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We present the current status of the application of our approach of exact amplitude-based resummation
in quantum field theory to precision QCD calculations, by realistic MC event generator methods, as
needed for precision LHC physics. In this ongoing program of research, we discuss recent results as they
relate to the interplay of the attendant IR-improved DGLAP-CS theory of one of us and the precision
of exact NLO matrix element matched parton shower MC’s in the Herwig6.5 environment in relation
to recent LHC experimental observations. There continues to be reason for optimism in the attendant
comparison of theory and experiment.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

With the recent announcement [1] of an Englert–Brout–Higgs
(EBH) [2] candidate boson after the start-up and successful run-
ning of the LHC for 2.5 years, the era of precision QCD, by which
we mean predictions for QCD processes at the total precision tag
of 1% or better, is squarely upon us. The attendant need for ex-
act, amplitude-based resummation of large higher order effects is
now more paramount, given the expected role of precision compar-
ison between theory and experiment in determining the detailed
properties of the newly discovered EBH boson candidate. Three of
us (B.F.L.W., S.K.M., S.A.Y.) have argued elsewhere [3,4] that such
resummation allows one to have better than 1% theoretical pre-
cision as a realistic goal in such comparisons, so that one can
indeed distinguish new physics (NP) from higher order SM pro-
cesses and can distinguish different models of new physics from
one another as well. In what follows, we present the status of
this approach to precision QCD for the LHC in connection with
its attendant IR-improved DGLAP-CS [5,6] theory [7,8] realization
via HERWIRI1.031 [9] in the HERWIG6.5 [10] environment in inter-
play with NLO exact, matrix element matched parton shower MC
precision issues. We will employ the MC@NLO [11] methodology
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to realize the attendant exact, NLO matrix element matched par-
ton shower MC realizations for both HERWIRI1.031 and HERWIG6.5
in our corresponding comparisons with recent LHC data that we
present herein.

The discussion will therefore be seen to continue the strategy of
building on existing platforms to develop and realize a path toward
precision QCD for the physics of the LHC. We exhibit explicitly a
union of the new IR-improved DGLAP-CS theory and the MC@NLO
realization of exact NLO matrix element (ME) matched parton
shower MC theory. As our ultimate goal is a provable precision
tag on our theoretical predictions, we note that we are also pur-
suing the implementation [12] of the new IR-improved DGLAP-CS
theory for HERWIG++ [13], HERWIRI++, for PYTHIA8 [14] and for
SHERPA [15], as well as the corresponding NLO ME/parton shower
matching realizations in the POWHEG [16] framework. For, one of
the strongest cross checks on theoretical precision is the difference
between two independent realizations of the attendant theoretical
calculation. Such cross checks will appear elsewhere [12].

In order to expose properly the interplay between the NLO ME
matched parton shower MC precision and the new IR-improved
DGLAP-CS theory, we set the stage in the next section by show-
ing how the latter theory follows naturally in the effort to obtain a
provable precision from our approach [4] to precision LHC physics.
In the interest of completeness, we review this latter approach,
which is an amplitude-based QED ⊗ QCD (≡ QCD ⊗ QED) exact re-
summation theory [4] realized by MC methods, in the next section
as well. We then turn in Section 3 to the applications to the recent
data on single heavy gauge boson production at the LHC from the
perspective of the analysis in Ref. [9] of the analogous processes at
the Tevatron, where we will focus in this Letter on the single Z/γ ∗
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production and decay to lepton pairs for definiteness. The other
heavy gauge boson processes will be taken up elsewhere [12]. Sec-
tion 4 contains our summary remarks.

