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1. INTRODUCTION AND PRELIMINARIES

Let C™ denote the vector space of column z-tuples of complex numbers and
let M,, denote the algebra of complex n X n matrices.

If A e M, , then the spectral abscissa of A, denoted ofA), is the largest real
part of the eigenvalues of 4, i.e.,

oAy = max{Re A: A is an eigenvalue of A4}.

We denote by e; (¢ = 1,...,#) the vector in C* whose components are
8:1 3o Oin , Where 8;; is the Kronecker delta function. The identity matrix in
M, is denoted by I. ‘

If 7y, 7y ,..., 75 are nonnegative integers such that

O=rn<n<-—<r=mn, (1)
then the direct-sum decomposition of C*, given by

Cn = Wl@"'®Wk»
where

W; = span{e,, .1, €r, 14250 €}

will be called a partition of C™. Clearly, a partition of C* is completely deter-
mined by any finite collection of integers = = {r, , r, ,..., r;} satisfying (1).
By abuse of language, we will say that # #5 a partition of C*. The projections
associated with this partition are the 2 n X n matrices P, ,..., P, , where

7
Pj = Z eae,,*.

g=r;_1+1
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Let ¢ be a norm on C”. The operator norm on M, induced by ¢ (called
also the matrix norm subordinate to ¢ [1]) will be denoted by |} ||, . Thus, if
AeM,, then

1 Alls = max((Ax)/(x))-

x#0

It is known [1-3] that for 4 = (a;;) € M,, and for the Hélder norms &, , A, ,
h, , we have, respectively,

”AHhm‘—“-m?XZ layl,
=1

n
HAH,,l:maxz lasi,
= |

| 4 I, = largest eigenvalue of (4*4)'/2.

If A, Be M, , then we denote

|4+ kBlls — | Alls
5 .

£s(4, B) = lim

It is known [4-6] that this limit exists; it is called the right Gateaux derivative
of the norm at A with respect to B. The number g (I, B) is called the loga-
rithmic derivative of B corresponding to the norm ¢ [7, 8]. The mapping
B-—g,(l, B) (Be M,) of M, into the field of real numbers is called some-
times the logarithmic norm corresponding to $, although it is not a norm [9].
The concept arises in stability problems of differential equations {35, 6]. It is
known [5, 6] that for every 4 € M,, and for every norm ¢ on C*, we have

oA) < gol, A). @

Thus, g,(I, 4) gives an upper bound for the spectral abscissa a(A4) of the
matrix 4.

It is also known [5, 6] that for 4 = (a;;) € M, and for the Hélder norms
hy ,hy, by, we have, respectively,

n
ghw(I, A) = max (Re a; + z | ay |) ,
¢ =1
g1

g, A) = max (Re a; + Y | ay; ]) ,
o1
istj

&n,(I, A) = largest eigenvalue of (4 + 4*).
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Let = be a given partition of C™, let P, ,..., P, be the projections associated
with 7 and let ¢ be a given norm on C*. If 4 € M,,, then we denote

Eo(P1, PLAPy) || P APy -+ [P AP
A, | PoAP; |y g4(Po, PoAPy) - || PyAP |
| PrAPy ], | PrAPslls o 86(Pr» PrAP)

Clearly, the partition 7 of C™ induces a partitioning 4 = (4); ju1,....x
of A and the »n X n matrix P;4P; is nothing but the block A;; bordered
appropriately by zeros. The matrix A ;4 is an essentially nonnegative & X &
matrix [10].

The purpose of this paper is to prove that for a given partition = of C* and
for a large class of norms ¢ on C” we have

o 4) < oA,4) )

for all A € M,, . This inequality can give better upper bounds for the spectral
abscissa of 4 than those given by (2). We will also see that inequality (2) is a
special case of (3). Our result is similar to a result of Ostrowski [11] con-
cerning the spectral radius of a square matrix.

2. ResuLTs

THEOREM 1. Let A be a complex n X n matrix, let = be a partition of C*
with associated projections P, ,..., P, and let ¢ be a norm on C™ such that
1 Pslle =1 (= 1,..., k). Then o(A) < o A,4)-

Proof. Denote B = ofA,,). Since A,, is an essentially nonnegative
matrix, 8 is an eigenvalue of 4, .

First we will assume that 4, is irreducible. Then, there exists a positive
eigenvector y of (4,,)7 (T denotes transpose) corresponding to B, i.e.,
YA, =ByT. Let 3T = (n;,..., ). Denoting g;; = go(P;, P,AP)),
g = | P;AP; |y (8 #£ J3 4, § = 1,..., k), the equality yTA4,, = ByT becomes

Qi+ Qe + 0+ G = B (¢ =1,.., k). Q)

Now, let A be an arbitrary eigenvalue of 4 and let x be a corresponding
eigenvector. It can be easily seen that the relation Ax = Ax is equivalent to
the following relations

(PLAP,) Pyx -+ (PLAP,) Pyx + - + (PyAP;) Pyx = APy
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From these relations we obtain for all 2 > (@
(P, + hPyAP)) Pix + WP, AP,) Pyx + - + B(P,AP,) Pyx = (1 + k) Pix,

whence

|1+ A | $(Pyx) < || Py + AP AP, ||y $(Pyx) + h|| Py AP, ||, p(Pyx) + -
+ k| PL AP ||y $(Pyx),

or, taking into account that
1Pille =1 (=1, &),

¢(P1x) < H Pl + hPlAfz)l”d> _ ” Pl ”zb ¢(P1x)

+ [ PyAPylls $(Pyx) + -+ + || PrAPy [l $(Pi)-

Lmi—1
h

Letting % — 0, we obtain
(Re A) (Pyx) < gud(Pax) + quud(Por) + - + gud(Py).

