypothesis space is the linear
programming SVM classifier [43] in a one-kernel setting with the penalty functional �(f ) defined
for f ∈ H = HK,z = {∑m

i=1 �iyiKxi
: �i �0

}
as �(f ) =∑m

i=1 �i .
Let Y be a subset of R, and V : R2 → R+ be a general loss function.
The general regularization scheme in H associated with V and the penalty functional � is

defined for the sample z as

f V
z = arg min

f ∈H

{
1

m

m∑
i=1

V (yi, f (xi)) + ��(f )

}
. (6.1)

All the results we obtained for the multi-kernel regularized classifiers (1.6) can be established
for the more general scheme (6.1) under the assumption that the pair (V , �) is M-admissible: there
is a constant M > 0 such that |y|�M almost surely with respect to �, and for each y ∈ [−M, M],
V (y, t) is a convex function of the variable t ∈ R satisfying{

V (y, t)�V (y, M) ∀t > M,

V (y, t)�V (y, −M) ∀t < −M.
(6.2)

An important family of regularization schemes (6.1) are those for regression with a general
loss function: take Y = R and V (y, f (x)) = (y − f (x)) where  : R → R+ is even, convex
and increasing on [0, +∞) with (0) = 0. If |y|�M almost surely with respect to �, then (V , �)

is M-admissible. Our approach can be used to analyze the convergence of
∫
Z

V (y, f V
z (x)) d� to

inff ∈H
∫
Z

V (y, f (x)) d�, which will be discussed in the future.

Example 5. Let ε > 0. The ε-insensitive norm is the univariate loss function  used for regression
defined [41] as (t) = max {|t | − ε, 0}. It would be interesting to analyze the convergence of the
scheme (6.1) as ε tends to zero.

For the classification algorithm (1.6), some of our error bounds can be extended to non-
classifying loss functions (such as the exponential loss), i.e., those activating loss functions whose
infimum cannot be achieved. For this purpose, we need a more general projection operator.

Definition 8. For M > 0, the projection operator at level M is defined on the space of measurable
functions f : X → R as

�M(f )(x) =
⎧⎨⎩

M if f (x) > M,

−M if f (x) < −M,

f (x) if − M �f (x)�M.

Using this projection operator, we can have similar error decompositions by revising the regu-
larization error and introducing level M adapting to the behavior of the loss function (the conver-
gence rate of �(t) as t → ∞). Then some learning rates can be obtained, following our approach.
Detailed analysis will be done in our future investigation.
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Appendix A.

Proof of Proposition 1. We first claim that there exists a constant C(�, m) depending on � and
the sample size m such that

‖�̂�‖�∞(Rm) �C(�, m) ∀� ∈ �. (A.1)

To verify our claim, recall that �̂� is a maximizer of R̂(�, �). This yields

R̂(�̂�, �)�R̂(0, �) = −(0) = − sup
u∈R

{0 − �(u)} = inf
u∈R

�(u) = 0.

Since K� is positive semidefinite, it follows that

m∑
i=1


(−(�̂�)iyi

) = −mR̂(�̂�, �) − 1

4m�

m∑
i,j=1

(�̂�)iK�(xi, xj )(�̂�)j � − mR̂(�̂�, �) = 0.

However, for each v ∈ R,

(−v) = sup
u∈R

{−uv − �(u)} � − �(0).

Therefore, for each i ∈ {1, . . . , m}, we have


(−(�̂�)iyi

)
�0 −

∑
j �=i

(−(�̂�)j yj )� −
∑
j �=i

{−�(0)} = (m − 1)�(0). (A.2)

Now we prove our claim in two cases.
Case 1: �′+(t)�0 for each t ∈ R. In this case, � is non-increasing and limu→+∞ �(u) =

infu∈R �(u) = 0. This in connection with the definition of the dual function implies

(−v) = sup
u∈R

{−uv − �(u)}� lim
u→+∞{−uv} = +∞ ∀v < 0. (A.3)

It follows from (A.2) that (�̂�)iyi �0 for each i.
Definition 1 also tells us that � is strictly decreasing on (−∞, 0] and limt→−∞ �(t) =

+∞. Then the inverse function �−1 is well defined on [�(0), +∞). Choose u = �−1(
√

v)

for v�(�(0))2 in the definition of , we see that (−v)� − v�−1(
√

v) − �
(
�−1(

√
v)
)

. It

follows that for any v� max
{

1, (�(−2))2
}

there holds

(−v)�
√

v
{
−√

v�−1(
√

v) − 1
}

�
√

v.
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Hence

v� max{1, (�(−2))2 , ((−v))2} ∀v ∈ R.

