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Abstract

This paper is a contribution to the mathematical foundations of the theory of automata. We give a
topological characterization of the transductions� from amonoidM into a monoidN, such that ifR is
a recognizable subset ofN, �−1(R) is a recognizable subset ofM. We impose two conditions on the
monoids, which are fullfilled in all cases of practical interest: the monoids must be residually finite
and, for every positive integern, must have only finitely many congruences of indexn. Our solution
proceeds in two steps. First we show that such a monoid, equipped with the so-called Hall distance,
is a metric space whose completion is compact. Next we prove that� can be lifted to a map̂� fromM
into the set of compact subsets of the completion ofN. This latter set, equipped with the Hausdorff
metric, is again a compact monoid. Finally, our main result states that�−1 preserves recognizable
sets if and only if̂� is continuous.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

This paper is a contribution to the mathematical foundations of automata theory. We are
mostly interested in the study of transductions� from a monoidM into another monoidN
such that, for every recognizable subsetRof N, �−1(R) is a recognizable subset ofM. We
propose to call such transductionscontinuous, a term introduced in[7] in the case whereM
is a finitely generated free monoid.
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In mathematics, the word “continuous” generally refers to a topology. The aim in this
paper is to find appropriate topologies for which our use of the termcontinuouscoincides
with its usual topological meaning.
This problem was already solved when� is amappingfrom A∗ into B∗. In this case, a

result which goes back at least to the 1980s (see[14]) states that� is continuous in our sense
if and only if it is continuous for theprofinite topologyonA∗ andB∗. We shall not attempt
to define here the profinite topology and the reader is referred to [3,4,21] for more details.
This result actually extends to mappings fromA∗ into a residually finite monoidN, thanks
to a result of Berstel et al. [7] recalled below (Proposition 2.3).
However, a transduction� : M → N is not a map fromM intoN, but a map fromM into

the set of subsets ofN, which calls for amore sophisticated solution, since it does not suffice
to find an appropriate topology onN. Our solution proceeds in two steps. We first show,
under fairly general assumptions onM andN, which are fulfilled in all cases of practical
interest, thatM andNcan be equippedwith ametric, the Hall metric, for which they become
metric monoids whose completion (as metric spaces) is compact. Next we prove that� can
be lifted to a map̂� fromM into the monoidK(N̂) of compact subsets of̂N , the completion
of N. The monoidK(N̂), equipped with the Hausdorff metric, is again a compact monoid.
Finally, our main result states that� is continuous in our sense if and only if�̂ is continuous
in the topological sense.
Our paper is organised as follows. Basic results on recognizable sets and transductions are

recalled inSection2.Section3 is devoted to topologyand is divided into several subsections:
Section 3.1 is a reminder of basic notions in topology, metric monoids and the Hall metric
are introduced in Sections 3.2 and 3.3, respectively. The connections between clopen and
recognizable sets are discussed in Section 3.5 and Section 3.6 deals with the monoid of
compact subsets of a compact monoid. Our main result on transductions is presented in
Section 4. Examples like the transductions(x, n) → xn andx → x∗ are studied in Section
5. The paper ends with a short conclusion.

2. Recognizable languages and transductions

Recall that a subsetPof a monoidM is recognizableif there exists a finite monoidF and
a monoid morphism� : M → F and a subsetQ of F such thatP = �−1(Q). The set of
recognizable subsets ofM is denoted by Rec(M). Recognizable subsets are closed under
boolean operations, quotients and inverse morphisms. By Kleene’s theorem, a subset of a
finitely generated free monoid is recognizable if and only if it is rational.
The description of the recognizable subsets of a product of monoids was given by Mezei

(see [5, p. 54] for a proof).

Theorem 2.1(Mezei). LetM1, . . . ,Mn be monoids. A subset ofM1 × · · · × Mn is rec-
ognizable if and only if it is a finite union of subsets of the formR1 × · · · × Rn, where
Ri ∈ Rec(Mi).

