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For all known locally conformally flat compact Riemannian manifolds (M,, g)
(n > 2), with infinite fundamental group, we give the complete proof of Aubm s con-
jecture on scalar curvature. That solves the Yamabe Problem for these manifolds.
There exists a metric g' conformal to g, such that vol, =1 and whose scalar cur-
vature R’ is constant and satisfies R’ <n(n—1) 02", where w,, is the volume of the
sphere S, with radius 1.  © 1986 Academic Press, Inc.

1. INTRODUCTION

Let (M, g) be a smooth, n-dimensional, compact Riemannian manifold
with scalar curvature R. Let J be Yamabe’s functional, defined by

—1+2/n
o )_[4(11 21)J |V¢!2dv+jMszdv]'[JM¢2"/("Z)dv]

and set p=1InfJ(p), for all pe H(M), ¢ =0, ¢ £ 0.

THEOREM 1 [1, p.289; 2, p. 129]. For every Riemannian manifold y<
nn—1) 0" If p<n(n—1)w?" there exists a strictly positive solution
po€ C*(M) of

4n—1)
(n—2)
with R'=pu and |@olly=1. Then, g’ =@y "~ Vg is a metric of volume 1

whose scalar curvature R’ is constant and R’ <n(n—1) w?". Here N=
2n/(n—2) and w,, is the volume of the unit n-dimensional sphere.

A¢+R(p=Rl(p(n+2)/(n~2)

It is also established in [1, 2] that u=n(n— 1) @¥" for the sphere, and
some sufficient conditions are given for u to be strictly smaller than
42
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n(n— 1) w¥". According to this results, the Yamabe Problem remains open
only in the following cases:

(a) Nonlocally conformally flat manifolds of dimension 3, 4, or 5.

(b) Locally conformally flat manifolds, with infinite fundamental
group and admitting a metric of everywhere strictly positive scalar cur-
vature.

The only known examples of the last class of manifolds are

(i) S, ,xS,, where §, , is a quotient of the sphere S, ;.
(ii) S,(c)xH,(—c), (p>q), where A,(—c)is a compact quotient of
the hyperbolic space, whose sectional curvature is —c.
(iii) Fibre spaces over gp(c) (resp. qu(——c)) with fibre f{,,( —c) (resp.
§,(¢)).
(iv) The connected sums of manifolds above with a compact locally
conformally flat manifold.

We are going to prove here that u<n(n—1)w?" for these particular
manifolds. The method was announced in [3]. For another approach
covering case (a) and (b) see [6].

2. THE ProDUCTS

(1) We shall consider first the manifold (S,(«)x S,(B), g), where
Sip) is the sphere of radius 1/p and dimension i, and g is the Riemannian
product metric; « and § will be taken such that its volume, Vol (S, (a) x
S:(B)) =1, that is 2nf ‘o "w,=1.

THEOREM 2 [3]. For every o, feR*, the infimum of Yamabe's
Sfunctional for the Riemannian manifold (S, (o) x S,(B), g) is strictly lower
than n(n+ 1) w¥"+ Y. There is a metric g' conformal to g, such that its
volume Vol .(S,(a)x S,(B))=1 and whose scalar curvature R’ is constant
and satisfies R' <n(n+1) 0"

Proof. Fix y, an element of S (f) and take r(x, y)=dg(y, yo) for
(x, ¥)e S, (a)xS,(B); we define u(x, y)=u(r)=(cosh ar}! =2 then

4
J(u):[ n [ (u’)2du+Rj u? a’u]
n—1Js @)= s Sula) x S1B)

—(n—=1)/(n+ 1)
X[J‘ u2(n+l)/(n\l)dv:'
Sala)x S1(B)




44 0. GIL-MEDRANO

4n /8 B
=(2a-nwn)2/(n+l)|:__f (ur)z dr,_i_RJ~ u2 dr]
n—1 0 0
7, —(n—1)/(n+1)
XU /ﬂuZ(n+1)/(n—l)dr:| =ty H'
0

