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Abstract 

Let {pk}+_~ be a given double infinite sequence of complex numbers. By defining a linear functional on the space of 
the Laurent polynomials, certain rational functions are first constructed and some algebraic properties studied. 

The hermitian case, i.e. P-k = ilk, k E Z is separately considered and it is shown how the theory of polynomials 
orthogonal on the unit circle can be used in order to prove geometric convergence for sequences such as these rational 
functions. 
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1. Introduction 

From a purely algebraic point of  view, Pad6 Approximants (and Pad6-type too, see e.g. [1, 2]) 
can be seen as certain rational functions associated with a sequence of complex numbers. Indeed, 
let {ck}~0 be a given sequence and consider the formal power series, 

L = ~ C j z  j (1.1) 
j=0 

(which may or may not be the Taylor or asymptotic expansion of a function around the origin). 
Thus, for m and n nonnegative integers, one tries to find polynomials Pm and Q, of degree m and 
n, respectively, such that 

L(z )Q, ( z )  - Pro(Z) = ~ djz j (1 .2)  
j=0 
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with dj=O, 0 <~j <~ m + n. (For further details concerning formal power series, see [21]). The rational 
function Pm(z)/Q,(z) is called an (m,n) Pad6 approximant to (1.1). 

In this paper, instead of the sequence {ck}~0 we start from a double infinite sequence {#k}+_~, so 
that rational functions defined in the Pad6 sense (1.2) are considered and certain algebraic properties 
studied. In this respect, an immediate question arises: which type of  power expansion do we associate 
with the sequence {pk}+_~? 

One might initially think of a Laurent series like ~ _ ~  pjzJ. This situation was studied by 
Bultheel [5], giving rise to the theory of the so-called Pad6-Laurent approximants. (see also, [20]). 
In our case, we shall associate with {#k}_~ a pair (Lo,L~) of formal power series, 

O<3 

Lo # o + 2 X ~  ' (z (1.3a) = ~jz j ---, 0), 
j=l  

OG 

L~ = -#o - 2 ~-~P-jz -j  (z ~ o o ) .  (1.3b) 
j=l  

From (1.3), it is not new to infer that the rational functions to be considered are to be Two- 
point Pad6 approximants [12]. Approximants like those given by (1.2) have free poles. This fact, 
can sometimes become a serious drawback [1]. For this reason, we shall mostly restrict our at- 
tention to the Pad6-type situation where the poles can be given beforehand. (Actually, we could 
fix part of  the denominator and part of  the numerator and thus Partial Pad6 approximant, would 
arise, see [3, 17].) Definitively, we shall be concerned with Two-point Pad6-type approximants 
to the pair (Lo, L~) .  First, an algebraic approach is presented (Section 2). Such approach al- 
lows to connect to the Szeg6 polynomials and related topics, and deduce convergence properties 
(Section 3). 

In order to fix notations, in the sequel, //n will stand for the polynomials of  degree n at most and 
/7 for the set of  all the polynomials. Furthermore, for every pair (p ,q)  of integers with p ~< q, we 
denote by Ap,  q the linear space of all Laurent polynomials (L-polynomials), 

R(z)= ZdS, dj c. 
j=p 

We shall also write A for the linear space of all L-polynomials. (Observe that 17[ n = Ao, n.) 

2. Preliminary results 

In [2], Brezinski introduces the concept of  generating function associated with a formal power 
series as (1.i). Indeed, the linear functional C ( # ) =  c j, j = 0, 1 . . . .  enables us to write, at least 
formally, 

j=0 
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(The functional C acts on the variable x,z being a parameter). Brezinski refers to (1 - x z )  -~ as 
the "generating function" of the sequence {Ck}k~0 (or of L). According to Jones et al. [22] from 
{ / l k } ~  we consider the linear functional /~ acting on the L-polynomials on the variable x), 

/J(x j) = #_j, j c Y. (2.2) 

Our first aim will be to obtain a generating function for the pair of  formal power series (1.3). 
Let us first consider, 

OO 

L = ~ / t ~ z  j ( z ~  0), (2.3a) 
j=0 

L* = - ~ / ~ _ j z  - j  (z ---* oc) (2.3b) 
j-=l 

and the linear functional D defined on A by D(xO = t~j, j E ~. Then, one readily gets (at least 
formally) 