The following result is perhaps less known (see[5, p. 61]).
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Proposition 2.2. LetA1, …, An be finite alphabets. ThenRec(A∗
1 × A∗

2 × · · · × A∗
n) is

closed under concatenation product.

Given two monoidsM andN, recall that atransductionfromM intoN is a relation onM
andN, that we shall also consider as a map fromM into the monoid of subsets ofN. If X is
a subset ofM, we set

�(X) = ⋃
x∈X

�(x).

Observe that “transductions commute with union”: if(Xi)i∈I is a family of subsets ofM,
then

�
( ⋃

i∈I

Xi

)
= ⋃

i∈I

�(Xi).

If � : M → N is a transduction, then the inverse relation�−1 : N → M is also a
transduction, and ifP is a subset ofN, the following formula holds:

�−1(P ) = {x ∈ M | �(x) ∩ P = ∅}.
A transduction� : M → N preserves recognizable setsif, for every setR ∈ Rec(M),
�(R) ∈ Rec(N). It is said to becontinuousif �−1 preserves recognizable sets, that is, if for
every setR ∈ Rec(N), �−1(R) ∈ Rec(M).
Continuous transductions were characterized in[7] whenM is a finitely generated free

monoid. Recall that a transduction� : M → N is rational if it is a rational subset ofM ×N .
According to Berstel et al. [7], a transduction� : A∗ → N is residually rationalif, for any
morphism� : N → F , whereF is a finite monoid, the transduction� ◦ � : A∗ → F is
rational. We can now state:

Proposition 2.3(Berstel et al.[7] ). A transduction� : A∗ → N is continuous if and only
if it is residually rational.

3. Topology

The aim of this section is to give a topological characterization of the transductions�
from a monoid into another monoid such that�−1 preserves recognizable sets.
Even if topology is undoubtedly part of the background of the average mathematician, it

is probably not a daily concern of the specialists in automata theory to which this paper is
addressed. For those readers whose memories in topology might be somewhat blurry, we
start with a brief overview of some key concepts in topology used in this paper.

3.1. Basic notions in topology

A metric don a setE is a map fromE into the set of nonnegative real numbers satisfying
the three following conditions, for all(x, y, z) ∈ E3:
(1) d(x, y) = 0 if and only ifx = y,
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(2) d(y, x) = d(x, y),
(3) d(x, z)�d(x, y) + d(y, z).

A metric is anultrametric if (3) is replaced by the stronger condition
(3′) d(x, z)� max{d(x, y), d(y, z)}.

A metric spaceis a setE together with a metricd onE. Given a positive real number� and
an elementx in E, theopen ballof centerx and radius� is the set

B(x, �) = {y ∈ E | d(x, y) < �}.
A function� from a metric space(E, d) into another metric space(E′, d ′) is uniformly
continuous if, for every� > 0, there exists� > 0 such that, for all(x, x′) ∈ E2,d(x, x′) < �
implies d(�(x),�(x′)) < �. It is an isometryif, for all (x, x′) ∈ E2, d(�(x),�(x′)) =
d(x, x′).
A sequence(xn)n�0 of elements ofE is converging to a limitx ∈ E if, for every� > 0,

there existsN such that for all integersn > N , d(xn, x) < �. It is aCauchy sequenceif, for
every positive real number� > 0, there is an integerN such that for all integersp, q�N ,
d(xp, xq) < �. Ametric spaceE is said to becompleteif everyCauchy sequence of elements
of E converges to a limit.
For any metric spaceE, one can construct a complete metric spaceÊ, containingE as

a dense1 subspace and satisfying the following universal property: ifF is any complete
metric space and� is any uniformly continuous function fromE to F, then there exists
a unique uniformly continuous function̂� : Ê → F which extends�. The spacêE is
determined up to isometry by this property, and is called thecompletionof E.
Metric spaces are a special instance of the more general notion of topological space. A