It is easy to see that u satisfies the equation

4n
—_ ;I—Tu”-*-Ru:n(n_{, l)azu("*':;)/("‘l)

and consequently
n/B 2/(n+1)
Ju)= Qe "w, )" Vnn+ 1) o? U 2+ D= 1) dr:l
0

4n
n—1

n/B —(n—1)/(n+1)
+ (2a—nwn)2/(n+l) [u/ulg/ﬁ l:f u2(n+1)/(n~l)dr:l .
0
But,

a .
|t'u|5P = |(cosh ar) ™" sinh ar|3? <0

(1—n)
2

and

/B /B
J u“”*l)/("‘”dr:J (cosh ar) ="+ 1 dr
0 (4]

=n+l fn/ﬂ (ear_’_ewar)—(n-#l)dr
0

n

e2an/B
=—J (t+1)“(”+l) t(nil)ﬂdt.
a1
Using now that
1 o
[yt 02 g [ g 1yt gl 102 gy
0 1

we have

J(u) < (2&‘"(»,,)2/("“) n(n + 1) ®2220n— 1)/ (n+ 1)y ~2/(n+1)

ES 2/(n+1)
XI:J. (t+l)—(n+1)t(n—l)/2dt]
]

@ 2/(n+1)
=n(n+1)[2"a>nj (t+ 1)~ gin=1)2 dt:l
0

=n(n+1) 0¥+ D,
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That proves the first part of the theorem. The second part follows now
directly from Theorem 1.

Let us consider now the Riemannian manifold (M, ., g), where
M, =85,(2)xS,(B), S,(a) being a quotient of the sphere of radius 1/x
and g the product metric. Using the fact that vol(S,(x)) <a "w, we can
obtain, by a similar argument to that used above, the following:

THEOREM 3. For (M, ., g) the infimum of Yamabe's functional is
strictly lower than n(n+1) 02"+ and there is a conformal metric g' on
M, ., whose scalar curvature is constant and satisfies R' <n(n+ 1) @Z{"+ 1,
and such that Vol (M, |)=1.

(2) We are gomg to prove the same result for the manifolds (ii).
Let M, be § xHq,p+q—n and p > q. Here S (resp. A ;) is a compact
Riemannian mamfold of constant sectional curvature c (resp —c), ¢>0.
Let g be the product metric on M,,, then

THEOREM 4. For (M, g) the infimum of Yamabe's functional is strictly
lower than n(n—1) w¥" and there is a conformal metric g on M, with

Vol,.(M,)=1, whose scalar curvature is constant and satisfies R <
n(n—1) wn

Proof. As above we are going to show that u<n(n—1)w?" and then
to apply Theorem 1. y being a conformal invariant [2, p. 1267, and in par-
ticular invariant by homotheties, we can then suppose that ¢ = 1. Further-
more, Vol(§ )< w, and we will see that it suffices to make the proof when
M,=S,x H

Let y, be a fixed element of H, and for (x, y)e S, x A, set r(x, y)=

dg (s yo). We can define the function
(2—-ny2

u(x, y)=u(r)=(coshr)

This function is uniformly lipschitzian, then ue H,(M,,).
Now the scalar curvature of M, is equal to p(p—1)~gq(g—1), so

4n—1
J(")_[((nn 2)) n|Vu|2dv+[p(p—l)—q(q—l)]JMnumu]

—(n—2)/n
x j w2 =2 gy . (1)
M,

If fis a function which depends only on r we have

jMn firydo=o, L » [ j:w’ £(r)(sinh r)1—! dr] 4o
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where df is the volume element of the unit sphere and, for e S, _ (1), p(6)
is such that the set exp, (p(8) ) is the cut-locus of y,e H
Let us compute J(u).

(n—2)

2 _
[Vu|* = 2

(cosh r) ~"(sinh r)?

and then

(8)
(n— w,,j j ™ (cosh r)~"(sinh r)** ' dr dO

Sg-1°0

jmd

-2)? (6)
(n 2) I J g (tanh r)?* Y(cosh r)! 7 drdf. (2)
S,

9-1°0

We have also

p(0)
J‘ Wdr=ow 4[ J (tanh r)?~(cosh r)! =7 dr df 3)
My Sy-1

and

[ oo, j (tanh r)*~'(coshr) "' =7 drdf  (4)
M

n Sq 1
Now, on the one hand
J (tanh r)*~(cosh )' » dr= [ (tanh r)?~(cosh r) 17 dr
+ [ (tanh r)*=!(sinh r)*(cosh r)~'~7 dr