Multiplying these relations by #, ,..., 5; , respectively, and adding them, we
obtain, after making use of (4),

(Re A) ¢ < B,
where

¢ = m$(Prx) + - + mib(Pyx).

Since 7; >0 for all j =1,...,k and x = Pyx 4 - + P,x # 0, we have
¢ >0. Thus ReA < B =o4,,). Since this inequality holds for every
eigenvalue of A4, we obtain a(4) < «(4,,).

Now, let us assume that A, is reducible. Then, without loss of generality,
we may assume that 4, can be partitioned as

Oun Qi - Oss
A= |0 B 7 O],
0 0 - O,

where Qj; (j = 1,...,5) is ecither an irreducible square matrix or a 1 % 1
zero matrix. But, whenever an off-diagonal element || P,AP;||, of A4, is
equal to zero, then P;AP; = 0 and so the partitioning

Au Alz o A
Az1 Azz Azk
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induced by the partition 7 of C%, can be partitioned further as

By By By
0 By - By

.......................

A=

Clearly, Qs = (Bij),s, (j = L,..., s) where m; and ¢, are the restrictions of =
and ¢, respectively, to an appropriate subspace of C™.

Let A be an eigenvalue of 4. Then X is an eigenvalue of By; for some
je€{l,..., s}. Since Q;; is irreducible (for our purposes, a 1 X 1 zero matrix
can be viewed as an irreducible matrix since it admits a positive eigenvector),
we have from the first part of the proof

Re X < o(Byj)nje,) = Q1) < max A Qj;) = A(Ayg)-

Since this is true for every eigenvalue A of 4, we have o{4) << «(4,,)- This
completes the proof.

COROLLARY 1. Let A = (a;) be a complex n X n matrix and denote

Reay, |a] - |yl
A= lan| Reayp -+ [am]
I anl l l anz | RC ann

Then o(d) < o(4).

Proof. In Theorem 1, taking = to be the finest partition of C™ (i.e.,
m={0,1,2,.,n} and ¢ = A, , for example, we obtain 4, = A and so

o 4) < A).
Remark 1. A direct proof of Corollary 1 can be found in [12].

Remark 2. If in Theorem 1 we take = to be the coarsest partition of C”,
(i.e., m = {0, n}), then we reobtain inequality (2).

3. ExaMPLEs
ExampLE 1. Let
—6 -1 0 0 |} 0
0 —4 0 | 1
A= 0 0 —4 | 1
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and consider the partition 7 = {0, 3, 4} of C* which induces the indicated
partitioning of 4. Taking the norm k, on C*, we have

o= (T )

The eigenvalue of 4,; are —1, and —7. Thus «(4) < A ) =—1.In
particular, 4 is stable. Note that from the inequality (2), in the case of the
most easily computable upper bounds, we obtain only

od) <gn (I, A) =5, o4) <g(,4)=2.
The actual value of «(4) is (31)!/2 — 4 ~ —1.216.

ExampLE 2. Let

5 ] 2 5 1
_——)—_————

4= 1 | —5 0 0
1 | 0 -5 O

0 | 0 0 —7

and consider the partition = = {0, 1, 4} of C* which induces the indicated
partitioning of 4. Taking the norm %, on C%, we have

n= (3 _3)-

The eiegenvalue of A, are (3342, Thus
o A) < o(A,5,) = (33)1/2 & 5.745.

Actually we have of4) = (32)1/2 ~ 5.657. Inequality (2), for ¢ = A, Ay,
gives, respectively,

o(A) < gn (1, 4) = 13, ofd) < gn(l, 4)=1.

The upper bound & (1, A) is more difficult to compute. It is the largest
eigenvalue of the self-adjoint matrix

5 1.5 3 05
1.5 —5 0 0
3 0 -5 0
0.5 0 0 -7

M4 + 4%) =
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We obtain
o(A) < gn,(1, 4) = H(171)12 — 1) ~ 6.039.

It is interesting to note that we can obtain a better upper bound than the
last one without even computing the spectral abscissa of A, . Indeed,
applying inequality (2) to A,,_, with ¢ = A, , we obtain

OL(A) < a(Aﬂhm) < ghl(I’ Aﬂhw) = 6'

Remark 3. Examples 1 and 2 show that for a given A€ M, , a given
partition 7 of C” and a given norm ¢ on C* (satisfying the assumptions of
Theorem 1), the number o(A4,,) may be a better upper bound for «(4) than
the most easily computable upper bounds of «(A4) given by inequality (2).
If o{4) < «(A4,4), then o A,,) cannot be smaller than g,(1, 4) for every norm
& on C7, since inf g (I, A) = o{A4), where the infimum is taken over all norms
$ on Cm [7, 9]. However, it may happen that «(A4) = «(4,,) but
a(4) < gy(I, A) for every norm ¢ on C". We illustrate this by a very simple
example.

ExampLE 3. Let

1 00
A4=10 0 0
1 01

Then «(4) = 1. Since 1 is a double root of the minimal polynomial of 4, we
have a(4) < g (I, A) for every norm # on C3 [8, 9]. Consider the partition
= {0, 2, 3} of C3. Then
10
Anh - (1 1) ’

and we have o(4,, ) = 1, i.e.,, a(4) = (A )-
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