topologyon a setE is a setT of subsets ofE, called theopen setsof the topology, satisfying
the following conditions:
(1) ∅ andE are inT ,
(2) T is closed under arbitrary union,
(3) T is closed under finite intersection.
The complement of an open set is called aclosed set. Theclosureof a subsetXofE, denoted
byX, is the intersection of the closed sets containingX. A subset ofE isdenseif its closure
is equal toE. A topological spaceis a setE together with a topology onE. A map from a
topological space into another one iscontinuousif the inverse image of each open set is an
open set.
A basisfor a topology onE is a collectionB of open subsets ofEsuch that every open set

is the union of elements ofB. The open sets of thetopology generated byB are by definition
the arbitrary unions of elements ofB. In the case of a metric space, the open balls form a
basis of the topology.
A topological space(E, T ) is Hausdorffif for eachu, v ∈ E with u = v, there exist

disjointopen setsU andV such thatu ∈ U andv ∈ V . A family of open sets(Ui)i∈I is said
to covera topological space(E, T ) if E = ⋃

i∈IUi . A topological space(E, T ) is said to
becompactif it is Hausdorff and if, for each family of open sets coveringE, there exists a
finite subfamily that still coversE.
To conclude this section, we remind the reader of a classical result on compact sets.

1 See definition below.
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Proposition 3.1. Let T and T ′ be two topologies on a set E. Suppose that(E, T ) is
compact and that(E, T ′) is Hausdorff. IfT ′ ⊆ T , thenT ′ = T .

Proof. Consider the identity map� from (E, T ) into (E, T ′). It is a continuous map, since
T ′ ⊆ T . Therefore, ifF is closed in(E, T ), it is compact, and its continuous image�(F ) in
the Hausdorff space(E, T ′) is also compact, and hence closed. Thus�−1 is also continuous,
whenceT ′ = T . �

3.2. Metric monoids

LetM be a monoid. A monoid morphism� : M → N separatestwo elementsu andv
of M if �(u) = �(v). By extension, we say that a monoidN separatestwo elements ofM
if there exists a morphism� : M → N which separates them. A monoid isresidually finite
if any pair of distinct elements ofM can be separated by a finite monoid.
Residually finite monoids include finite monoids, free monoids, free groups and many

others.Theyareclosedunderdirect productsand thusmonoidsof the formA∗
1×A∗

2×· · ·×A∗
n

are also residually finite.
A metric monoidis a monoid equipped with a metric for which its multiplication is

uniformly continuous.
Finitemonoids, equippedwith the discretemetric, are examples ofmetricmonoids.More

precisely, ifM is a finite monoid, thediscrete metric dis defined by

d(s, t) =
{
0 if s = t,

1 otherwise.

In the sequel, we shall systematically consider finite monoids as metric monoids.
Morphisms between metric monoids are required to beuniformly continuous.

3.3. Hall metric

Any residually finitemonoidM canbeequippedwith theHallmetric d, definedas follows.
We first set, for all(u, v) ∈ M2:

r(u, v) = min{Card(N) N separatesu andv}.
Then we setd(u, v) = 2−r(u,v), with the usual conventions min∅ = +∞ and 2−∞ = 0.
Let us first establish some general properties ofd.

Proposition 3.2. In a residually finite monoid M, d is an ultrametric. Furthermore, the
relationsd(uw, vw)�d(u, v) andd(wu,wv)�d(u, v) hold for every(u, v,w) ∈ M3.

Proof. It is clear thatd(u, v) = d(v, u). Suppose thatd(u, v) = 0. Thenu cannot be
separated fromv by any finite monoid, and sinceM is residually finite, this shows thatu =
v. Finally, let(u, v,w) ∈ M3. First assume thatu = w. SinceM is residually finite,uandw
can be separated by somefinitemonoidF. ThereforeF separates eitheruandv, orv andw. It
follows that min{(r(u, v), r(v,w)}�r(u,w) and henced(u,w)� max{d(u, v), d(v,w)}.
This relation clearly also holds ifu = w.
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The second assertion is trivial. A finite monoid separatinguw andvw certainly separates
u andv. Therefored(uw, vw)�d(u, v) and dually,d(wu,wv)�d(u, v). �

The next two propositions state two fundamental properties of the Hall metric.