=f (tanh )7~ '(cosh r)~1 =7 dr +j (tanh r)?*+ ' (cosh r)! =7 dr, (5)

and on the other hand

(tanh r)%(cosh r)! =#
(p—1)

j(tanh r)4*+(cosh r)! ~# dr = —

+-—"—j(tanh r)¥=(cosh )~ 7 dr. (6)
p—1
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Using (5) and (6) in (2), (3), (4) we see that equality (1) can be written
—1)}n-2 —1)—gq(g—1
Ju) = [w,, {_ (n—Dn-2)+p(p—1)—qlg—1)

p—1

xj (tanh p(8))“(cosh p(8))' ~* db

0(6) .
+n(n-—1)J L (tanh r)? = '(cosh r)~ ”drdO}]

S¢-1t
o]
S‘l

and hence we have

—(n -2)/2

p(0)
j (tanh r)~ '(cosh r) "7 dr dﬂ]
170
p(0) a/2
Juy<n(n—1) [w,,j f (tanh r)? “'(coshr) ' 7dr dO] )
Sg-1Y0
To finish the proof we use the fact that for each 0e §, _,,

p(6) i ) )
j (tanh r)?~ !(cosh r) ' =7 dr:%f (1= 1)l 202 (p 102 gy
0 (cosh p(8)) -2

1 1g/2) I(p + 1)/2)
2 I((n+1)2)

and then

1 1'(g/2) I((p+ 1)/2) "
J(u)<n(n—1)|:wp“’4*1§ I((n+1)/2) ]

=n(n—1) w2

The last equality holds from the well known expression of the volume of
the unit sphere in terms of the I" functions

o = F( 1 /2 )n +1
T I((n+D)R2Y
3. THE FIBRE BUNDLES
Next, let us consider the known examples of compact, locally confor-

mally flat manifolds with infinite fundamental group and admitting a
metric of positive scalar curvature, which are fibre spaces over §,, (resp.

580/66/1-4
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Hq) with fibre Hq (resp. §p) where §p (resp. Hq) is a compact Riemannian
manifold of constant sectional curvature ¢ (resp. —c).

Let M, be such a manifold, with p+g¢g=n, p> ¢ and let g be the fibre
metric.

THEOREM 5. The infimum of Yamabe's functional for (M,, g) is strictly
lower than n(n — 1) w" and there is a conformal metric g' on M, of volume
1, whose scalar curvature is constant and satisfies R’ <n(n—1) o2

Proof. The second part follows directly from the first one and
Theorem 1. As in Theorem 4, we can assume ¢ = 1.

First Case. (M,, g) is a fibre bundle over H with fibre S"

Let n: M, — A, be the projection, there exists a finite open cover {U,}
of H such that n~!(U,) is isometric to U, x S with the product metric. If
Yo is a fixed element of H we can define the function on M, u(x)=
u(r) = (cosh r)@—"72 where r(x)—d,,q(n(x) ¥o)- Then

4(n—1)
s =[T=D ] Wl o+ Lotp 1) atg =101 | e

X [[ u2n/(n —2) dv:I

Let {®,} be a partition of unity subordinate to the cover {z(U,)},
where @, =@,on and {¢,} is a partition of unity subordinate to {U,}. If f
is a function on Hq we have

fM"fondu=§f

T

—(n—2)/n

Bufom) do=T vol(3,) [ . v

=vol(3,) jﬁ fdvg,.

Using now this formula to compute J(u), we obtain that it is strictly lower
than n(n — 1) @?*", by an argument similar to that used in Theorem 4.

Second Case. (M,, g)is a fibre bundle over S’,, with fibre Hq.

Letn: M, — S’ be the projection and let G be the group of the fibre bun-
dle, which is a group of transformations of H suppose that G has k
elements. There exists an open cover {V,} of §, and a family of isometries
{¥,} from z~'(V,) onto V,x H The appllcatlon M, Hq/G given by
A(x)=goprof,(x)if xen 1(V ) is well defined. Here p, is the second pro-
jection of the product ¥, x i, and § is the quotient map §: H, - H,/G. # is
a Riemannian submersion with totally geodesic fibres which is a sufficient
condition for #: M, — Hq/G to be a fibre bundle [5].
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The quotient Riemannian manifold /G is also a compact manifold of
constant curvature equal to —1 and we are almost in case one above, the
only difference being now that the fibre is not 3,, but a disjoint union of k
copies of that manifoid. So, to finish the proof we must only verify that,
under our conditions, k vol(3,) < w,

Let S, — S‘ be the universal covermg of S and assume that it is a k’-fold
covering, then k' vol(S )=w,. But, G bemg finite, the principal bundle
associated to (M, S m, H G) is a k-fold covering of S and then k <Kk’
and the result holds.