Combining with (A.2), this implies that

(�̂�)iyi � max
{

1, (�(−2))2 , (m − 1)2 (�(0))2
}

=: C1(�, m).

As yi = ±1 and sgn((�̂�)i) = yi , we know that
∣∣(�̂�)i

∣∣ = ∣∣(�̂�)iyi

∣∣ = (�̂�)iyi �C1(�, m) for
each i. This proves our claim in Case 1: ‖�̂�‖�∞(Rm) �C1(�, m).

Case 2: �′+(t0) > 0 for some t0 ∈ R. In this case, t0 > 0 and � is strictly increasing on [t0, +∞).

Then for v� min
{
−1, − (�(t0 + 2))2

}
, there exists some uv � t0 + 2 such that �(uv) = √−v.

Choosing u = uv in the definition of , we see that (−v)� − uvv − �(uv) can be bounded
from below as

(−v)�
√−v

{√−v(t0 + 2) − 1
}

�
√−v ∀v� min

{
−1, − (�(t0 + 2))2

}
. (A.4)

On the other hand, since � is strictly decreasing on (−∞, 0], for v� max
{

1, (�(−2))2
}

there

exists some uv � − 2 such that �(uv) = √
v. It follows that

(−v)� − uvv − �(uv)�
√

v
{−uv

√
v − 1

} = √
v ∀v� max

{
1, (�(−2))2

}
.

This in connection with (A.4) implies that (−v) > (m − 1)�(0) whenever

|v| > max
{
(m − 1)2 (�(0))2 , (�(t0 + 2))2 , 1, (�(−2))2

}
=: C2(�, m).

Combining with (A.2), we see again that
∣∣(�̂�)i

∣∣ = ∣∣�̂�,iyi

∣∣ �C2(�, m) for each i ∈ {1, . . . , m}.
This proves our claim in Case 2: ‖�̂�‖�∞(Rm) �C2(�, m). Therefore, (A.1) holds with C(�, m) =
max {C1(�, m), C2(�, m)}.

Next, we apply our claim (A.1) to prove the proposition. Denote

Ĝ(�) = max
�∈Rm

R̂(�, �) = R̂(�̂�, �).

To prove the existence of a solution (�̂, �̂) = (�̂�̂, �̂) to the problem (2.2), it is sufficient to
prove that the function Ĝ(�) is continuous on the compact metric space (�, d�).

Let �1, �0 ∈ �. By the definition of Ĝ(�) and R̂(�, �), we have

Ĝ(�1) − Ĝ(�0) = R̂(�̂�1 , �1) − R̂(�̂�0 , �0)�R̂(�̂�1 , �1) − R̂(�̂�1 , �0)

= 1

4m2�

m∑
i,j=1

(�̂�1)i
(
K�0(xi, xj ) − K�1(xi, xj )

)
(�̂�1)j .

By symmetry, there holds

Ĝ(�0) − Ĝ(�1)�
1

4m2�

m∑
i,j=1

(�̂�0)i
(
K�1(xi, xj ) − K�0(xi, xj )

)
(�̂�0)j .

By the continuity of K�(xi, xj ) at �0 for each pair (i, j), we know that for any ε > 0, there exists
some 
 > 0 such that

∣∣K�1(xi, xj ) − K�0(xi, xj )
∣∣ �4�ε/ (C(�, m))2 whenever d�(�1, �0) <
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. It follows from (A.1) and the above two bounds that
∣∣∣Ĝ(�1) − Ĝ(�0)

∣∣∣ �ε. This shows the

continuity of Ĝ at �0. Since �0 is an arbitrary point in �, Ĝ(�) is continuous on �. Therefore, a
minimizer of Ĝ(�) in � exists: �̂ = arg inf�∈� Ĝ(�). Thus,

inf
�∈�

max
�

R̂(�, �) = inf
�∈�

Ĝ(�) = Ĝ(�̂) = max
�

R̂(�, �̂).

Moreover the maximizer of R̂(�, �̂) always exists. This tells us that the general optimum of R̂(�, �)

is achievable. By the relationship between the primal problem and its dual, we obtain the existence
of the multi-kernel regularization scheme (1.5). This completes the proof of Proposition 1. �
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