D ( ( 1 -  x z ) - l ) = L ( z )  (z--~O), (2.4a) 

D ( ( 1 -  x z ) - l ) = L * ( z )  ( z - - - ~ ) .  (2.4b) 

Actually, (2.4) should be understood in the sense that if F(z)  is a function with Taylor and 
Laurent series around the origin and infinity given by (2.3), then, 

F(z)  = D((1 - xz)- '  ). (2.5) 

In this case, (1 - x z )  -1 is said to be the generating function of the pair (L,L*) (For an approach 
on Two-point Pad6 approximation based upon this generating function, see e.g. [13, 14, 16, 18]). In 
order to find a generating function for the pair (Lo,L~), one should first take into account that the 
functionals /~ and D are related by 

I~(R(x))= D(R(x-1)), R E Ap, q. (2.6) 

Assume that now there exists a function F(z)  as defined by (2.5), and set H(z)  --- 2F(z) -/~0. 
Thus, one has 

H(z)  = 2F(z) -/~0 = 2D((1 - xz) -l  ) - IZo 

=D(2(1  - x z )  -1 - 1 ) = D  \1  - x z J  =IX \ x  - z / "  

Strictly speaking, we should assume that the functional D has been extended to a larger space 
than A containing, at least, the function (1 - x z )  -~. This causes taking as generating function for 
the pair (Lo,L~), the following, 

x + z  
g(x,z) = 

X--Z" 
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We have, formally, 

p \ x _ z / = L o ( z )  (z---*O), 

(x 
# \ x - z /  

In order to make the paper self-contained, we shall briefly recall the definition of Two-point Pad6- 
type approximant. Thus, let m and k be nonnegative integers such that 0 < k  ~< m and Q~m(Z) a given 
polynomial of degree m with Qkm(O) # O, then there exists a unique polynomial Pkm E I1m SO that, 

Lo - (k/m)(Lo,L~(z) = ()(z k) ( z ~ 0 ) ,  (2.7a) 

L ~  - (k/m)(Lo,L~)(z) = O((z -l)m-k+l) (z--+ cx~), (2.7b) 

where we have written 

Pkm (z )/Qkm (z ) = ( k/m )(c0,L ~ )(z). 

This rational function (with prescribed denominator Q~m ) associated with the pair (L0, L~  ) is called 
a Two-point Pad6-type approximant (2PTA) of order (k, m -  k + 1 ) (for other definitions of  2PTA 
see, e.g. [12, 16]). It should also be remarked that since 0 < k  ~< m, we are implicitly imposing that 
the order of correspondence either at the origin or infinity is greater than one. Certainly, this does 
not mean a loss of generality but we are properly dealing with the two-point situation. 

On the other hand, for every pair (p ,q)  of integers with p ~< q, the system -¢x.} q satisfies the 
t I J = p  

Haar condition on any set X C C such that 0 ~ X  (see [10]). Therefore, any Hermite interpolation 
problem has always a unique solution. Thus, we have the following: 

X r r Theorem 1. (a) Let  { j}j=~, be r distinct given complex numbers such that xj # O. Let  {mj}j=~ 
be natural numbers with ml + ".. +mr = m. Denote by Rkm(X,Z) the L-polynomial (in x ,z  is 
a parameter) in A-(k-~),m-k interpolating g(x,z) at the nodes xj with multiplicity mj. Then, 

p( Rkm(X,Z ) ) = ( k/m )(co, t~ )(z ) 

with denominator Qkm(Z)= Qm(z)= H~ ( z - x  j) mj. 
(b) Let  H(z)  be a function admitting Lo and L ~  as Taylor and Laurent expansion around z = 0 

and z = cx~, respectively. Then, 

2z k 
H(z)-(k/m)(Lo,L~,(Z)--Qm(z)p(Vx(~X_)z), 

where V(x) = x I kQm(x ). 

Proof. (a) First, it is a simple matter to check that Rk,~(x,z) can be expressed by 

2z ( V(x ) )  
R ~ ( x , z ) =  1 + - -  1 

x - z  V I' 

where V(x) = x -k+l Qm(x). 

