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1. INTRODUCTION AND PRELIMINARIES 

Let Cn denote the vector space of column n-tuples of complex numbers and 
let M, denote the algebra of complex n x n matrices. 

If A E M,, , then the spectral abscissa of A, denoted or(A), is the largest real 
part of the eigenvalues of A, i.e., 

a(A) = max{Re A: h is an eigenvalue of A}. 

We denote by ei (i = I,..., n) the vector in C* whose components are 
6 ii ,..., ain , where 8, is the Kronecker delta function. The identity matrix in 
M,, is denoted by I. 

Ifr Y ,, , i ,..., Y, are nonnegative integers such that 

0 = r, < Yl < .-- < 9-k = n, (1) 

then the direct-sum decomposition of C*, given by 

where 

will be called a partition of C*. Clearly, a partition of C* is completely deter- 
mined by any finite collection of integers r = {Y,, , yl ,..., rK} satisfying (1). 
By abuse of language, we will say that ST is a partition of Cm. The projections 
associated with this partition are the k n x n matrices Pl ,..., PK , where 
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Let 4 be a norm on C”. The operator norm on M,, induced by 4 (called 
also the matrix norm subordinate to 4 [l]) will be denoted by /I I(+ . Thus, if 
AEM,, then 

It is known [l-3] that for A = (uij) E M, and for the Holder norms h, , h, , 
h, , we have, respectively, 

jl A Ilh, = largest eigenvalue of (A*A)1/2. 

If A, B E M,, , then we denote 

g~(A 
> 
B) = lim II A + hB IL+ - II A 11~ 

h&O h 

It is known [4-6] that this limit exists; it is called the right Gateaux derivative 
of the norm at A with respect to B. The number g&, B) is called the Zogu- 
rithmic derivutive of B corresponding to the norm 4 [7, 81. The mapping 
B -+g#, B) (B E M,) of M,, into the field of real numbers is called some- 
times the logarithmic norm corresponding to 4, although it is not a norm [9]. 
The concept arises in stability problems of differential equations [S, 61. It is 
known [5, 61 that for every A E M, and for every norm + on f?, we have 

44 < g,(A A). (2) 

Thus, g,Jl, A) gives an upper bound for the spectral abscissa a(A) of the 
matrix A. 

It is also known [5, 61 that for A = (uii) E M, and for the Holder norms 
h, , h, , h, , we have, respectively, 

gh2(l, A) = largest eigenvalue of &(A + A*). 
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Let rr be a given partition of Cn, let PI ,. .., Pr, be the projections associated 
with n and let q5 be a given norm on 0. If A EM,, , then we denote 

i 

gtdp~ 2 PIAPI) II P&=2 IId a-* II P&‘k II+ 
A = I/ P&‘, IId &(pz > P&‘J *** 11 pdp, l/m nQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

II P,&‘, IId II P&‘, lb a-- cU’lc 9 PN’,) 

Clearly, the partition v of C* induces a partitioning A = (Aij)i,fsl,...,lc 
of A and the n x n matrix PiAPj is nothing but the block Aij bordered 
appropriately by zeros. The matrix A,, is an essentially nonnegative k x k 
matrix [lo]. 

The purpose of this paper is to prove that for a given partition n of C@ and 
for a large class of norms 4 on C’n we have 

44 G 4%) (3) 

for all A E M, . This inequality can give better upper bounds for the spectral 
abscissa of A than those given by (2). We will also see that inequality (2) is a 
special case of (3). 0 ur result is similar to a result of Ostrowski [ll] con- 
cerning the spectral radius of a square matrix. 

2. RESULTS 

THEOREM 1. Let A be a complex n x n matrix, let rr be a partition of Cn 
with associated projections PI ,..., Pk and let 4 be a norm on C” such that 
11 Pj /lb = 1 (j = l,***, k). Then or(A) < or(A&. 

Proof. Denote /I = ol(A,J. Since A,, is an essentially nonnegative 
matrix, /? is an eigenvalue of A,, . 