Proposition 3.3. Multiplication on M is uniformly continuous for the Hall metric. Thus
(M, d) is a metric monoid.

Proof. It is a consequence of the following relation

d(uv, u′v′)� max{d(uv, uv′), d(uv′, u′v′)}� max{d(v, v′), d(u, u′)}
which follows from Proposition3.2. �

Proposition 3.4. LetM be a residually finitemonoid. Then anymorphism from(M, d) onto
a finite discrete monoid is uniformly continuous.

Proof. Let � be a morphism fromM onto a finite monoidF. Then by definition ofd,
d(u, v) < 2−|F | implies�(u) = �(v). Thus� is uniformly continuous. �

The completion of the metric space(M, d), denoted by(M̂, d), is called theHall com-
pletionof M. Since multiplication onM is uniformly continuous, it extends, in a unique
way, into a multiplication ontôM, which is again uniformly continuous. In particular,̂M

is a metric, complete monoid. Similarly, Proposition3.4 extends tôM: any morphism from
(M̂, d) onto a finite discrete monoid is uniformly continuous.
We now characterize the residually finite monoidsM such thatM̂ is compact.

Proposition 3.5. Let M be a residually finite monoid. Then̂M is compact if and only if, for
every positive integer n, there are only finitely many congruences of index n on M.

Proof. Recall that the completionof ametric space is compact if andonly if it isprecompact,
that is, for every� > 0, it can be covered by a finite number of open balls of radius�.
Denote byCn the set of all congruences onM of index�n and let�n be the intersection

of all congruences ofCn.
Assume first that̂M is compact and letn > 0. SinceM is precompact, there exist a

finite subsetF of M such that the ballsB(x,2−n), with x ∈ F , coverM. Let x ∈ F and
y ∈ B(x,2−n). Thenr(x, y) > n and thus the monoids of size�n cannot separatex from
y. It follows thatx � y for each� ∈ Cn and thusx �n y. Therefore�n is a congruence of
finite index, whose index is at most|F |. Now each congruence ofCn is coarser than�n,
and since there are only finitely many congruences coarser than�n, Cn is finite.
Conversely, assume that, for every positive integern, there are only finitely many con-

gruences of indexn onM. Given� > 0, letn be an integer such that 2−n<�. SinceCn is
finite,�n is a congruence of finite index onM. LetF be a finite set of representatives of the
classes of�n. If x ∈ F andx �n y, then�(x) = �(y) for each morphism� fromM onto
a monoid of size�n. Thusr(x, y) > n and sod(x, y) < 2−n < �. It follows thatM is
covered by a finite number of open balls of radius�. ThereforeM̂ is compact. �

An important sufficient condition is given in the following corollary.
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Corollary 3.6. Let M be a residually finite monoid. If M is finitely generated, thenM̂ is
compact.

Proof. Let n>0. There are only finitely many monoids of sizen. SinceM is finitely gener-
ated, there are only finitely many morphisms fromM onto a monoid of sizen. Now, since
any congruence of indexn is the kernel of such a morphism, there are only finitely many
congruences onM of indexn. It follows by Proposition3.5 thatM̂ is compact. �

3.4. Hall-compact monoids

Proposition 3.5 justifies the following terminology. We will say that a monoidM isHall-
compactif it is residually finite and if, for every positive integern, there are only finitely
many congruences of indexn onM. Proposition 3.5 can now be rephrased as follows:

“A residually finite monoid M is Hall-compact if and only if̂M is compact.”

and Corollary 3.6 states that

“Every residually finite and finitely generated monoid is Hall-compact.”

The class of Hall-compact monoids includes most of the examples used in practice:
finitely generated freemonoids (resp. groups), finitely generated free commutativemonoids
(resp. groups), finite monoids, trace monoids, finite products of such monoids, etc.
The next proposition shows that the converse to Corollary 3.6 does not hold.

Proposition 3.7. There exists a residually finite, nonfinitely generated monoid M such that
M̂ is compact.