4. THe CONNECTED SUMS

(1) We are going to prove that the infimum of the Yamabe
functional decreases when taking connected sums of locaily conformally flat
Riemannian manifolds. To do that we need

LEMMA 6. Let (M, g) be a compact Riemannian manifold of dimension n
(n>2). For each pe M and ¢ > 0, there exists a function ue C*(M), u % 0,
u >0 such that J(uy < p+ ¢ and such that u vanishes on a neighborhood of p.

Proof. By the definition of y, there is a smooth function i, # £ 0, #>0
such that J(#) < u+e.

Now, let f5: M — R be a family of smooth functions 0 < f; < 1, vanishing
on a geodesic ball of radius ¢ and centre p which are equal to 1 outside the
geodesic ball of radius 24, and which satisfy |Vf;| < 2/6.

Define u; = f;i, we have

lim J(u;) = J(i).

50

So we can choose & small enough so that J(u;) < u+e.

It is known that the connected sum of two locally conformally flat
manifolds, can be endowed with a locally conformally flat metric. We out-
line the construction.

(2) If (M, g) is a n-dimensional, locally conformally flat Riemannian
manifold, for each pe M there is a chart defined on an open set U, pe U,
@: (U, g)— (R, go), with @(p)=0, and there is a 6 € C*(U), ¢ >0, such
that op*g, = g, where g, is the Euclidean metric of R”.

The metric on U~ {p} can be conformally deformed onto a metric
which agrees with g near the boundary of U, and which finishes with the
product metric Rx S, _,(b) (b, to be choosen) on a neighborhood of p.

To do so, we must only to take a smooth function 4: [b, ) - R, >0,
which is zero on [a, w) for some a> b and such that the curve t=h(r)
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joins smoothly the half line r=5, 1> 1t,, at the point (b, t,). Let G be the
subset of R? which is the union of the graph of /4 and the set {(b, 1); 1 > 4}
Let U be the hypersurface of R x R"~ {0} defined by

U={(t,r,0)eRxR"~{0}; (r, ) e G).

That manifold can be diffeomorphically mapped onto R"~ {0} by @: U —
R"~ {0} given by

(1,1, 0)=(re="", 0).
Hence, ¢ ~'¢ is a diffefomorphism of U onto U~ {p}.

Let now f(¢) be a smooth function which is equal to 1 for ¢ < ¢, and that
vanishes for 1> ¢,. We define 6: U - R

&(t’ 7, 0)= 1 _f(t)+f(t) a’((p_lo(ﬁ([, r, 0))

Let § be the conformally flat metric on U given by § = 6e*/¢*g,.
If (¢,r,8) is an element of U with r>a, t must be zero, consequently

f(t)=1 and (0, r, @) = (r, §). Hence

g(O,r,B) =6(0,r,0) p*go= 0'(‘,0-1(", 0)) ¢*go.
On the other hand

(07" @), g=0%0 " "*g=0*(a(0™'(r, 0))) £
=a(p~(r, 0)) p*go.

Let us suppose now ¢ >¢,, then r=5. In that case f(¢+)=0 and @(¢,r, §)=
(be="*, 6), and so

Ebo)= 92'/[)‘7’*80,
but a straightforward computation shows that
¢*g0=e—2t/b dt2+b2672t/b dez

and then g, q,=dt’* + b* db>.

The argument above proves that g agrees with (¢ ~'-@)* g for r > a and
with the metric of a cylinder for r>¢,.

Furthermore, if the scalar curvature of g is positive, the construction
above can be made in a suitable way to obtain a new metric whose scalar
curvature is also positive [4].

Let (M;, g,) i=1, 2, be two manifolds as above, then on the connected
sum M, # M, a family of locally conformally flat Riemannian metrics can
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be constructed, depending on the choice of the application ¢,, the reals
a;, b;, the function 4, (i=1,2) and on the length of the piece of cylinder
used to glue the two manifolds together, or equivalently on the radii J,
(i=1, 2) of the removed balls.

