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We establish two types of normal forms for EOL systems. We first show that 
each e-free EOL language can be generated by a propagating EOL system in 
which each derivation tree is chain-free. By this we mean that it contains at least 
one path from the root to the grandfather of a leaf in which each node has more 
than one son. We use this result to prove that each e-free EOL language can be 
generated by a propagating EOL system in which each production has a right 
side of length at most two and which does not contain nonterminal chain- 
productions, i.e., productions A --+ B for nonterminals A and B. As applications 
of our results we give a simple proof for the decidability of the finiteness problem 
for EOL systems and solve an open problem concerning completeness of EOL 
forms. 

1. INTRODUCTION AND PRELIMINARIES 

In  this paper we are concerned with new normal forms for EOL systems and 
ramifications thereof. 

Obtaining simple normal forms is an important aspect of the study of 
grammars. While a number  of important normal form results for EOL systems 

belong now to standard knowledge (Herman and Rozenberg, 1975) other 

results valid for context-free grammars do not hold at all for EOL systems or have 

not yet been established. A typical example is the well-known Chomsky normal 
form (Salomaa, 1973) for context-free grammars. Every ~-free context-free 
language can be generated by a context-free grammar whose only productions 
are of the form A -+ a, ./t --+ B C  (..4, B ,  C nonterminals, a is a terminal). Thus,  in 
particular, "nonterminal  chain-productions" A --~ B (A,  B nonterminals) are 
not required. A similar result for synchronized EOL systems does clearly not 
hold. With productions just  of the form, say, A -+ a, A --0. B C  (_/i, B ,  C and a as 
above, every terminal "blocking") many EOL languages cannot be generated 
(Maurer, Salomaa and Wood, 1977). Thus,  nonterminal  chain productions are 
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required in synchronized E OL  systems to be able to generate all EOL languages. 
Further, while a number of "expansive" normal-forms are known for context- 
free grammars (i.e. normal forms assuring that the lengths of words in each 
derivation form a strictly growing sequence except when terminals are intro- 
duced)--a  typical example is the Chomsky normal fo rm--no  such results have 
been available for EOL  systems, sofar. 

In  this paper we show that a normal form even stronger than expansive can be 
obtained for E O L  systems. In particular, we establish that each E-free E O L  
language can be generated by a propagating E O L  system in which each derivation 
tree is what we would like to call "chain-free", i.e., contains a path from the 
root to the grandfather of a leaf along which each node has at least two sons. 
(Note that any such chain-free normal form is certainly expansive). 

Using the result on chain-free normal forms we also establish two normal 
forms showing that nonterminal chain-productions (i.e. productions A - +  B 
for nonterminals A, B) are not required to generate all E O L  languages, if one 
does not insist on synchronization. 

We finally give two applications of our normal form results. We present short 
direct proofs for the (known) decidability of emptiness and finiteness of the 
languages generated by E O L  systems (emptiness also for E T O L  systems) and 
we solve an open problem concerning complete E O L  forms by establishing that 
the form with productions S --~ a, S - +  a S ,  S ~ S a ,  a --~ a, a --~ S ,  a --~ S S  

(S nonterminal, a terminal) is complete. 
In  the remainder of this section we present some standard definitions from 

language theory. For any notions not explicitly defined we refer to (Salomaa, 
1973) and, as far as E O L  forms are concerned, to (Maurer, Salomaa, Wood, 1977). 

An E O L  s y s t em  G is a quadruple G = (N, T, P, S). N and T are disjoint 
alphabets of n o n t e r m i n a l s  a n d  terminals ,  respectively, S in N is called the 
s t a r t s y m b o l  and P _C (N u T) × (N u T)* is a finite set o f  p r o d u c t i o n s  such that 
for each ~ in N t3 T, P contains at least one production (a, x). Productions (a, x) 
are usually written as ~ --~ x. For words x = a l ~  -" ~ with a i ~ (N t3 T) and 
Y = Y l Y 2  "'" Y~ we write x ~ a  Y (or just x ~ y) if a~ --~ y~ is a production of p 
for i = 1, 2,..., n. We define + and *~ as the transitive, transitive and reflexive 
respectively, closure of ~ and call the set L ( G )  = { x f S  ~ x ,  x ~ T*} the 
language  g e n e r a t e d  by G. With each der i va t i on  S = x o =~ x I =~ x 2 :~ "" =~ x~  