Proof. Let P be the set of all prime numbers and letM = ∏
p∈P Z/pZ, whereZ/pZ

denotes theadditive cyclic groupof orderp. It is clear thatM is residually finite. Furthermore,
in a finitely generated commutative group, the subgroup consisting of all elements of finite
period is finite[12]. It follows thatM is not finitely generated.
Let n > 0 and let� : M → N be a morphism fromM onto a finite monoid of sizen.

SinceM is a commutative group,N is also a commutative group. For every primep > n, the
order of the image of a generator ofZ/pZmust dividepand be�n, hence the image of this
generator must be 0. Consequently, any such morphism is determined by the images of the
generators ofZ/pZ for p�n, and so there are only finitely many of them. Therefore
there are only finitely many congruences onM of index n and soM̂ is compact by
Proposition 3.5. �

3.5. Clopen sets versus recognizable sets

Recall that aclopensubset of a topological space is a subset which is both open and
closed. A topological space iszero-dimensionalif its clopen subsets form a basis for its
topology.

Proposition 3.8. Let M be a residually finite monoid. Then(M, d) and (M̂, d) are zero-
dimensional.



450 J.-É. Pin, P.V. Silva / Theoretical Computer Science 340 (2005) 443–456

Proof. The open balls of the form

B(x,2−n) = {y ∈ M | d(x, y) < 2−n},
B̂(x,2−n) = {y ∈ M̂ | d(x, y) < 2−n},

wherexbelongs toM (resp.M̂) andn is a positive integer, form a basis of the Hall topology
ofM (resp.M̂). But these balls are clopen since

{y | d(x, y) < 2−n} = {y | d(x, y)�2−(n+1)}.
It follows that(M, d) and(M̂, d) are zero-dimensional.�

Proposition3.8 implies that ifM is a Hall-compact monoid then̂M is profinite (see
[1,3,4,21] for the definition of profinite monoids and several equivalent properties), but we
will not use this result in this paper.
We now give three results relating clopen sets and recognizable sets. The first one is due

to Hunter [9, Lemma 4], the second one summarizes results due to Numakura [13] (see also
[17,2]). The third result is stated in [3] for free profinite monoids. For the convenience of
the reader, we present a self-contained proof of the second and the third results.
Recall that thesyntactic congruenceof a subsetP of a monoidM is defined, for all

u, v ∈ M, by

s ∼ t if and only if, for all (x, y) ∈ M2, xuy ∈ P ⇔ xvy ∈ P.

It is the coarsest congruence ofM which saturatesP.

Lemma 3.9(Hunter’s Lemma[9] ). In a compact monoid, the syntactic congruence of a
clopen set is clopen.

Proposition 3.10. In a compact monoid, every clopen subset is recognizable. If M is a
residually finite monoid, then every recognizable subset ofM̂ is clopen.

Proof. LetM be a compactmonoid, letPbe a clopen subset ofM and let∼P be its syntactic
congruence. By Hunter’s Lemma,∼P is clopen. Thus for eachx ∈ M, there exists an open
neighborhoodG of x such thatG × G ⊆ ∼P . ThereforeG is contained in the∼P -class
of x. This proves that the∼P -classes form an open partition ofM. By compactness, this
partition is finite, and henceP is recognizable.
Suppose now thatM is a residually finite monoid and letP be a recognizable subset

of M̂. Let � : M̂ → F be the syntactic morphism ofP. SinceP is recognizable,F is
finite and by Proposition3.4, � is uniformly continuous. NowP = �−1(Q) for some
subsetQ of F. SinceF is discrete and finite,Q is a clopen subset ofF and henceP is also
clopen. �

The last result of this subsection is a clone of a standard result on free profinite monoids
(see [3] for instance).
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Proposition 3.11. Let M be a Hall-compact monoid, let P be a subset of M and letP be
its closure inM̂. The following conditions are equivalent:
(1) P is recognizable,
(2) P = K ∩ M for some clopen subset K of̂M,
(3) P is clopen inM̂ andP = P ∩ M,
(4) P is recognizable in̂M andP = P ∩ M.