2. Recapitulation

The starting point for what we discuss here may be taken as
the fully differential representation

dσ =
∑
i, j

∫
dx1 dx2 Fi(x1)F j(x2)dσ̂res(x1x2s) (1)

of a hard LHC scattering process using a standard notation so that
the {F j} and dσ̂res are the respective parton densities and reduced
hard differential cross section where we indicate the that latter
has been resummed for all large EW and QCD higher order correc-
tions in a manner consistent with achieving a total precision tag of
1% or better for the total theoretical precision of (1). The key the-
oretical issue for precision QCD for the LHC is then the proof of
the correctness of the value of the total theoretical precision �σth
of (1). This precision can be represented as follows:

�σth = �F ⊕ �σ̂res (2)

where �A is the contribution of the uncertainty on the quantity
A to �σth.3 In order to validate the application of a given the-
oretical prediction to precision experimental observations, for the
discussion of the signals and the backgrounds for both Standard
Model (SM) and new physics (NP) studies, and more specifically
for the overall normalization of the cross sections in such studies,
the proof of the correctness of the value of the total theoretical
precision �σth is essential. If a calculation with an unknown value
of �σth is used for the attendant studies, the NP can be missed.
This point simply cannot be emphasized too much.

In the interest of completeness here, we note that, by our def-
inition, �σth is the total theoretical uncertainty that comes from
the physical precision contribution and the technical precision con-
tribution [17]: the physical precision contribution, �σ

phys
th , arises

from such sources as missing graphs, approximations to graphs,
truncations, etc.; the technical precision contribution, �σ tech

th ,
arises from such sources as bugs in codes,4 numerical rounding
errors, convergence issues, etc. The total theoretical error is then
given by

�σth = �σ
phys
th ⊕ �σ tech

th . (3)

The desired value for �σth, which depends on the specific re-
quirements of the observations, as a general rule, should fulfill
�σth � f �σexpt, where �σexpt is the respective experimental er-
ror and f � 1

2 . This would assure that the theoretical uncertainty
does not significantly adversely affect the analysis of the data for
physics studies.

In order to realize such precision in a provable way, we have
developed the QCD ⊗ QED resummation theory in Ref. [4] for the
reduced cross section in (1) and for the resummation of the evo-
lution of the parton densities therein as well. In the interest of

3 Here, we discuss the situation in which the two errors in (2) are independent
for definiteness; (2) has to be modified accordingly when they are not.

4 We have in mind that all gross errors such as those that give obviously wrong
results, as determined by cross checks, are eliminated and we have left program-
ming errors such as those in the logic: suppose for programming error reasons a
DO-loop ends at 999 steps instead of the intended 1000 steps, resulting in a per
mille level error, that could alternate in sign from event to event. As per mille level
accuracy is good enough in many applications, the program would remain reliable,
but it would have what we call a technical precision error at the per mille level.
completeness and also because the theory in Ref. [4] is not widely
known, we recapitulate it here briefly. Specifically, for both the re-
summation of the reduced cross section and that of the evolution
of the parton densities, the master formula may be identified as

dσ̄res = eSUMIR(QCED)
∞∑

n,m=0

1

n!m!
∫ n∏

j1=1

d3k j1

k j1

m∏
j2=1

d3k′
j2

k′
j2

×
∫

d4 y

(2π)4
eiy·(p1+q1−p2−q2−∑

k j1 −∑
k′

j2 )+DQCED

× ˜̄βn,m
(
k1, . . . ,kn;k′

1, . . . ,k′
m

)d3 p2

p0
2

d3q2

q0
2

, (4)

where dσ̄res is either the reduced cross section dσ̂res or the differ-
ential rate associated to a DGLAP-CS [5,6] kernel involved in the
evolution of the {F j} and where the new (YFS-style [18]) non-

Abelian residuals ˜̄βn,m(k1, . . . ,kn;k′
1, . . . ,k′

m) have n hard gluons
and m hard photons and we show the final state with two hard
final partons with momenta p2, q2 specified for a generic 2 f final
state for definiteness. The infrared functions SUMIR(QCED), DQCED
are defined in Refs. [4,7,8]. This simultaneous resummation of QED
and QCD large IR effects is exact.

The key components in the master formula (4) have the fol-
lowing physical meanings. The exponent SUMIR(QCED) sums up
to the infinite order the maximal leading IR singular terms in the
cross section in the language of Ref. [19] for soft emission below
a dummy parameter Kmax and the exponent DQCED does the same
for the regime above Kmax so that (4) is independent of Kmax – it
cancels between SUMIR(QCED) and DQCED. Having resummed these
terms, we generate, in order to maintain exactness order by order

in perturbation theory in both α and αs , the residuals ˜̄βn,m – the
latter are computed iteratively to match the attendant exact results
to all orders in α and αs as explained in Refs. [4,7,8].