(2.8) 
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On the other hand, 

2z V (x )  ( z )  = 0,,(--~ I~ 
p(Rkm(X,Z)) = Po - -V--~# x 

Now, standard arguments allow to see that 

( V (x )  - V ( z )  ) E A-(k- l ) ,m-k.  
IZ X 

Hence, p(R~m(X, z ) )  is a rational function of  type (m, m) i.e. numerator and denominator of degree m 
at most. Furthermore, 

Lo(z)  - #(Rkm(X,Z)) : # \ X  -- z /  -- II -- - -  

-- V ( ~  # \ x  - z /  Q ~ - ~ #  \x - -~-  z !  = O(zk) (z ---+ 0), (2.9) 

since Qm(O ) ¢ O. Finally, 

2z k ( V ( x ) ~  

= O ( ( Z - 1 ) m - k ) O ( Z - l )  = O((Z-1) m-k+1) (Z---+OO) (2.10) 

since Qm has exact degree m. [] 
(b) Set (k/m)(Lo,L~)(z)=Pm(z)/Qm(z).  It can be deduced that the numerator Pm can be rewritten as, 

Pro(z) = #oQm(z) - 2ZPm(Z), 

where 

Then, one has, 

\ x - - z /  \ x - - z / "  

Now, having in mind that Q , . ( z ) =  z k-I V(z), it follows that 

Pro(z) = I~ 1 + x --- z Qm(z) - 2zklz = H ( z ) Q m ( z )  - 2zk# • (2.11) 
\ x  -- z~  \ x  -- z~  

Dividing both members in (3.4) by Qm(z) the proof follows. [] 

Next, an integral representation for the ( k /m)  2PTA will be given. Indeed, assume H ( z )  analytic 
in a domain V containing the origin and infinity (We can think of both V, as a connected domain, 
for example, V = C\K, K a compact such that 0 ~ K  or as an unconnected domain of the form V = 
V0 tA V~ = Int(F0) tO Ext(Fo~ ), F0 and Fo~ being closed Jordan curves such that 0 E Int(F0) C Int(F~ ). 
Here, C will denote the extended complex plane. 
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Assume that 
O(3 

H ( z )  = #o ÷ 2 ~ #jz j (z ---* 0), 
j = l  

~x3 

H ( z )  = - # o  - 2 ~ #_jz  - j  (z ~ oo). 
j = l  

(2.12) 

(2.13) 

Theorem 2. Under the previous conditions, we have 

Z k 
n ( z )  - (A/m)(Lo,L~)(Z)-  27ZiQm(Z) fF Qm(X)H(x)•  x ~ - Z ~  ax, (2.14) 

where the denominator Qm(z) is a polynomial  o f  degree exact  m with Qm(O)~ 0 and F a closed 
Jordan curve contained in V.  

Proof. See [24, pp. 186-187], taking in formulas (4) and (5) 

/~,--f12 . . . . .  fl~--0 and /3k+i . . . . .  flm+l ~-OO, 

Remark 1. We can deduce which type of  conditions are required on the polynomial Qm(z) s o  that the 
order of correspondence given by (2.7) and (2.8) can be increased as much as possible. (This is what 
Brezinski calls, higher-order Pad6-type approximants [2]). Indeed by imposing to V ( z ) =  z -k+l Qm(z) 
that 

p (x - iV ( x ) ) ~ -O ,  i = l . . . .  ,n ~ h, 

It(x i V ( x ) ) = O ,  i =  l , . . . ,  p - 1 <~ k - 1, 

(where h + k -- m and n + p ~< m) or equivalently, 

p ( x i V ( x ) ) = O ,  - n  <. i <~ p - 1  (2.16) 

from Theorem 2(b), one has, on the one hand, 

2z k- j 
Lo(Z) - (k/m)(Lo,L~)(Z) -- Qm(z)fl[x--(n+l)Z(x)z n+l ÷ ' "  "] 

z- o 
-- Qm(zi I~ L X - - Z  I 

and on the other, 

Lo~(z) - (k/m)(Lo.Lo~)(Z) -- - -  
2 z  k -  1 
Qm(Z)IA[xPV(x) Z-p ÷ X p+I V ( X ) z - P  -1 ÷ . . . ]  

2z k-' [xpv(x)] ' z - - , o o .  