x ~ L ( G )  we associate a der i va t ion  tree t as usual. S is considered to be the label of 
the root  of the tree, the symbols of xi+t are label of nodes which are the sons or 
successors of the nodes corresponding to symbols in x i , and the nodes corre- 
sponding to x~+ 1 are considered to lie below those corresponding to x i . The  
word x is obtained by reading the leaves  of t, i.e. the f r o n t i e r  of t, from left to 
right. A node corresponding to a symbol in x i is considered to be of d e p t h  i, 

and the maximal depth of any node is called the height  of the tree. A path in the 
derivation tree leading from the root of the tree to a leaf is called a l e a f - p a t h  

throughout this paper. 
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Let G ~ (N, T, P, S) be an E OL  system. A production A -+ B in P with 
A, B ~ N is called ~ nonterminal chain-production. A production ~ -*  x in P is 
called short if [ x ] ~ 2, and is called propagating if x ~ E (the empty word). 
For a word x ~ (N L) T)* we denote by alph(x) the set of all symbols occuring in x 
and extend alph to sets of words M by alph(M) = ~)xeM alph(x) as usual. 

A terminal a is called pseudo-terminal if a 6 alph(L(G)), 
Let G = (AT, T, P, S) be an E O L  system. G is called propagating if each 

production is propagating, short if each production is short, synchronized if for 
each a ~  T, a + x implies x 6 T*, and is called separated if P _C N × T u 
(T ~3 N)  × N +. 

2. RESULTS 

We first sho w that each E O L  language can be generated by what we cail a 
chain-free E O L  system. We thereby establish the strongest E O L  analogue to 
context-flee Chomsky normal form known to date. Based on this result we prove 
that each E O L  language can be generated by a propagating E O L  system con- 
taining no production A--+ B for nonterminals A and B, and containing no 
production with more than two symbols on the right-hand side. As a byproduct, 
we then solve a problem on complete E O L  forms mentioned in (Maurer, 
Salomaa and Woo d 1977) and give a simple proof for the decidability of emptiness 
and finiteness for E O L  systems. 

DEFINITION. An E O L  system G = (N, T, P, S) is called stretching, if for each 
nonterminal chain-production A -+ B e P a n d  each k ~ 1, A ~ B holds. 

We now establish an auxiliary normal form result which we believe is also of 
interest in itself. 

LEMMA 2. I (Stretching lemma). Each ~-free E O L  languageL can be generated 
by a stretching E O L  system. 

Proof. By e.g. (Salomaa, 1973) we may assume L = L(G), where G = 
(N, T, P, S) is a propagating, synchronized and separated E O L  system. For 

i,~ A or 1, if such k does A ~ N ,  let mA be the minimal k ~ 1 such that A ~ a  
not exist. Let m be the least common multiple of the numbers in the set 
{mA [ A ~N}w {[ NI}. 

We now define a new E OL  system G 1 as "m-times speed-up" of G as follows: 

G 1 = (N 1, T, P 1 , Z ) ,  where N1 = NL;{Z} ,  Z 4 N ,  
m i 

P~ = {a7+ x l c~eNL) T, ~ ~ x}L) {Z--> x [ S ~ x, m ~ i ~ 2 m  --  1} 

i 
U { Z - - * x l S ~ x , x ~ T + , l  ~ i ~ m - - l } .  
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Evidently, L(G) = L(G1). Now suppose that A ~ B ~ P1.  Then  A ~ B. Thus  
for some C E N  we have A *~o C ~ C *~o B for some j >/ 1. Hence also 
C ~ "  C and C ~ C. Thus  we have A *~ C :=:~fiG +(k-1}m C *::~a B for each k ~ I, 
i .e . ,A ~a~ B f o r e a c h k  ~ 1 as desired. | 

DEFINITION. Let G be a propagating E OL  system. A derivation tree in G is 
called chain-free if it contains at least one leaf-path % ,  al ,--., a , - 1 ,  an in which 
each node ai (0 ~ i ~ n --  2) has at least two successors. The E O L  system G is 
called chain-free if each derivation tree in G is chain-free. 

Our first major aim is to show that each E O L  language cart be generated by a 
chain-free EOL system. We start with an important lemma. 

LEMMA 2.2. For  each stretiking, synchronized, propagating, separated E O L  
sys t em G = (N, T , P , S )  an equivalent propagating E O L  system G 2 = 
(N2, T, P2,  S) can be constructed such that for each x ~L(G2) a chain-free 
derivation tree in G~ exists. 