We note that, as it is explained in Ref. [4], the new non-

Abelian residuals ˜̄βm,n allow rigorous shower/ME matching via
their shower subtracted analogs:

˜̄βn,m → ˆ̃̄
βn,m (5)

where the
ˆ̃̄
βn,m have had all effects in the showers associated to

the {F j} removed from them. The connection with the differen-
tial distributions in MC@NLO can be seen as follows. The MC@NLO
differential cross section can be represented [11] as follows:

dσMC@NLO =
[

B + V +
∫

(RMC − C)dΦR

]
dΦB

[
�MC(0)

+
∫

(RMC/B)�MC(kT )dΦR

]

+ (R − RMC)�MC(kT )dΦB dΦR

where B is Born distribution, V is the regularized virtual contribu-
tion, C is the corresponding counter-term required at exact NLO,
R is the respective exact real emission distribution for exact NLO,
RMC = RMC(P AB) is the parton shower real emission distribution
so that the Sudakov form factor is

�MC(pT ) = e[− ∫
dΦR

RMC (ΦB ,ΦR )

B θ(kT (ΦB ,ΦR )−pT )],

where as usual it describes the respective no-emission probability.
The respective Born and real emission differential phase spaces are
denoted by dΦA , A = B , R , respectively. From comparison with (4)
restricted to its QCD aspect we get the identifications, accurate to
O(αs),
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1

2
ˆ̃̄
β0,0 = B̄ + (

B̄/�MC(0)
) ∫

(RMC/B)�MC(kT )dΦR ,

1

2
ˆ̃̄
β1,0 = R − RMC − B S̃QCD (6)

where we defined [11]

B̄ = B(1 − 2αs	BQCD) + V +
∫

(RMC − C)dΦR

and we understand here that the DGLAP-CS kernels in RMC are to
be taken as the IR-improved ones as we exhibit below [7,8]. Here
we have introduced the QCD virtual and real infrared functions
BQCD and S̃QCD respectively given in Refs. [7,8] which are under-
stood to be DGLAP-CS synthesized as explained in Refs. [4,7,8] to
avoid doubling counting of effects. The way to the extension of
frameworks such as MC@NLO to exact higher orders in {αs,α} is

therefore open via our
ˆ̃̄
βn,m and will be taken up elsewhere [12].

We stress that in Refs. [7–9] the methods we employ for resum-
mation of the QCD theory have been shown to be fully consistent
with the methods in Refs. [20,21]. What is shown in Refs. [7–9]
is that the methods in Refs. [20,21] give approximations to our

hard gluon residuals
ˆ̃̄
βn; for, the methods in Refs. [20,21], unlike

the master formula in (4), are not exact results. Specifically, the
threshold-resummation methods in Ref. [20], using the result that,
for any function f (z),

∣∣∣∣∣
1∫

0

dz zn−1 f (z)

∣∣∣∣∣�
(

1

n

)
max

z∈[0,1]
∣∣ f (z)

∣∣,

drop non-singular contributions to the cross section at z → 1 in re-
summing the logs in n-Mellin space. The SCET theory in Ref. [21]
drops terms of O(λ) at the level of the amplitude, where λ =√

Λ/Q for a process with the hard scale Q with Λ ∼ 0.3 GeV so
that, for Q ∼ 100 GeV, we have λ ∼= 5.5%. From the known equiva-
lence of the two approaches, the errors in the threshold resumma-
tion must be similar. Evidently, we can only use these approaches
as a guide to our new non-Abelian residuals as we develop results
for the sub-1% precision regime.

The discussions just completed naturally bring us to the atten-
dant evolution of the {F j}; for, in order to have a strict control on
the theoretical precision in (1), we need both the resummation of
the reduced cross section and that of the latter evolution.