Proof. (1) implies (2). Let� : M → F be the syntactic monoid ofP and letQ = �(P ).
SinceF is finite,� is uniformly continuous by Proposition3.4 and extends to a uniformly
continuousmorphism̂� : M̂ → F . ThusK = �̂−1(Q) is clopen and satisfiesK ∩M = P .
(2) implies (3). Suppose thatP = K ∩ M for some clopen subsetK of M̂. Then the

equalityP = P ∩ M follows from the following sequence of inclusions

P ⊆ P ∩ M = (K ∩ M) ∩ M ⊆ K ∩ M = K ∩ M = P.

Furthermore, sinceK is open andM is dense inM̂, K ∩ M is dense inK. ThusP =
K ∩ M = K = K. ThusP is clopen inM̂.
The equivalence of (3) and (4) follows from Proposition3.10, which shows that in̂M,

the notions of clopen set and of recognizable set are equivalent.
(4) implies (1). Let̂� : M̂ → F be the syntactic monoid ofP and letQ = �̂(P ). Let�

be the restriction of̂� toM. Then we haveP = P ∩ M = �̂−1(Q) ∩ M = �−1(Q). Thus
P is recognizable. �

3.6. The monoid of compact subsets of a compact monoid

LetM be a compact monoid, and letK(M) be the monoid of compact subsets ofM. The
Hausdorff metriconK(M) is defined as follows. ForK,K ′ ∈ K(M), let

�(K,K ′) = sup
x∈K

inf
x′∈K ′

d(x, x′)

h(K,K ′) =


max(�(K,K ′), �(K ′,K)) if K andK ′ are nonempty,
0 if K andK ′ are empty,
1 otherwise.

The last case occurs when one and only one ofK or K ′ is empty. By a standard result of
topology,K(M), equipped with this metric, is compact.
The next result states a property of clopen sets which will be crucial in the proof of our

main result.

Proposition 3.12. Let M be a Hall-compact monoid, let C be a clopen subset of̂M and let
� : K(M̂) → K(M̂) be themap defined by�(K) = K ∩C.Then� is uniformly continuous
for the Hausdorff metric.

Proof. SinceC is open, every elementx ∈ C belongs to some open ballB(x, �) contained
inC. SinceM̂ is compact,C is also compact and can be covered by a finite number of these
open balls, say(B(xi, �i ))1� i �n.
Let � > 0 and let� = min{1, �, �1, . . . , �n}. Suppose thath(K,K ′) < � with K = K ′.

ThenK,K ′ = ∅, d(x,K ′) < � for everyx ∈ K andd(x′,K) < � for everyx′ ∈ K ′.
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Suppose thatx ∈ K ∩ C. Sinced(x,K ′) < �, we haved(x, x′) < � for somex′ ∈ K ′.
Furthermore,x ∈ B(xi, �i ) for somei ∈ {1, . . . , n}. Sinced is an ultrametric, the relations
d(x, xi) < �i andd(x, x′) < � � �i imply that d(x′, xi) < �i and thusx′ ∈ B(xi, �i ).
Now sinceB(xi, �i ) is contained inC, x′ ∈ K ′ ∩ C and henced(x,K ′ ∩ C) < � < �. By
symmetry,d(x′,K ∩ C) < � for everyx′ ∈ K ′ ∩ C. Henceh(K ∩ C,K ′ ∩ C′) < � and�
is continuous. �

4. Transductions

LetM andNbeHall-compactmonoids and let� : M → N be a transduction. ThenK(N̂),
equippedwith theHausdorffmetric, is alsoacompactmonoid.Defineamap�̂ : M → K(N̂)

by setting, for eachx ∈ M, �̂(x) = �(x).

Theorem 4.1. The transduction�−1 preserves the recognizable sets if and only if�̂ is
uniformly continuous.