Nevertheless, each metric agrees with g, on M,~¢;'(B,(0)) and is con-
formal to g, on M;~ ¢ !(B;(0)). So, the conformal class of the constructed
metric depends only on the reals é,, §,.

Let us fix one of these metrics (M, # M,, g). By considering the natural
differentiable structure on the connected sum of two manifolds, we know
that the sphere where M, joins M, has an open neighborhood W="U, ~
@7 '(B5(0)) # U,~¢5'(B;,0)) difftomorphical to the cylinder by the
application : W—- R x S, , defined as follows

Yo '(r, 0)) = (log(d,/r), 0),
Y(@5'(r, 0))=(log(r/d,), 0).

Y is also a conformal transformation, when the cylinder is supposed
endowed with the standard product metric, g,.

Let § be the application of Rx S, , onto R"~ {0} given by (1, 8) =
(6,7 6), then Yy oy = @, on U, and, as it is easy to see, g.= (€'16,)? Y*g,.
Hence

W* )t =W *go = (a0 (1, 0))) ' g4r 100,

and the restriction of y*g, to U,~¢, '(B,,(0)) is conformal to the metric
considered in this set. By a similar argument we obtain the same result for
the restriction of y*g, to U,~ ¢; !(B,,(0)).
For any ¢, >0 we can construct a new locally conformally flat metric g
on M, # M, by removing ¢ '(B,,(0)) from M, and @5 '(B,,(0)) from M,.
PROPOSITION 7. If ¢, €, =8,"3, then g is conformal to g.
Proof. Take now, V=U,~¢{'(B,(0)) # U,~¢; (B,(0)) and §: V -
R xS, _; the conformal transformation, which in this case is given by
¥(o, '(r, 0)) = (log(e,/r), ),
U(o; (1, 0)) = (log(r/e,), 0).

Let @ be the following conformal transformation of the cylinder
P RxS,_-»RxS,_,
(t’ O)H (t + 10g(51/£1 )a 0),
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then ¢ ~'o®oy is a conformal transformation of ¥ on W. But, for xe ¥V
and x =@ *(r, 0) with r >4,

Y o @ f(x) =y o d(log(e,/r), 0) =Y ~'(log(e,/r) +log(3/e,), 0)
=y (log(3,/r), 0) =@ !(r, ) =x

and similarly for xe V and x = @5 !(r, 8) with r > §,

Yo @ei(x) =y~ o B(log(r/e,), 8) =y~ '(log(r/e,) +10g(3,/,), 0)
=y ~!(log(rd /e,¢,), ) =y ~'(log(r/5,), 6)
=@;(r,0)=x.

Hence, this conformal transformation can be extended to M, # M, by
defining it to be the identity outside V.

(3) THEOREM 8. Let (M, g,) (i=1, 2) be a n-dimensional (n>2), com-
pact locally conformally flat Riemannian manifold and let u, (i=1, 2) be the
infimum of the Yamabe functional for the metric g;. If (M, # M,, g) is the
connected sum then p, < min(u,, pi;).

Proof. Let peM, be the point involved in the construction of
(M, # M,, §). From Lemma 6, for a given £¢>0, there is a >0 and a
smooth function u;, that vanishes on ¢ !(B4(0)) and such that J,(u;) <
Hte

According to Proposition 7 there is on M, # M, a metric §’, conformal
to & and such that ¢’ is conformal to g, on M~ ¢ (B;5(0)). Suppose g, =
c¥"=2)g' we define ii; = ous on M, ~ ¢ '(B;s(0)) and extend by zero out-
side.

Joltls)=J (us) <p, +¢

and then p;=p, <p, +e¢, for all £>0.
In a similar way we can prove u,; < j,.

COROLLARY 9. Let (M, §) be the Riemannian manifold obtained by tak-
ing the connected sum of one of the manifolds (i), (ii), or (iii} with any com-
pact, n-dimensional (n>2), locally conformally flat Riemannian manifold.
Then p, <n(n—1) w¥" and there is a conformal metric §' on M such that
vol, =1 and whose scalar curvature is constant and lower than n(n— 1) w2

Proof. Follows directly from Theorem 8 and the results in Section 1.
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