When the QCD restriction of the formula in (4) is applied to
the calculation of the kernels, P AB , in the DGLAP-CS theory it-
self, we get an improvement of the IR limit of these kernels, an
IR-improved DGLAP-CS theory [7,8] in which large IR effects are re-
summed for the kernels themselves. The resulting new resummed
kernels, P exp

AB are given in Refs. [7–9] and are reproduced here for
completeness:

P exp
qq (z) = C F FYFS(γq)e

1
2 δq

[
1 + z2

1 − z
(1 − z)γq − fq(γq)δ(1 − z)

]
,

P exp
Gq (z) = C F FYFS(γq)e

1
2 δq

1 + (1 − z)2

z
zγq ,

P exp
GG (z) = 2CG FYFS(γG)e

1
2 δG

{
1 − z

z
zγG + z

1 − z
(1 − z)γG

+ 1

2

(
z1+γG (1 − z) + z(1 − z)1+γG

)

− fG(γG)δ(1 − z)

}
,

P exp
qG (z) = FYFS(γG)e

1
2 δG

1{
z2(1 − z)γG + (1 − z)2zγG

}
, (7)
2

Fig. 1. Bloch–Nordsieck soft quanta for an accelerated charge.

where the superscript “exp” indicates that the kernel has been
resummed as predicted by Eq. (4) when it is restricted to QCD
alone, where the YFS [18] infrared factor is given by FYFS(a) =
e−C E a/Γ (1 + a) where C E is Euler’s constant and where we re-
fer the reader to Refs. [7,8] for the detailed definitions of the
respective resummation functions γA, δA, f A, A = q, G .5 C F (CG ) is
the quadratic Casimir invariant for the quark (gluon) color repre-
sentation respectively. These new kernels yield a new resummed
scheme for the parton density functions (PDF’s) and the reduced
cross section:

F j, σ̂ → F ′
j, σ̂ ′ for

P Gq(z) → P exp
Gq (z), etc.,

with the same value for σ in (1) with improved MC stability as
discussed in Ref. [9] – there is no need for an IR cut-off ‘k0’ pa-
rameter in the attendant parton shower MC based on the new
kernels. We point-out that, while the degrees of freedom below
the IR cut-offs in the usual showers are dropped in those showers,
in the showers in HERWIRI1.031, as one can see from (4), these
degrees of freedom are integrated over and included in the calcu-
lation in the process of generating the Gribov–Lipatov exponents
γA in (7). We note also that the new kernels agree with the usual
kernels at O(αs) as the differences between them start in O(α2

s ).
This means that the NLO matching formulas in the MC@NLO and
POWHEG frameworks apply directly to the new kernels for exact
NLO ME/shower matching.

For completeness, we feature in Fig. 1 the basic physical idea
underlying the new kernels as it was already discussed by Bloch
and Nordsieck [24]: an accelerated charge generates a coherent
state of very soft massless quanta of the respective gauge field so
that one cannot know which of the infinity of possible states one
has made in the splitting process q(1) → q(1 − z) + G ⊗ G1 ⊗ · · · ⊗
G� , � = 0, . . . ,∞ illustrated in Fig. 1. The new kernels take this ef-

fect into account by resumming the terms O((αs ln(
q2

Λ2 ) ln(1− z))n)

when z → 1 is the IR limit. As one can see in (7) and (1), when the
usual kernels are used these terms are generated order-by-order
in the solution for the cross section σ in (1) and our resumming
them enhances the convergence of the representation in (1) for
a given order of exactness in the input perturbative components
therein. We now turn to the illustration of this last remark in the
context of the comparison of NLO parton shower/matrix element
matched predictions to recent LHC data.

5 The improvement in Eq. (7) should be distinguished from the resummation
in parton density evolution for the “z → 0” Regge regime – see for example
Refs. [22,23]. This latter improvement must also be taken into account for preci-
sion LHC predictions.
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Fig. 2. Comparison with LHC data: (a) CMS rapidity data on (Z/γ ∗) production to e+e− , μ+μ− pairs, the circular dots are the data, the green (blue) lines are HERWIG6.510
(HERWIRI1.031); (b) ATLAS pT spectrum data on (Z/γ ∗) production to (bare) e+e− pairs, the circular dots are the data, the blue (green) lines are HERWIRI1.031 (HER-
WIG6.510). In both (a) and (b) the blue (green) squares are MC@NLO/HERWIRI1.031 (HERWIG6.510 (PTRMS = 2.2 GeV)). In (b), the green triangles are MC@NLO/HERWIG6.510
(PTRMS = 0). These are otherwise untuned theoretical results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this Letter.)
3. Interplay of NLO shower/ME precision and IR-improved
DGLAP-CS theory