~m(Z-)l~L X - - Z  A 
n 

Hence, we see the order of  correspondence has been increased up to n + p. The highest order is 
reached when n + p - - m .  In this case Two-point Pad6-type become Two-point Pad6 approximants 
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(for a precise definition of  Two-point Pad6 approximant, see e.g. [12, 17]). Now, (2.16) is translated 
into 

/~-("+k-l)(xJQm(x))=O, j = 0 ,  1 , . . . ,m  - 1. (2.17) 

That is, Qm(x) represents the mth orthogonal polynomial with respect to the functional /~-(,+k-~). 
Where for a given integer s, we set 

]A(S)(x j) =/2(xs+j) = # - ( s + j ) ,  j E Z. 

This property of orthogonality was already given by Draux [14] 

Remark 2. Let K and m be nonnegative integers such that 0<K~<2m and denote by [K/m](z) the 
two-point Pad6 approximant to (Lo, L~),  i.e. a rational function of  type (m,m) such that 

Lo(z) - [K/m](z) = O(z x ) (z ~ 0), (2.18 ) 

L ~ ( z )  - [K /m] ( z )  = O((z -1)2m-~+l) (z ~ ~ ) .  

Then, if [K/m](z) exists, it is unique (see e.g. [12]). Thus, it should be observed that its con- 
struction from the orthogonal polynomial Q,, respect to /~-(k-l) is completely independent of 
(k/m)(Lo,L~)(z), for any k (0<k~< m) and for any generating polynomial of (k/m)(z) (see [14]). 

3. Convergence 

In this section we are mainly concerned with certain results about convergence of  sequences of 
2PAs and 2PTAs under the assumption that the coefficients {/~k}_~, k C Z admit the following 
integral representation 

f gk = exp(-ikO)w(O) dO, (3.1) 

where w(O) is a function, possibly complex, and L~-integrable on [-r~, ~]. In this case, the power 
series 

O 0  

Lo(z) = #o + 2 ~ #jZ j, (Z ---+ 0), 
j=l 

0 ¢ )  

L~(z)  = - Po - 2 ~_, I~_jz -j, (z --~ c~), (3.2) 
j= l  

represent the Taylor expansions of  the function 

f ~  ei° dO, (3.3) 
+ 

Zw(O) H(z) = ~ e i° - z 

around z = 0 and z = c~, respectively. Observe that (3.3) defines an analytic function on the extended 
complex plane (~, unless the unit circle ~- = {z 6 C: [z I = 1} A function H(z)  given by (3.3) is said 
to be the Herglotz-Riesz transform of  the function w. 
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In the sequel and for the sake of simplicity, we will write (k/m)n(z) instead of (k/m)Lo,L~(z) when 
referring to 2PTA to the function H(z) and the same for 2PAs. Now the integral representation (2.14) 
for the error can be expressed as follows. 

Theorem 3. Let Rm(z )=Pm(z ) /Qm(z ) - - ( k /m)H(2 )  be a 2PTA to H(z) with denominator Qm(z) 

(deg(Qm) = m) and Qm(O) ~ O. Then, 

H ( z )  - Rm(z) - -  2zk f :  
e--i(k--l)0 

Qm(z~) ~ z ~ d  Qm(ei°)w(O)dO. (3.4) 

Proof. Let G be a region (closed and connected) in C so that q]-c G and 0 ~ G. Suppose F = c3G 
is a finite union of Jordan curves (G can be taken as the annulus {z E C: r ~< [z[ ~< R, r <  I<R}) .  

By (2.14), one can write (z ~ ~-) 

zk fr  Qm(x)H(x) dx 
H(z) - Rm(z) - 2rciQm(z) xk(x - z) 

27ziQm(z) x k ~ z )  ~ e i0 - x 

By using Fubini's Theorem, one has, 

Zk f~ [fF Om(X) ei°-~x dxl w(O)dO. 
H ( z )  - Rm(z) - 2rciQm(z) ~ xk(x - z )  e i0 - x  

By taking the boundary F sufficiently close to the unit circle so that q]- is contained in the interior 
of  F, we can apply the Cauchy integral formula to get (3.4). [] 

In [6], connection between quadrature formulas on the unit circle and Two-point Pade approximants 
was established along with convergence results for sequences of 2PTA with poles on the unit circle 
q]-, w being a complex function. 