Proof. We first define an auxiliary E OL  system G' = (N, N', P', S) with 
N '  = {A' I -//~ N} as follows: 

P' -- P n N  × N+u{A- -~  B' t A--~ B e P ,  A , B  ~ N} tJ {B'--~ B' t B ~N}. 

Clearly, L(G') is an e-free context-free language. By (Salomaa, 1973) 
there exists a contextZfree Chomsky N o r m a l  Form Grammar G 1 = 
(N  1 U {S}, U ' ,  P1,  S) with L(GI) = L(G'). 

We may further assume that S occurs only on the left side of productions. 
Assuming without loss of generality that N, N '  and N 1 are pairwise disjoint we 
define an EOL system G 2 = (N2, T, P2,  S) with N 2 = N t.) N '  u N 1 as follows: 

P2 = P W  P 1 u { B ' - +  B'I  B' e N ' } w { B ' - - ~ w l  B - + w e P }  

w { A - - + w l  A--,. B' e P 1 , B - - ~ w ~ P  }. 

We establish that G~ has the desired properties. 

(a) Since P C P~, evidently L(G) _CL(G2). 

(b) To proveL(G2) eL(G), consider an arbitrary x ~ L(G2) and a derivation 
tree t of x in G 2 . This derivation tree either starts with a production of P, and 
then x ~ L(G), or else starts with a production of P1.  

In  this case the nodes in each leaf-path of t occur in the following order: first 
a node labelled S, then some nodes with labels in N 1 , then some with labels 
in N ' ,  then some with labels in N, finally one with a label in T. 

We construct now a new derivation tree t; of x in G 2 by modifying tree t 
slightly, increasing its height by one. (This is just to assure that along each leaf- 
path at least one node with a label in N' occurs). 
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For each leaf-path, let ~ be the last node with a label i n  N1 w N' .  If  the label 

of a is B '  ~ N ' ,  replace the production B'  -+  w at node ~ b y  B'  -~  B'  -+ w. If  the 

label of ~ is A ~ N 1 then by construction of G2, A -+  w E P~ with w 6 (T k) N)  + 

implies A ~ B'  ~ P1,  B'  ~ N ' ,  B -+ w e P. Hence B'  --~ w 6/)2 • Thus  we can 
replace .d -+  w at node ~ by _d -+  B'  --~ w. 

I n t h e  tree t ' ,  let n i be the last node in the ith leaf path with a label B i' in N ' .  

Then  y = B I ' B  2 . . . .  B~'  ~ L ( G t )  = L(G' ) .  If  x i is the frontier of the subtree of 

t '  induced by n i then clearly B i' ~ a~ x i ,  B i ~  a x i ,  B i  ~ N and x ~ xlx~ "" x i "" x~.  

Let ~ be a derivation tree of y ~ B I ' B  2' ... B~'  in G'  and let A i be the last 
label in N in the i-th leaf-path of ~. (Thus, only productions of G are used up to 

this point in tree ~). Since A i --~ B i' ~ P '  we have A i --~ B i ~ P and, since P is 

stretiking, A i =>~ B i for each k ) 1. Together with the fact that B i ~-~ x i we 
have S N a  x and x e L ( G ) ,  as desired. 

(c) I t  remains to show that for every x ~L(G2)  there is a chain-free 

derivation tree. For" arbitrary x ~ L(G2) = L ( G )  let t be a derivation tree in G. 
I f  t is chain-free, nothing has to be shown. Suppose therefore that t is not 

chain-free. We will modify t to obtain a chain=free tree t '  for x in G 2 , 
We observe that t contains nodes n~, ne ,..., n~ as follows: 

(i) on each leaf-path of t there is exactly one of the nodes n l ,  n 2 .... , he; 

(ii) the subtrees t 1 , t2 .... , t, of t with roots n 1 , n~ .... , n, are chain-free 
and the concatenation of their frontiers x 1 , x~ .... , X, from left to right is X; 

(iii) there is a subtree t o of t With root labeled S and leaves n 1 , n~ ,..., ns 

from left to right. 

The  situation described is shown in Fig. 2.1. 

Let B t ,  B 2 ,..., B e be the labels of n l ,  ne ,..., ne, respectively. Clearly, 

BI ' ,  .... Be'  e L (  G')  and 

B k ~ x  k for i~ >~ 1 and k 1,2,. . . ,s.  

