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Background and purpose: The central hypothesis of ‘‘radiomics’’ is that imaging features reflect tumor
phenotype and genotype. Until now only correlative studies have been performed. The main objective
of our study is to determine whether a causal relationship exists between genetic changes and image
features. The secondary objective is to assess whether the combination with radiotherapy (RT) influences
these image features.
Material and methods: HCT116 doxycycline (dox) inducible GADD34 cells were grown as xenografts in
the flanks of NMRI-nu mice. GADD34 overexpression decreases hypoxic fraction. Radiomics analyses
were performed on computed tomography images obtained at 40 kVp and again at 80 kVp for validation,
before radiotherapy at a volume of 200 mm3, 4 days post RT (10 Gy) and 500 mm3. To select reproducible
features test–retest experiments were performed at baseline.
Results: Gene induction and/or irradiation translated into significant changes in radiomics features. Post
irradiation, 17 features for 40 kVp and 9 features for 80 kVp differed significantly between dox+ and
dox� combined with RT. 8 and 4 of these features remained consistent for 40 and 80 kVp, respectively.
Conclusion: Radiomics is able to identify early effects of changed gene expression combined with
radiation treatment in tumors with similar volumes which are not visible to human eye.
� 2015 The Authors. Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 116 (2015) 462–466
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Genomics and proteomics are widely used in the concept of
personalized medicine [1,2]. However, tumor heterogeneity, which
cannot be determined by invasive biopsies, varies spatially and
temporally [3,4]. Advancements in medical imaging have provided
better diagnostic biomarkers and novel imaging methods that can
aid in early diagnosis, patient stratification and the monitoring of
treatment responses [5]. Furthermore, three-dimensional tumor
heterogeneity is defined by the underlying tumor genotype and
phenotype. Therefore, the central hypothesis of radiomics is that
features extracted from noninvasive images reflect the underlying
phenotype and genotype [6]. Radiomics uses mathematical algo-
rithms to extract a large number of quantitative features from
medical images, describing tumor image intensity, shape and
texture, capturing intra-tumoral heterogeneity [7] (http://www.ra-
diomics.org; animation: https://youtu.be/Vf0F7q8vaS4).

It has previously been shown that radiomics can provide valu-
able information based on CT images [6,8] that have prognostic
value in lung and head and neck cancer [7,9]. Segal has shown an
association between defined imaging traits and gene expression
profiles of human hepatocellular carcinomas (HCC) [10]. It was also
reported that this radiogenomics approach can identify
drug-responsive gene expression patterns in HCC [11]. In the con-
text of radiomics, studies so far have shown only a correlation of
the radiomics signatures to genetic signatures, but no causal rela-
tionship has been established.

The main goal of this study is to provide a proof-of-concept that
genetic changes with phenotypic consequences influence
image-derived radiomics features. More specifically, we prospec-
tively evaluated whether radiomics features are causally related
to genetic factors and whether radiation therapy affects those
image features. In addition, we investigated whether the features
obtained for all categories are reproducible in test–retest experi-
ments and whether the features found remain consistent across
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the different acquisition time points. Furthermore, we evaluated
the effect of CT energy on radiomics features.

Materials and methods

Tumor cells and chemicals

Cells were cultured and maintained according to instructions and
guidelines from the American Type Culture Collection. Doxycycline
hyclate (dox) was purchased from Sigma Aldrich. Construction of
HCT116 colorectal carcinoma cells overexpressing GADD34c and
control pCDNA5(+) has been described previously [12].
Preclinical imaging studies

All animal experiments were approved by the Animal Ethical
Committee of Maastricht University (2013-038). HCT116 tumor
cells were subcutaneously injected in matrigel in the lateral flanks
of NMRI-nu/nu mice. Mice were randomized after cell injection
between doxycycline (dox+, n = 17) (2 g/L in 5% sucrose in drinking
water) and placebo (dox�, n = 16) administration to induce expres-
sion of the gene of interest. HCT116 pCDNA5(+) xenografts were
included to assess features related to dox administration without
gene induction. CT images were obtained at two different energies
(40 and 80 kVp) using the Precision X-ray X-RAD 225Cx at pre
(baseline), at 4 days post radiation therapy (RT) and at a tumor vol-
ume of 500mm3. The number of animals allocated per group after
baseline scans was: dox+ RT- (n = 8), dox+ RT + (n = 9), dox� RT-
(n = 7), dox� RT + (n = 9). Images were reconstructed with an iso-
tropic voxel size of 0.1 mm. Tumors were irradiated with a single
dose of 10 Gy at an average tumor volume of 210 (±36) mm3. A sec-
ond scan (retest) was acquired 5 min after the first (test) scan at
baseline by repositioning the mouse in the scanner to determine
feature test–retest (TRT) variability (Fig. 1).
Tumor delineation and image analysis