First we will assume that A,, is irreducible. Then, there exists a positive 
eigenvector y of (A,JT (T d enotes transpose) corresponding to /3, i.e., 
Y=& = PY=- Let yT = (Q ,..., Q). Denoting qii = g&Pi , P,AP,), 
pii = /I P,APj /Id (i #i; i,j = l,..., k), the equality yTA,* = /3yT becomes 

Qlill + WI2 + ... -t 4Jcilrc = PIi (i = l,..., k). (4) 

Now, let h be an arbitrary eigenvalue of A and let x be a corresponding 
eigenvector. It can be easily seen that the relation Ax = Ax is equivalent to 
the following relations 

(P,AP,) Plx + (P,AP,) P# + ... + (P,AP,) 4x = W,x. 
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From these relations we obtain for all h > 0 

(P, + hP,AP,) PIX + h(P,AP,) Pzx + ..’ + h(PIAPJ PLX = (1 + hh) P$, 
. . . 

whence 

or, taking into account that 

Letting h -+ 0, we obtain 

Pe 4 CP14 G w#(plx) + ~124(p24 + *.* + QI~P~ . . . 
. . . 

Multiplying these relations by v1 ,..., rllz , respectively, and adding them, we 
obtain, after making use of (4), 

(Re A) c < /3c, 
where 

c = w#(PlX) + ... + rl,#kX). 

Since rlj > 0 for all j = l,..., k and x = P,x + ... + Pkx # 0, we have 
c > 0. Thus Re X < j3 = or(A,,&. Since this inequality holds for every 
eigenvalue of A, we obtain a(A) < a(A,,). 

Now, let us assume that A,, is reducible. Then, without loss of generality, 
we may assume that A,, can be partitioned as 

Qn 812 *+* Qu 
A,, = 0 ,022 “* Q!zs , 

i i 

. . . . . . . . . . . . . . . . . . . . . . . . 

0 .a. Qss 
where Qjj (j = l,..., s) is either an irreducible square matrix or a 1 x 1 
zero matrix. But, whenever an off-diagonal element jl PiAPj /Id of A,, is 
equal to zero, then PiAPj = 0 and so the partitioning 

A=(;: . . . . . . . . . . . . . . . . . . . . 1. 

11 4, -.. Au 
21 A22 **a -42, 



70 EMERIC DEUTSCH 

induced by the partition n of C*, can be partitioned further as 

Clearly, Qjj = (Bd,,,,, (j = L.., s) where n.j and & are the restrictions of r 
and 4, respectively, to an appropriate subspace of C”. 

Let h be an eigenvalue of A. Then X is an eigenvalue of Bjj for some 
jE{l,..., s}. Since Qjj is irreducible (for our purposes, a 1 x 1 zero matrix 
can be viewed as an irreducible matrix since it admits a positive eigenvector), 
we have from the first part of the proof 

Re h < ~((Bdnj~,) = ~QQH) G yx 4Qjd = +Ld. 

Since this is true for every eigenvalue h of A, we have a(A) < o@,,J. This 
completes the proof. 

COROLLARY 1. Let A = (Q) be a complex A x n matrix and denote 

i 

Real1 Ial -+- l%l 
A= 1~1 Re% *-* l%l 

1 

- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Ian11 Ia,, I *-- Rea,, 
Tken or(A) < .(A). 

Proof. In Theorem 1, taking rr to be the finest partition of 0 (i.e., 
rr = (0, 1,2 ,..., n) and 4 = h, , for example, we obtain A,, = B and so 
a(A) < a(A). 

Remark 1. A direct proof of Corollary 1 can be found in [12]. 

Remark 2. If in Theorem 1 we take w to be the coarsest partition of P, 
(i.e., v = (0, n}), then we reobtain inequality (2). 

3. EXAMPLES 

EXAMPLE 1. Let 

-6+i 0 0 1 0 

A= 0 O-41 
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and consider the partition v = {0,3,4) of CQ which induces the indicated 
partitioning of A. Taking the norm h, on C4, we have 

A nh, = 

The eigenvalue of Aah, are -1, and -7. Thus a(A) < OL(A,,~,) = -1. In 
particular, A is stable. Note that from the inequality (2), in the case of the 
most easily computable upper bounds, we obtain only 

c@) < gr&, A) = 5, a(A) < gh,(& 4 = 2. 