Evidently, S *~a' A1 "'" A ,  =>a, BI '  "'" B'r-IB~'B'~+I "'" B~' with A i e N l ,  

B i' ~ N ' .  
Consider the derivation tree lCF in G '  of the sentential form A 1 ."  As and let 

ml ,..., me be its leaves from left to' right, with labels A 1 ,..., A s , respectively. 
Le t j~  be the depth of node mk for k = 1, 2 ..... s. Finally, choose r such that 

i,. + L >/i7~ + j ~ ,  for k = 1,..., s. 
We are now in a position to exhibit a derivation tree t '  in G2 of x based on toy 

and the subtrees t I , t~ ,..., t e as follows: 

• (i) for each 1 with i~ + J r  = it + j z  (in particular for l = r) attach,to A t 
the tree t~ from which the root has been removed, 
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(ii) for each l w i t h p  ~ i r + j r - - i t - - j ~ > 0  attach to As a chain of 
p B~' (i.e. B~' --,- B~'--~ "'--~ B()  and attach to the last o f  these B~' the tree t~ from 
which the root has been removed. 

The  tree obtained is shown in Fig. 2.2. It  is clearly a chain-free derivation tree 
of x in G~, completing the proof. | 

We are now ready to prove our first main theorem. 

THEOREM 2.3. Every e-free E OL  languageL can be geneiated by a propagating, 
synchronized, separated and chain-free E OL  system. 

Proof. By Lemma 2.2 we may assume that L is generated by a propagating, 
synchronized and separated E OL  system G ~ (N, T, P, S) such that for every 
x eL(G) a chain-free derivation tree exists. We will construct an E O L  system 
G z (N tA N, T, P, S),with _~ = {_/i ] A ~ N} an alphabet disjbint from N, which 
will yield exactly all the Chain-free derivation trees of G. To  this end define 

P ~- P w { A - - - ~ x B y l A - - ~ - x B y e P ,  A , B ~ N ,  xy :# e} 

u {_~--~a l A--+ a~ P, a e  T}. 

Note the critical condition xy ~ e. I t  insures that the "bar"  can only be 
"inherited" if a node has at least two sons. Since we start with the "barred 



C H A I N - F R E E  E O L  N O R M A L  F O R M S  3 1 5  

5 

~ p /  i I 

z " ,,.'t I 

, ,  I 
/ I | X "~  

. I ! 

"; ( 

B t  

~ f -  . . . . . . .  e . . . . . . . . . . .  

x I 

F I G U R E  2 . 2  

n s 

4, 

symbol" S, G is synchronized and a bar can only disappear when producing a 
terminal. Every derivation tree in G is chain-free, and every chain-free derivation 
tree in G occurs in G with the nodes along one leaf-path being barred. I 

We next use Theorem 2.3 to establish further normal forms. 

THEOREM 2.4. Every E-free EOL language L can be generated by a propagating 
EOL system which contains no nonterminal chain production. 

Proof. Let G =- (N U -N, T, P, S) be the chain-free EOL system generating 
L according t o  the proof of Theorem 2.3. Based on G we will construct the 
desired system ~ as follows. 

Let G = ( N k J J V u { Q } , T U  T , P , S )  with 5 P = { A I A ~ N u N }  a n d Q a  
new nonterminal. We will call the symbols of 2P "pseudoterminals" since 
our construction will assure that L(~)  n 2r* = ~ .  

Let N~ = Nt.J N. 
Let/~ be the ^homomorphism on N~,* defined by/~(A) z A for .d ~ N and 

~(_~) = ~ for A e N .  

Define: 

P = {A --~/z(w) I A ---> w e P n / V  × N~ +} 

u { A ~ w  1A ~ w e P n  N x N,~ +} 
w {A--,-_~ [ A ~ N} w {_~--~ A [ A ~ N} 
U (_Pn _/V × T ) u  {a--~-Q]a~ T} u {Q --+ QQ} 

u { . ~ - - ~ a i A - - ~ a c P n N  × T}. 



316 CULIK AND MAURER 

Note that ~ contains no nonterminal chain production We conclude the proof 
by establishing L(~)  = L(G) ~ L 

A possible derivation tree in ~ is shown in Fig 2.3. 

level 0 

level I 

level 2 

level 3 

level 4 

level5 

level 6 

level 7 

B X 
1 I 

x / \ = / \  
B C A A 
f f i ! 