Here, we will restrict our attention to the case w ( 0 ) > 0  almost everywhere on [-re, n], or more 
generally we will assume that there exists a distribution function q5 on [-re, n], i.e. a real bounded 
nondecreasing funcion with infinitely many points of  increase on [ - n ,  n] such that 

d0(0)  = w(O) dO. (3.5) 

Obviously, the sequence (3.1) is now hermitian, i.e. P-k = ilk, k E Z. Under these conditions we 
will consider sequences of 2PTA of higher order and 2PA introduced by Jones et al. [22]. These 
authors established the uniform convergence of such sequences to the function H(z) on appropri- 
ate domains of C - Y. Here, we will improve such results by showing that geometric conver- 
gence also holds. For this purpose, let us introduce, the so-called Szeg6 polynomials or polynomials 
orthogonal on the unit circle [22]. Indeed, from the distribution q~ we have the following inner 
product: 

( f ,  0) = f ( e i ° ) ~  dqb(0). 
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Orthogonalization process when applied to the basis { 1,z,. . . ,z"} of  H, produces an orthogonal 
basis {Po, Pl . . . .  ,p,} of monic polynomials. The sequence {pn(z)} is called the sequence of monic 
Szeg6 polynomials with respect to the distribution 0. These polynomials along with the trigonometric 
moment problem and quadrature on the unit circle have received much attention recently as a result 
of  their applications in the rapidily growing field of  digital signal processing (see e.g. [4, 9, 11]). 

Next, we will see that according to the ideas introduced in Section 2, Szeg6 polynomials appear, 
in a natural way, as denominators of certain 2PA. Indeed, let us consider in (2.18) K = m  (recall 
that 0<K~<2m) i.e. we are concerned with [m/m]H(Z) 2PA denoted by Pm(z)/Qm(z). Since Qm is 
orthogonal with respect to ]A-(K-l), then making use of the classical writing of this polynomial as a 
determinant (see Theorem 2.1 in [2]), one has 

Q m ( Z )  = Am 

]'20 ]A-- 1 " ' " ]A- -m 

]AI ]A0 " ' " ] A l - - m  

]Am 1 ]Am--2  ]A--I  

1 Z Z m 

, ( /~m ¢ 0 ) ,  ( 3 . 6 )  

Now, from (3.1) and (3.5) it is known that the Toeplitz determinants 

P0 Pl " • • ]An 

An = 1 2 - 1  ]A0 ' ' '  ]An-1 , n=0,1 , . . . (A_l- - - -1)  

P - - n  ] A - - n ÷ l  " ' " ]A0 

are positive for n = 0, 1 . . . . .  Thus, Qm(z) has exact degree m and taking 2n = 1~Am-l, Qm is monic. 
Furthermore, Qm(z) trivially satisfies, (Qm(x), x ~) =0 ,  j = 0 ,  1 , . . . , m -  1 ( x = e  i°) which amounts 
to say that the denominator Qm(z) of the [m/m]H(Z) 2PA coincides with the ruth monic Szeg6 
polynomial. 

On the other hand, if we set K = m + 1, in (2.18), then the [m ÷ 1/m]H(Z) 2PA results, so that if 
we write [m + l/m]H(Z)ZPm(Z)/Om(Z), by similar arguments as given above, we have 

Qm(z) =zmpm(1/£) * = p r o ( z ) .  

The polynomial * pro(z) is used to be called the reciprocal polynomial of  pro(z), satisfying 

(p*(x),xJ):O, j : l , 2  . . . .  ,m, (pn (x), l) # 0, w i t h x : e  i°. 