The new MC HERWIRI1.031 [9] gives the first realization of
the new IR-improved kernels in the HERWIG6.5 [10] environment.
Here, we compare it with HERWIG6.510, both with and without
the MC@NLO [11] exact O(αs) correction to illustrate the inter-
play between the attendant precision in NLO ME matched par-
ton shower MC’s and the new IR-improvement for the kernels
where we use the new LHC data for our baseline for the com-
parison.

More precisely, for the single Z/γ ∗ production at the LHC,
we show in Fig. 2 in panel (a) the comparison between the MC
predictions and the CMS rapidity data [25] and in panel (b) the
analogous comparison with the ATLAS P T data, where the rapid-
ity data are the combined e+e− − μ−μ+ results and the pT data
are those for the bare e+e− case, as these are the data that corre-
spond to the theoretical framework of our simulations – we do not
as yet have complete realization of all the corrections involved in
the other ATLAS data in Ref. [26]. These results should be viewed
from the perspective of our analysis in Ref. [9] of the FNAL data on
the single Z/γ ∗ production in pp̄ collisions at 1.96 TeV.

Specifically, in Fig. 11 of the second paper in Ref. [9], we
showed that, when the intrinsic rms pT parameter PTRMS is set to
0 in HERWIG6.5, the simulations for MC@NLO/HERWIG6.510 give a
good fit to the CDF rapidity distribution data [28] therein but they
do not give a satisfactory fit to the D0 pT distribution data [29]
therein whereas the results for MC@NLO/HERWIRI1.031 give good
fits to both sets of data with the PTRMS = 0. Here PTRMS cor-
responds to an intrinsic Gaussian distribution in pT . The authors
of HERWIG [27] have emphasized that to get good fits to both
sets of data, one may set PTRMS ∼= 2 GeV. Thus, in analyzing the
new LHC data, we have set PTRMS = 2.2 GeV in our HERWIG6.510
simulations while we continue to set PRTMS = 0 in our HERWIRI
simulations.
Turning now with this perspective to the results in Fig. 2,
we see a confirmation of the finding of the HERWIG authors.
To get a good fit to both the CMS rapidity data and the AT-
LAS pT data, one needs to set PTRMS ∼= 2 GeV [30] in the
MC@NLO/HERWIG6510 simulations. We again see that at LHC one
gets a good fit to the data for both the rapidity and the pT spec-
tra in the MC@NLO/HERWIRI1.031 simulations with PTRMS = 0.
In quantitative terms, the χ2/d.o.f. for the rapidity data and pT

data are (0.72,0.72) ((0.70,1.37)) for the MC@NLO/HERWIRI1.031
(MC@NLO/HERWIG 6510 (PTRMS = 2.2 GeV)) simulations. For the
MC@NLO/HERWIG6510 (PTRMS = 0) simulations the correspond-
ing results are (0.70,2.23).

Thus, we see that the usual DGLAP-CS kernels require the in-
troduction of a hard intrinsic Gaussian spread in pT inside the
proton to reproduce the LHC data on the pT distribution of the
Z/γ ∗ in the pp collisions whereas the IR-improved kernels give
in fact a better fit to the data without the introduction of such
a hard intrinsic component to the motion of the proton’s con-
stituents. The hardness of this PTRMS is entirely ad hoc; it is in
contradiction with the results of all successful models of the pro-
ton wave-function [31], wherein the scale of the corresponding
PTRMS is found to be � 0.4 GeV. More importantly, it contradicts
the known experimental observation of precocious Bjorken scal-
ing [32,33], where the SLAC–MIT experiments show that Bjorken
scaling occurs already at Q 2 = 1+ GeV2 for Q 2 = −q2 with q the
4-momentum transfer from the electron to the proton in the fa-
mous deep inelastic electron–proton scattering process whereas,
if the proton constituents really had a Gaussian intrinsic pT dis-
tribution with PTRMS ∼= 2 GeV, these observations would not be
possible. What can now say is that the ad hoc “hardness” of the
PTRMS ∼= 2.2 GeV value is really just a phenomenological repre-
sentation of the more fundamental dynamics realized by the IR-
improved DGLAP-CS theory. This raises the question of whether it
is possible to tell the difference between the two representations
of the data in Fig. 2.
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Fig. 3. Normalized vector boson mass spectrum at the LHC for pT (lepton) > 20 GeV.