6 A A 
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B C C A A A A  
I! r Itla 

_ ~ A A 

B C C .AAAA 

II I IIII 
bc c a a aa 

FIGVRE 2.3 

Clearly, ~ simulates G with "haft speed". To each level of a tree in G corre- 
spond two levels of a derivation tree in ~ except for the last one. Terminal words 
can be obtained only on odd levels and we can easily verify thatL((~) n ~'* = ~ ,  
i.e., ~ is really a set of pseudoterminals. This is assured by the fact that on every 
odd level there can be at most one pseudoterminal (obtained from a barred 
symbol) which is always produced together with a nonterminal symbol. While 
there can be many pseudoterminals on even levels there is always one barred 
nonterminal on such a level. Thus L(G) = L ( G ) =  L as desired. | 

Note that the EOL system constructed for the proof of Theorem 2.4 may 
contain productions with long right-hand sides. While it is possible to eliminate 
such productions by well-known techniques, those techniques introduce chain 
productions, thus defeating the aim of the theorem. We will now show, however, 
that Theorem 2.4 holds even for short EOL systems. 

THEOR~lVI 2.5. Every c-free EOL language L can be generated by a propagating 
and short EOL system which contains no nonterminal chain production. 

Proof. Let G be an EOL system generating L and let G ----- (N •/V, T, P, S), 
N~ = N t3 .N, be the EOL system constructed for the proof of Theorem 2.3 with 
L(G) = L. By modifying the idea of the proof of Theorem 2.4 we will construct a 
propagating and short EOL system G 1 without chain productions which 
generates L. 

In tuitively, each derivation step in G will be simulated by several steps in G l 
(rather than by two steps as in ~). 

Let p be the maximum length of the right side of productions of G, i.e. 
p = max{I w If A - +  w ~ P}. Let q be the smallest even number such that 
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2 q ~ / p .  Clearly, for each product ion p ~ /~  with p = A ~ w, w ~ N~ +, we can 

construct  a set P~ of short  productions such that  A ~ q  u iff u = w, and such P~0 
that  in the intermediate steps new nonterminals,  say N~ ,  are used. Fur thermore ,  
if A ~v~ ul ~p ,  u2 ~v~, "'" =>v~ ua = u, i.e. I u ] /> 2, then each u i contains 
exactly one barred symbol and in the first step a production of the form 
A - *  /~C or A --+ BC is used, A e N ,  B, C or B, C in U,~pN1V,, where 

P N =  P n N ~  x N~ +. 
Assume that  N,1 n N,,~ =- ~ for Pa # P2 and let Q be a new nonterminal.  
Let  G2 = (N2, T, P2, S) be an auxiliary E O L  system as follows: 

N2={O}wN~ .U U N~, P~. =(P~---PN) W U P~,. 
V~PN ~ N  

I t  is easy to verify that L(Go) = L(G). 
We are now ready to define the desired E O L  system G 1 = (N2, T u ~', P1, '~), 

where ~' = {.~ I A ~ N0} is a set of pseudoterminals.  Let  N 1 be the subset of N 2 
of the nonbarred symbols and let N 1 ~ N 0 - -  N 1 be the set of barred symbols. 
Let  /~ be the homomorphism on N0* defined by if(A) = A for A ~ N 1 and 
# ( 4 )  ~ ~ for each A E N 1 . 

Let  

/:)1 ~- {--d -+ if(w) / A ~ w e/ )2  n JV 1 X N2 +} 
W{A--+w] A - - + w e P o n N 1  X No+} . 

u { A - - + - ~ I A E N 1 } U { ~ - - ~  A I A ~ N }  

u ( P n N  x T ) w { a - - + Q Q ! a e T }  

u{Q--+OQ,  O. --+Q} 

w { A - - - ~ a l A - - ~ a ~ P c ~ N  x T}. 

Note that G1 is short  and contains no nonterminal  chain production. We 
ve r i fy  that L(G1) = L(G2)= L(G) ~- L using a number  of observations. 

Note that terminals in T can only be produced from nonterminals in N ~ ,  
not from symbols in U ~ N  N , .  The  proof that L(G1) = L(G2) is analogous to 
that  of L ( ~ )  = ((~), the most important  difference being that a terminal  word 
can be produced only in 1 + kq, k ~ O, steps in a G 1 derivation. 