Thus, we see that the denominator of the [m/m]H 2PA has exact degree m, but Qm(O): pro(O), in 
general, cannot be guaranteed to be different from zero. On the other hand, the denominator of the 
[m+ 1/m]H 2PA satisfies Qm(0)= 1, but in general, deg(Qm) ~< m. On the other hand, it is well known 
see e.g. [15] that the zeros of the Szeg6 polynomials p=(z) all lie inside the unit disk, I3 = {z: [z I < 1} 
and, consequently, p*(z) has all its zeros in E :  {z: [z I > 1}. Thus, [m/m]H :Pm(z)/Qm(z), m : 1,2,.. .  
represents a sequence of analytic functions on 13. In [22], Jones et al., making use of the so-called 
Hermitian-Perron Caratheodory continued fraction (HPC-fraction), proved the uniform convergence 
of  the sequences {Pm(z)/Qm(z)} and {['m(z)/Qm(z)} to the function H(z) on compacts of  { and •, 
respectively. Now, an estimate of the rate of convergence is also got, as assured in the following. 
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Theorem 4. Set E m ( z ) = H ( z ) -  Pm(z)/Qm(z) and Em(z )=H(z )  - Pm(Z)/Om(Z). In the conditions 
above, we have 
(1) limm~o~suplEm(z)[ I/m <~ 1/Izl<l ,  z c  
(2) limm~o~ sup [E*(z)[ 1/m <<. Izl< 1, z c ~ 

Limits (1) and (2) hoM uniformly on compact sets o f  ~_ and [I3, respectively. 

Proof. Making use of Theorem 4.1 in [22] we have for the numerators of both approximants the 
following: 

] Pro(z) = - ~ \-x--'~-z/ Qm(x)-~ - Qm(Z) d~b(0), x = exp(i0), 0 ~< k ~< m - 1, (3.6) 

; ( + xZ ] L(z) = -  _x z_ _ 0m(X)~: d~b(0), x=exp( i0 ) ,  1 ~<k ~<m. (3.7) 
rr \ X - - Z /  

Now, since part (2) follows from (1) by considering the transform z--. l/Y, it suffices to prove 
(1). Thus, by (3.6) we can immediately deduce an integral representation for Era(z), z E E. Indeed, 

H(z)Qm(z) - Pm(Z) = X + Z Qm(X)• dq~(0), x = exp(i0), 0 ~< k ~< m - 1. 
\ x - z ~  

Since Q,,(z) # 0, for any z E F, one can write 

zk f ( 2 z )  Em(z) -- Qm(z) \ x -  z / o m ( x ) d  ) 1 q- Qm(x) d ) 
- Qm(z) ~ 

2zk+l J_ ~ Qm(X) 
-- Qm(z ) ~ xU(-~-_z ) d~b(0). (3.8) 

(3.8) follows from the fact that 

x-kOm(x)d~)(O)= pm(X)e-ikOd4(O)=(pm,Xk)=O, O<~k <~m-  1, 

because of the orthogonality property for Qm(z)= pro(Z). 
On the other hand, [Ore(x) - Qm(z)]/(x - z) = x  m-1 + P(x), P E//m-2. Therefore, 

f~ fX X xm--IAv P(x) ,~ Qm(x) [[Q"(X)(x - ZZ)x m-lQm(z)]j dq~(0) = , Qm( ) xm_ 7 d~b(0) = 0 (3.9) 

by the ortbogonality of  Qm(z). 
Hence, from (3.8) taking k = m -  1 and (3 .9 )  the following expression for the error results in, 

2Z m __./~ Q~ (x ) 
E r a ( z )  - -  p2-~) X m - - i - ~  Z) d(p(O) = O((z-I  )m+l ). (3.10) 

Let us next consider the sequence {ffm(Z)} of  orthonormal polynomials, i.e. 

(ff,,,~bm)=l, m = 0 , 1 , 2  . . . .  , 
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which is uniquely determined by taking appropriate positive numbers ~m such that ~m(Z)=~xmQm(z)= 
O~rnPm(g ). Furthermore, one needs the following known result (see, e.g. [19]): 

lirn I~Pm(Z)l '/m = Izl uniformly on ql-UlE. (3.11) 

Now, we are in a situation to reach the proof. Indeed, from (3.10), it is clear that we can replace 
Qm(z) by Ore(z), yielding 

2lzlm f] [~&2(X)ldd~'0" ei0. [Em(z)l~l@2(z)-------~l ~ - ~  ,-t ), z E L  x =  (3.12) 

Let F be a compact set in IF. Then, there exists R > 1 (depending on F )  such that for any z E F: 

[x - z[  >j R -  l = M > O .  