Tumors were delineated using SmART-Plan treatment planning
software [13]. In order to acquire inter-observer variability (IOV),
two experts independently delineated tumors from baseline
images. For each image, we determined 625 radiomics features,
grouped into five groups: (1) tumor intensity, (2) shape, (3) tex-
ture, (4) wavelet features, and (5) Laplacian of Gaussian (LoG) fea-
tures. Features from group 1 describe the first-order histogram of
all voxel intensity values in the tumor volume. Group 2 features
describe the three-dimensional shape and size of a tumor.
Features from group 3 quantify texture within the tumor image
calculated from gray-level co-occurrence (GLCM), gray-level
run-length (GLRLM), and gray-level size-zone texture matrices
(GLSZM). Group 4 consists of features from group 1 and 2, after a
Fig. 1. Graphical representation
wavelet decomposition of the image. Group 5 consists of features
from group 1, calculated after applying Laplacian of Gaussian filter-
ing to the image, highlighting image regions at different scales.
Texture matrices were determined by considering 26 connected
voxels (i.e. voxels were considered to be neighbors in all 13 direc-
tions in three dimensions) at a distance of 1 voxel. The features
derived from GLCM and GLRLM were calculated by averaging their
value over all 13 directions. LoG features were determined at a fil-
ter standard deviation ranging from 0.1 mm to 0.5 mm with
0.05 mm increments. Image analysis was performed in Matlab
R2012b (The Mathworks, Natick, MA) using an adapted version
of CERR [14] and Radiomics software developed in-house to extract
imaging features. A detailed description and mathematical defini-
tions of the radiomics features assessed in this study are described
elsewhere [9,15].
Feature selection

The intra-class correlation coefficient (ICC) [16] was calculated
to provide an indication of both the test–retest (TRT) and
inter-observer (IOV) reliability of feature measurements. The ICC
is a statistical measure between 0 and 1, where 0 indicates no reli-
ability and 1 indicates perfect reliability. For the ICC regarding the
TRT reliability of imaging features, we used the definition of
ICC(1,1). The ICC for IOV was determined by the definition of
ICC(2,1). To determine the ICCs, we obtained variance estimates
by partitioning the total variance by means of analysis of variance
(ANOVA). Absolute variability was furthermore estimated as the
smallest detectible change (SDC) [17]. To provide a basis for eval-
uating the magnitude of the TRT and IOV SDC values, we deter-
mined a coefficient of reliability (COR) by normalizing SDC to a
percentage of the range of feature values (2.5–97.5%) over all
lesions included. For each feature, we determined the average
TRT and IOV ICC rank and selected the resulting 50% top-ranked
features for further analysis. We performed feature selection using
R (version 3.1.0).
Statistical analyses

We performed a Wilcoxon rank sum test to compare feature
values between two groups using R (version 3.1.0). We used a
non-parametric T-test in Graphpad Prism v 5.03 to perform a sta-
tistical analysis to compare the tumor growth rates between the
two groups. A P-value < 0.05 was considered significant.
Results

Upon GADD34 gene induction (dox+), no difference (P = 0.405)
in tumor growth was observed compared to animals treated with
of experimental work flow.



Fig. 2. Time to reach 4 times start volume (T4xSV) for the different treatment
groups. *P < 0.05, **P < 0.01. Data represent the mean ± SD of at least 6 animals.

464 Genetic changes and radiomics-based image features
placebo (dox�). However, upon irradiation (single dose 10 Gy), the
time to reach 4 times start volume for these doxycycline treated
tumors was significantly (P < 0.05) increased upon irradiation
(single dose 10 Gy) compared to dox� irradiated tumors (Fig. 2).
Fig. 3. Representative images of 40 kVp and 80 kVp energy CT and feature select
Image-derived quantitative features need to be robust and
reproducible in order to provide reliable measurements. We there-
fore selected the 50% top-ranked features based on their average
ICC for the TRT variability (ICC1) and inter-observer variability
(ICC 2) (Fig. 3). In the control pCDNA5(+) group, 12 features were
found to differ significantly (P < 0.05) between dox+ and dox�
treatment groups. This suggests that these features were related
to doxycycline administration. They were therefore eliminated in
further analyses, which left 303 remaining features.

We first evaluated features from 40 kVp CT images for validat-
ing our hypothesis. We determined features that were significantly
different between dox+ and dox� GADD34 tumors to investigate
which image features are influenced by genetic factors. At a tumor
volume of 200 mm3 (baseline), 13 features (1 tumor intensity and
12 wavelet) were found to be significantly (P < 0.05) different. The
second CT was acquired 4 days after baseline, the day animals were
sham irradiated, and only 1 wavelet feature was observed to be dif-
ferent. At the third CT, at the final volume of 500 mm3, 5 features (1
LoG and 4 wavelets) were significantly (P < 0.05) different (Fig. 4).
However, these features were different across the three CT image
time points. None of the features identified were correlated with
tumor volume.
ion based on average ICC values of test–retest and inter-observer variability.