The actual value of a(A) is +(31)1/2 - 4 = -1.216. 

EXAMPLE 2. Let 

A= 

512 5 1 
- ------- 

11-5 0 0 
1 I o-5 0 
01 0 0 -7 1 

and consider the partition rr = (0, 1,4} of C4 which induces the indicated 
partitioning of A. Taking the norm h, on C4, we have 

Anh, = (; -!j) - 

The eiegenvalue of Anh, are &(33)1j2. Thus 

a(A) < C@,h,) = (33)‘/” m 5.745. 

Actually we have a(A) = (32)li2 w 5.657. Inequality (2), for + = h, , h, , 
gives, respectively, 

44 < gt&, A) = 13, 44 < g,l(4 A) = 7. 

The upper bound g#, A) is more difficult to compute. It is the largest 
eigenvalue of the self-adjoint matrix 
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We obtain 
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a(~) < g,$, A) = &((171)1/2 - I) m 6.039. 

It is interesting to note that we can obtain a better upper bound than the 
last one without even computing the spectral abscissa of Anh, . Indeed, 
applying inequality (2) to Anh, , with 4 = h, , we obtain 

Remark 3. Examples 1 and 2 show that for a given A E Mm , a given 
partition rr of C” and a given norm 4 on Cn (satisfying the assumptions of 
Theorem l), the number a(A,,) may be a better upper bound for a(A) than 
the most easily computable upper bounds of o(A) given by inequality (2). 
If a(A) < cx(A,,), th en a(Avm) cannot be smaller than g,(l, A) for every norm 
I/ on Cn, since inf g& A) = a(A), w h ere the infimum is taken over all norms 
z,b on Cn [7, 91. However, it may happen that a(A) = a(A,,& but 

44 < &a 4 f or every norm 4 on C”. We illustrate this by a very simple 
example. 

EXAMPLE 3. Let 

Then a(A) = 1. Since 1 is a double root of the minimal polynomial of A, we 
have cu(A) <g,(1, A) for every norm # on C3 [8, 91. Consider the partition 
T = (0,2,3} of C3. Then 

Arti = (; ;) > 

and we have a(A,*,) = 1, i.e., or(A) = a(A,&,). 

REFERENCES 

1. A. S. HOUSEHOLDER, “The Theory of Matrices in Numerical Analysis,” Blaisdell, 
New York, Toronto, London, 1964. 

2. D. M. YOUNG AND R. T. GREGORY, “A Survey of Numerical Mathematics,” 
Vol. II, Addison-Wesley, Reading, MA, 1973. 

3. G. W. STEWART, “Introduction to Matrix Computations,” Academic Press, New 
York, London, 1973. 

4. G. KGTHE, “Topological Vector Spaces I,” Springer, New York, 1969. 
5. G. DAHLQUIST, Stability and error bounds in the numerical integration of ordinary 

differential equations, Trans. Roy. Inst. Tech. 130, Stockholm, Sweden, 1959. 



THE SPECTRAL ABSCISSA OF A MATRIX 13 

6. W. A. COPPEL, “Stability and Asymptotic Behavior of Differential Equations,” 
Heath and Co., Boston, 1965. 

7. C. V. PAO, Logarithmic derivates of a square matrix, Linear Algebra and Appl. 
6 (1973), 159-164. 

8. C. V. PAO, A further remark on the logarithmic derivatives of a square matrix, 
Linear Algebra and Appl. 7 (1973), 275-278. 

9. T. STROM, On logarithmic norms, Report NA 69.06, Department of Information 
Processing Computer Science, The Royal Institute of Technology, Stockholm, 
Sweden, 1969. 

10. R. S. VARGA, “Matrix Iterative Analysis,” Prentice-Hall, Englewood Cliffs, NJ, 
1962. 

11. A. M. OSTROWSKI, On some metrical properties of operator matrices and matrices 
partitioned into blocks, J. Math. Anal. Appl. 2 (1961), 161-209. 

12. E. DEUTSCH, On the spectral abscissa of a matrix, to appear. 