So, by (3.12), it now follows, for any z E F  

f f  2 Izl" (3 .13)  2lzl m 1 I bmZ(x) ldqS(0) - M I m (Z)l IE=(z)I I M = 

By (3.11)-(3.13) the proof is readily concluded. [] 

Remark 3. Observe that now from (3.10) it is clearly demonstrated that the approximant has order 
of correspondence (m+  1 ) (in the strong sense) at infinity, which is not immediately clear from (3.8). 

We are next interested in considering 2PTA to H(z) of higher order (actually as high as possible) 
to approximate H(z) on C - T. This means that the poles of  such approximants, if exist, should be 
on ql-. Let us denote them by R,,(z)= T,,(z)/Sm(z) with required order m both at the origin and at 
infinity. 

Furthermore, we will assume that deg(S,,) -- m; and Sm(O)¢O, so that it holds 

H(z) - Rm(z) = O(z m) (z ~ 0), (3.14) 

H(z) - R,,(z) = O((z-1) m) (z ~ c~). (3.15) 

These approximants were first considered in [22] in connection with the trigonometric moment 
problem and uniform convergence proved in compacts of  C -  T. This will be completed here by 
showing that geometric convergence can be reached. For this, we need some polynomials related to 
Szeg6 polynomials called para-orthogonal (see [22]) or also quasi-orthogonal polynomials [8]. Thus, 
Xn E H,, is said to be a para-orthogonal polynomial with respect to dq5 if Xn has exact degree n and 
satisfies 

(X,,,1)#O, (Xn,zJ)=O, l ~ j < ~ n - 1  and (Xn,z")vkO. 

Furthermore, it is known (see [22]) that any para-orthogonal polynomial X, is of the form X=(z)= 
pn(Z) -'k WP*n(Z); Iwl = 1 and that has exactly n distinct zeros on ql-. 
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With these considerations, the existence of the approximant Rm(z ) satisfying (3.14) and (3.15) is 
inferred from the following: 

Theorem 5. (1) Rm(z) has exactly m distinct poles on 7. 
(2) There cannot exist a 2PA to H(z)  o f  order (m,m + 1) or (m + l ,m) with poles on the unit 

circle. 

Proof. (1) Set Rm(z)= Tm(z)/Sm(z). Then, by (2.16) SIn(Z) must satisfy 

~-(m-l)(xJSm(X)) = 0, j = 0, 1 . . . .  ,m -- 2. (3.16) 

Since we have order of correspondence m both at the origin and at infinity, it follows, /~-~m-~) 
(x-lSm(X)) ¢ 0 and I~-~m-1)(xm-lSm(x)) ¢ O. 

Therefore, (Sin, 1) = #(Sin(x)) = t~-~m-1)(xm- l Sm(X ) ) ¢ O, and 

(Sm,x m) = #(Sm(x)x -m) = #-(m-I)(x-l gm(x) ) ¢ O. 

For j such that 1 ~<j ~ < m -  1, we have 

(Sm(x),x j) =  (Sm(x)x - j  ) =  (Sm(X)X-J+ ) 

= #-(m-l)(xm-J-lSm(X)) = #-(m-l)(XrSm(X)) = O, 0 <<. r <<. m -- 2. 

Thus, by (3.16) we see that Sm is a para-orthogonal polynomial and (1) follows. 
(2) Let us first assume that there exists a 2PA of order (m,m + 1) with poles on the unit circle. 

As has already been seen, the denominator of such approximant coincides, up to a multiplicative 
factor with the mth Szeg6 polynomial. However, this is impossible since because, the zeros of pro(z) 
lie inside the unit disk. A similar contradiction arises if we suppose that there exists a 2PA of order 
(m + 1,m) with poles on 7. [] 

In order to estimate the rate of convergence for the sequence {Rm(z)) from (3.4) one can see that 
the nth root asymptotic behavior for the denominator is now required. Since these are para-orthogonal 
polynomials, we make use of 

Theorem 6 (Gonz~tlez-Vera et al. [19]). Let ~b be a distribution function and {Xn(z))a sequence o f  
para-orthogonalpolynomials with respect to dO. Set IIX, II = max{IX,(x)l: x E 7}. 