Fig. 4. Schematic representation of CT scan derived radiomic features (40 kVp
purple and 80 kVp green) for different treatment groups at different time points.
The numbers within the arrows show the number of features, which are consistent
between the indicated imaging time points and different energies.
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After RT (second CT acquisition), 17 features (3 tumor intensity
and 15 wavelets) differed significantly (P < 0.05) between the dox+
group and dox� group. Five of those 17 features differed signifi-
cantly (P < 0.05) between irradiated (RT+) and sham-irradiated
(RT�) animals within the dox� group (3 tumor intensity and 2
wavelet). One feature (P < 0.05) (wavelet) differed between RT+
and RT� within the doxycycline-treated group (Supplementary
Table 1). These 6 features are related to early effect of RT alone.
At the final image acquisition time point, 8 features (wavelet) dif-
fered significantly (P < 0.05) between the dox+ and dox� groups.
One of these 8 was found to be significantly different between
RT+ vs RT� within dox� group derived at final time point. The
Fig. 5. Gene induction (dox+) results in significantly changed features compared to no
500 mm3. Features are extracted from 40 kVp (A) or 80 kVp (B) CT scans.
remaining 7 features were consistent, since they were statistically
different between the dox+ and dox� groups at both time points,
4 days post RT and at the final time point. These features were
specific for the combination of RT with change in GADD34 gene
expression (Fig. 4). Features found to be significantly different at
all assessed time points after irradiation between dox+ and dox�
groups were always consistently higher for dox+. An example is
shown in Fig. 5A.

To further validate our findings, we obtained features from CTs
performed at a higher energy level (80 kVp) (Fig. 3). At baseline, 9
features (1 tumor intensity, 1 gray-level intensity and 7 wavelet)
were found to differ significantly between dox+ and dox� treatment
groups. Similar to 40 kVp, these features lost significance at later
time points. Upon RT, 9 features (wavelet) differed significantly
between dox+ and dox�. Five of those features were also found in
the 40 kVp CT images and out of which, one feature (P < 0.05) (wave-
let) significantly differed between RT+ and RT� within the dox�
group (Supplementary Table 2). The remaining 4 image features
were also significantly different at later time points, but were not
identified in the 40 kVp images (Fig. 4) (Supplementary Table 2).
Similar to the 40 kVp obtained features, the 80 kVp image features
were also consistently higher for dox+ than dox� at both imaging
time points (Fig. 5B).
Discussion

Radiomics, an advanced analysis platform, extracts features from
medical images by using mathematical algorithms based on tumor
intensity, gray-level intensities, and texture [6–9,15,18–21]. We
have previously identified radiomics-based signatures that are
prognostic and associated with proliferation-related gene
gene induction (dox�) upon combination with radiotherapy 4 days after RT and at



466 Genetic changes and radiomics-based image features
signatures [7]. Furthermore, radiogenomics imaging traits might act
as molecular surrogates for predicting treatment responses [11]. The
studies conducted so far on radiomics have only shown correlative
association of radiomic signatures with gene signatures. In this pre-
clinical radiogenomics study, we hypothesized that image features
are causally related to genetic factors and that radiation affects these
image features.

To prove our hypothesis, we first employed a genetic tumor
model in which tumor microenvironmental characteristics like
hypoxia change upon doxycycline administration [12]. We have
previously demonstrated that tumoral GADD34 overexpression
led to an inhibition of the eIF2a signaling pathway upon adminis-
tration of doxycycline, resulting in decreased hypoxia tolerance
and as a result reduced hypoxic fraction. Although this had no
effect on tumor growth, a significantly enhanced growth delay
was observed upon combination with tumor irradiation when
compared with RT monotherapy [12]. Thus by employing this
reproducible model under well-controlled experimental condi-
tions, we could identify whether a change in GADD34 gene expres-
sion, is causally related with radiomics image features and whether
this could be affected by radiation.

We have observed that a genetic change (dox+ vs dox� treat-
ment group) results in significantly different radiomics features,
although these features were not consistent across the different
imaging time points. Next, certain radiomics features were signif-
icantly different upon RT monotherapy (RT� vs RT+ dox� treat-
ment groups). Similar to genetic changes, features that differed
significantly upon irradiation were not consistent between differ-
ent CT acquisitions. This can be explained due to the dynamic
changes in the tumor and tumor microenvironment over time.
Along with tumor growth, necrotic fraction may also increase
and hypoxic fraction may change. Post radiation therapy, neovas-
culature is formed; hypoxic repopulation occurs leading to
intra-tumoral heterogeneity over time [22].

However, when GADD34 was induced and radiation therapy
was given, there was additional growth delay due to a decreased
hypoxic fraction at the time of irradiation, as previously described
[12]. Thus the difference in tumor heterogeneity between
gene-induced and non-induced tumors post RT was reflected in
the imaging features likely as a result of a phenotypic change.
Interestingly, the radiomics image features that were found to be
significantly different between both groups shortly after irradia-
tion were also observed at larger tumor volumes. This phe-
nomenon was observed independent of the CT image acquisition
energy level, although the observed features were different
between both energies tested. Remarkably, the feature value for
slow-growing tumors (gene-induced) was higher than for
faster-growing tumors (no gene-induced group) upon combination
with radiotherapy.
Conclusion

We have shown in in vivo preclinical models that radiomics is
able to quantify the early effects of radiation treatment and genetic
changes in tumors with similar volumes, and identify differences
that are not visible to the human eye.
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