Indeed on all "even levels" of any derivation tree in G 1 there is a barred non- 
terminal ,  and on the "odd  levels" different from levels 1 + kq, k = O, 1,..., 
there is at least one nonbarred nonterminal,  since none of the new symbols in 
U~,~N N ,  produces a terminal symbol. There  is clearly one path from the root to 
a leaf along which all symbols are barred. Finally, as an alternative to a terminal  
symbol on levels 1 + kq k ~ 0, 1,... either a nonbarred nontermlnal  or a 
terminal together with a barred nonterminal  is produced. Thus  no terminal word 
containing a symbol of ~' is produced and the proof is complete. | 

We will now consider two applications of our results. 
Let  G (N,  T, P,  S)  be an E O L  system. We first note that L(G) ~ ~ iff 
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S ~ *  x, x E T* for some i <~ 21N+TI.. For  suppose S ~ x, x ~ T* for some 
j > 21N+rl. Then  S ~i~ xx ~i~ x~ ~i~ x with alph(xx) = alph(x2) and ie > 0 

Thus  S ~ t  xl ~ i ,  y,  i.e. S ~ ' y  for y ~ T* a n d j '  < j .  (Note that above proof  
also holds for E T O L  systems). 

Modifying above idea and using the chain-free normal form result of 
Theorem 2.3 we will show that the finiteness problem for E O L  system is 
decidable. 

While  it  is well-known that both emptiness and finiteness is decidable for E O L  
systems, these facts are usually proved based on decidabil i ty results for indexed- 
languages and the fact that every E O L  language is an indexed-language (Culik II ,  
1974), (Rosenberg, Salomaa, 1976). Thus  our simple direct woofs  may be of  
some interest.' 

COROLLARY 1. There exists an algorithm which decides .for any E O L  system 

G = (N,  T,  P,  S)  whether L ( G )  is finite. 

Proof. Let  G be the chain-free E O L  system generating L ( G ) -  {E} as 
constructed in the proof of Theorem 2.1 and let m = 21Nu~TI. 

We maintain tha tL(G)  is infinite iff ~q ~ i  x for some x c T* and m < i ~ 2m. 

P a r t l .  Suppose S ~ i x  for some x c T *  and m < i ~ 2 m .  Then  
S ~ i l  xl ~i~ x2 ~i3 x for some i 1 + i 2 + i~ = i, i 2 > 0, alph(xl) = alph(x2) 

and x I = ul.dv 1 , x 2 = u~y_dzv~ with A ~ N ,  u 1 ~ i2 u2, vl  ~ i2 v2 ,  .~ =~ i~ y .dz ,  

l y z  I > 0. Thus  ~q ~i~ xl ~ i ~  wk ~i3 ~ T + for k ~> 1, with wl = x and 

l ~ l  < I ~ /  < "". Thus  L ( G ) =  L ( G ) -  {E} is infinite. 

Par t  2. SupposeL(G)  =- L ( G )  - {e} is infinite and for no i with m < i ~< 2m 
and x ~ T* does S ~ i  x hold. We will derive a contradiction. 

Since L(G') is infinite, ~q ~ J  Y0 holds for some j > 2m and Y0 ~ T*. We will 

construct  a sequence Yo, Yl .... with Yi ~ L ( G )  and ] Yo ] > ] Yl / > J Y~ i > .... 
and I Y ¢ I -  [Yi+~l ~ < m, contradicting our assumption. Suppose we have  
S ~ k y  i ~ T*  for some k > 2m. Then  S ~i~ xl  ~ i2  x~ ~ i 3 y  i for s o m e i  t , i 2 , i a 

with 0 < [ i 2 I ~< m, i 1 + i 2 ~ i 3 = k. Thus  S ~ x 1 ~ i~  Yi+l ~ T*  for some 

Yi+l " Clearly, ] Yi [ - -  ] Yi+l I = i2 <~ m and i Yi I > ]Y~+I I as desired. | 

We conclude the paper with an application of Theorem 2.5 to E O L  forms. 
F rom the productions used in/)1 it is clear that  there are propagating complete 

E O L  forms with a single nonterminal S and a single terminal  a with no produc- 
tion S --* S, answering a question raised in (Maurer,  Salomaa and Wood, 1977). 
More  specifically we have: 

COROLLARY 2" The E O L  form F = ({S}, {a}, P,  S )  wi th  productions P = 

{ S  -+ a, S -+ aS,  S -+ Sa,  a -+ a, a -+ S,  a --~ S S }  is complete. 
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