Then, the following holds: 
(a) lim,~o~ [X,(z)l'/" = Izl, uniformly on compact subsets o f  7 _- {z: Izl > 1}. 
(b) lim,__.~ IX,(z)['/" = 1, uniformly on compact subsets o f  D = {z: Izl < 1). 
(c) l i m , ~ { l l X ,  II} ' / "=  1. 

Now, we can prove the following, 

Theorem 7. Let  d? be a distribution function on [ -~ ,  z~] and consider the function H(z)  defined 
by (3.3). Let Rm(z) = Tm(z)/Sm(z) be a sequence o f  2PTA to H(z)  o f  order (m,m), with Sm(Z) 
as defined in Theorem 5, m = 1,2 . . . . .  Then, {Rm(z)) converges geometrically to H(z)  on any 
compact subset o f  • tJ E. 
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Proof. Take k a nonnegative integer such that 0 ~< k-%< m, then from (3.4) one can write 

2z~ /_~ e - i ( k - 1 ) °  

H ( z )  - R ' ( z )  - S ' (z~ ~ ~ ---~ S'(ei°)d4~(O) (3.16) 

with S ' ( z )  = pro(Z) + w 'p*( z ) ,  IW'[ = 1. 
Because of the para-orthogonality property for the denominator Sm(Z) we can improve formula 

(3.16), yielding: 

2Z" [/__~ e - i ( ' - l ) 0  

S2(z) ~ - ~  z SZm(ei°)dq~(O) - 2 . ,  , (3.17) H ( z )  - R ' ( z )  -- - -  

where 

2m f f L; = Sin(x) dq~(O) = [pro(x) + w'p*(x)]dO(O) =Wm (X) dqS(O) 

f =win xmpm(1/2) d4~(O) with x = e i°. 

Thus, 

/: 2m = Wm(xm, pm) = Wm(Pm, Pm) =Win [p'(x)12 dO(O) 
1T 

(recall that Pm is a monic polynomial). Setting ~ ' ( z ) =  O~mPm(Z) SO that ~gm is orthonormal ((~gm,~m) 
= 1 ), then one has 

1 1 

O~m - -  ( ( p m ,  P m )  ) , /2  - -  (ikml),/=. 
Now, it holds (see e.g. [23]) limm~(~m+l/O~m ) = 1 and this implies that lim . . . .  (12m[) lira = 1. 
By (3.17) it follows 

IH(z) - Rm(z)[ ~ iSm(Z)l~ IlSmll = + ~m I~-zl ' 

where 2,, = 12ml/llS'l12>O. Observe that l imm_~(2")  ~/m= 1 (by (c) in Theorem 6). So, for a given 
arbitrary e > 0, there exist mo E ~ such that for any m > too, 

^ 

2m ~<(1 +v,) m. 

Thus, one can write (m>mo) :  

IH(z) - R'(z)l <<. 21zl~llS'i[2[K + (1 + e)m] 
IS'(z)? 

(K is a constant dependent of z). 
Take z E ~, since S ' ( z )  is para-orthogonal with respect to d~, by (b) in Theorem 6, one has 

l i m ' ~  ]Sm(z){1/'= 1; then, using (b) and (c) in Theorem 6 and having in mind that l i m ' ~ [ K  + 
(1 + e)m] v" = 1 + e, one finally gets 

[z [ [ l i m m ~  sup [[S m II ~/']~ 
l i r n  sup I l l (z)  - Rm(z){ 1/" ~ [ l i m ' ~  Inf]Sm(z)ll/m] 2 (1 + e) = (1 + e)lz I. 
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This yields, 

l i r n  sup [H(z)  - Rm(Z)] l/m ~ IzI. 

Similarly, if  z c ~, one can also deduce, 

1 
mlim sup [H(z) - Rm(z)l '/m ~ -~T" 

Finally, from (3.18) and (3.19) the proof  follows. [] 

(3.18) 

(3.19) 

Remar k  4. In a series o f  recent papers, Bultheel et al. have extended the theory o f  Szeg6 polynomials 
to the rational case, i.e. rational functions with poles given on the exterior o f  the unit disk; so that 
when all the poles are equal to infinity the polynomial case is immediately recovered. For further 
details in connection with Theorems 4 and 7, see [7]. 
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