Proof. Suppose that�−1 preserves the recognizable sets. Let� > 0. SinceN̂ is compact, it
can be covered by a finite number of open balls of radius�/2, say

N̂ = ⋃
1� i �k

B(xi, �/2).

SinceN̂ is zero-dimensional by Proposition3.8, its clopen subsets constitute a basis for
its topology. Thus every open ballB(xi, �/2) is a union of clopen sets and̂N is a union of
clopen sets each of which is contained in a ball of radius�/2. By compactness, we may
assume that this union is finite. Thus

N̂ = ⋃
1� j �n

Cj ,

where eachCj is a clopen set contained in, say,B(xij , �/2). It follows now fromProposition
3.11 thatCj ∩N is a recognizable subset ofN. Since�−1 preserves the recognizable sets, the
setsLj = �−1(Cj ∩ N) are also recognizable. By Proposition 3.4, the syntactic morphism
of Lj is uniformly continuous and thus, there exists�j such thatd(u, v) < �j implies
u ∼Lj

v. Taking� = min{�j | 1�j �n}, we have for all(u, v) ∈ M2,

d(u, v) < � ⇒ for all j ∈ {1, . . . , n}, u ∼Lj
v.

We claim that, wheneverd(u, v) < �, we haveh(�(u), �(v)) < �. By definition,

Lj = {x ∈ M | �(x) ∩ Cj ∩ N = ∅}.
Suppose first that�(u) = ∅. Thenu /∈ ⋃

1� j �n Lj . Sinceu ∼Lj
v for everyj, it follows

thatv /∈ ⋃
1� j �n Lj , so�(v)∩Cj ∩N = ∅ for 1�j �n. SinceN = ⋃

1� j �n(Cj ∩N),
it follows that�(v) = ∅. by symmetry, we conclude that�(u) = ∅ if and only if �(v) = ∅.
Thus we may assume that both�(u) and�(v) are nonempty. Lety ∈ �(u). Theny ∈

Cj ∩ N for somej ∈ {1, . . . , n} and sou ∈ Lj . Sinceu ∼Lj
v, it follows thatv ∈ Lj and
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hence there exists somez ∈ �(v) such thatz ∈ Cj ∩ N . SinceCj ⊆ B(xij , �/2), we obtain
d(xij , y) < �/2 andd(xij , z) < �/2, whenced(y, z) < �/2 sinced is an ultrametric. Thus
d(y, �(v)) < �/2. Since�(u) is dense in�(u), it follows thatd(x, �(v))��/2 for every
x ∈ �(u) and so

�(�(u), �(v))��/2< �.

By symmetry,�(�(v), �(u)) < � and henceh(�(u), �(v)) < � as required.
Next we show that if̂� is uniformly continuous, then�−1 preserves the recognizable

sets. First,̂� can be extended to a uniformly continuous mapping

�̌ : M̂ → K(N̂).

Let L be a recognizable subset ofN. By Proposition3.11,L = C ∩ N for some clopen
subsetC of N̂ . Let

R = {K ∈ K(N̂) | K ∩ C = ∅}.
We show thatR is a clopen subset ofK(N̂). Let� : K(N̂) → K(N̂) be the map defined by
�(K) = K∩C. ByProposition3.12,� is uniformly continuousandsinceR = �−1({∅}c) =
[�−1({∅})]c, it suffices that{∅} is a clopen subset ofK(N̂). SinceB(∅,1) = {∅}, {∅} is
open. LetK ∈ {∅}c. Since∅ /∈ B(K,1), we haveB(K,1) ⊆ {∅}c and so{∅}c is also open.
Therefore{∅} is clopen and so isR. Since�̌ is continuous,̌�−1

(R) is a clopen subset of̂M
and soM ∩ �̌−1

(R) is recognizable by Proposition 3.11. Now

M ∩ �̌−1
(R) = {u ∈ M | �̌(u) ∈ R}

= {u ∈ M | �(u) ∈ R}
= {u ∈ M | �(u) ∩ C = ∅}.