Fig. 4. Normalized vector boson pT spectrum at the LHC for the ATLAS cuts as ex-
hibited in Fig. 2 for the same conventions on the notation for the theoretical results
with the vector boson pT < 10 GeV to illustrate the differences between the three
predictions.

Physically, one expects that more detailed observations should
be able to distinguish the two. Specifically, we show in Fig. 3 the
MC@NLO/HERWIRI 1.031 (blue squares) and MC@NLO/HERWIG6510
(PTRMS = 2.2 GeV) (green squares) predictions for the Z/γ ∗ mass
spectrum when the decay lepton pairs are required to satisfy the
LHC type requirement that their transverse momenta {p�

T , p�̄
T } ex-

ceed 20 GeV. We see that the high precision data such as the
LHC ATLAS and CMS experiments will have (each already has over
5 × 106 lepton pairs) would allow one to distinguish between the
two sets of theoretical predictions, as the peaks differ by 2.2% for
example.

Continuing in this way, we make a more detailed snap-shot of
the region below 10.0 GeV in Fig. 2(b) in which we plot the three
featured theory predictions with finer binning, 0.5 GeV instead of
3.0 GeV. This is shown in Fig. 4. We see that there are significant
differences in the shapes of the three predictions that are testable
with the precise data that will be available to ATLAS and CMS ex-
periments. Other such detailed observations may also reveal the
differences between the two descriptions of parton shower physics
and we will pursue these elsewhere [12]. We await the release of
the entire data sets from ATLAS and CMS.

4. Conclusions

We have shown that the realization of IR-improved DGLAP-CS
theory in HERWIRI1.031, when used in the MC@NLO/HERWIRI1.031
exact O(αs) ME matched parton shower framework, affords one
the opportunity to explain, on an event-by-event basis, both the
rapidity and the pT spectra of the Z/γ ∗ in pp collisions in the
recent LHC data from CMS and ATLAS, respectively, without the
need of an unexpectedly hard intrinsic Gaussian pT distribution
with rms value of PTRMS ∼= 2 GeV in the proton’s wave function.
We argue that this can be interpreted as providing a rigorous basis
for the phenomenological correctness of such unexpectedly hard
distributions insofar as describing these data using the usual unim-
proved DGLAP-CS showers is concerned and we have proposed that
comparison of other distributions such as the invariant mass dis-
tribution with the appropriate cuts and the more detailed Z/γ ∗
pT spectra in the regime below 10.0 GeV be used to differentiate
between the fundamental description of the parton shower physics
in MC@NLO/HERWIRI1.031 and these phenomenological represen-
tations in MC@NLO/HERWIG6510. We have emphasized that the
precociousness of Bjorken scaling argues against the fundamental
correctness of the hard scale intrinsic pT ansatz with the unex-
pectedly hard value of PTRMS ∼= 2 GeV, as do the successful mod-
els [31] of the proton’s wave function, which would predict this
value to be � 0.4 GeV. We have the added bonus that the fun-
damental description in MC@NLO/HERWIRI1.031 can be system-
atically improved to the NNLO parton shower/ME matched level
which we anticipate is a key ingredient in achieving the sub-1%
precision tag for such processes as single heavy gauge boson pro-
duction at the LHC. Evidently, the use of ad hoc hard scales in
models would compromise any discussion of the theoretical pre-
cision relative to what one could achieve from the fundamen-
tal representation of the corresponding physics via IR-improved
DGLAP-CS theory as it is realized in HERWIRI1.031 when employed
in MC@NLO/HERWIRI1.031 simulations. We are pursuing additional
cross checks of the latter simulations against the LHC data.
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