SinceC is open, we have�(u) ∩ C = ∅ if and only if �(u) ∩ C = ∅, hence
M ∩ �̌−1

(R) = {u ∈ M | �(u) ∩ C = ∅}
= {u ∈ M | �(u) ∩ L = ∅}
= �−1(L)

and so�−1(L) is a recognizable subset ofM. Thus�−1 preserves the recognizable sets.�

5. Examples of continuous transductions

A large number of examples of continuous transductions can be found in the literature
[6–8,10,11,15,16,18,20]. We state without proof two elementary results: continuous trans-
ductions are closed under composition and include constant transductions.

Proposition 5.1. LetL ⊆ N and let�L : M → N be the transduction defined by�L(x) =
L. Then�L is continuous.
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Theorem 5.2. The composition of two continuous transductions is a continuous transduc-
tion.

Continuous transductions are also closed under product, in the following sense:

Proposition 5.3. Let �1 : M → N1 and�2 : M → N2 be continuous transductions. Then
the transduction� : M → N1 × N2 defined by�(x) = �1(x) × �2(x) is continuous.

Proof. Let R ∈ Rec(N1 × N2). By Mezei’s Theorem, we haveR = ⋃n
i=1Ki × Li for

someKi ∈ RecN1 andLi ∈ RecN2. Hence

�−1(R) = {x ∈ M | �(x) ∩ R = ∅}
=

{
x ∈ M | (�1(x) × �2(x)) ∩

(
n⋃

i=1
Ki × Li

)
= ∅

}

=
n⋃

i=1
{x ∈ M | �1(x) ∩ Ki = ∅and�2(x) ∩ Li = ∅}

=
n⋃

i=1

(
�−1
1 (Ki) ∩ �−1

2 (Li)
)
.

Since�1 and�2 are continuous, each of the sets�−1
1 (Ki) and�−1

2 (Li) is recognizable and
thus�−1(R) is recognizable. It follows that� is continuous. �

Further exampleswill be presented in a forthcoming paper.We justmention here a simple
but nontrivial example. An automata-theoretic proof of this result was given in[19] and we
provide here a purely algebraic proof.

Proposition 5.4. The function� : M × N → M defined by�(x, n) = xn is continuous.

Proof. LetR ∈ RecM. Then

�−1(R) = {(x, n) ∈ M × N | xn ∈ R}.
Let � : M → F be the syntactic morphism ofR in M and, for eachs ∈ F , let Ps = {n ∈
N | sn ∈ �(R)}. Then we have

�−1(R) = {(x, n) ∈ M × N | xn ∈ R}
= {(x, n) ∈ M × N | �(x) = s for somes ∈ F such thatsn ∈ �(R)}
= {(x, n) ∈ M × N | x ∈ �−1(s) for somes ∈ F such thatn ∈ Ps}
= ⋃

s∈F

�−1(s) × Ps.

Each set�−1(s) is recognizable by construction, and thus it suffices to show thatPs ∈ RecN
for eachs ∈ F . Given a finite cyclic monoid generated bya and some elementb of this
monoid, the set{n ∈ N | an = b} is either empty or an arithmetic progression. Applying
this fact to the finite cyclic submonoid generated bys in F, we conclude thatPs ∈RecN as
required. Thus�−1(R) ∈ Rec(M × N) and hence� is continuous. �

Corollary 5.5. The transduction	 : M → M defined by	(x) = x∗ is continuous.
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Proof. Let�N : M → N be defined by�N(x) = N. By Proposition5.1,�N is continuous.
Since the identity map is trivially continuous, it follows from Proposition 5.3 that� : M →
M × N defined by�(x) = {x} × N is continuous. Let� : M × N → M be defined by
�(x, n) = xn. By Proposition 5.4,� is continuous. Since	 = �◦�, it follows from Theorem
5.2 that	 is continuous. �

6. Conclusion

Wegave some topological arguments to callcontinuoustransductions whose inverse pre-
serve recognizable sets. It remains to seewhether this approach canbepushed forward to use
purely topological arguments, like fixpoint theorems, to obtain new results on transductions
and recognizable sets.
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