The Spectral Abscissa of Partitioned Matrices*

Emeric Deutsch
Department of Mathematics, Polytechnic Institute of New York, Brooklyn, New York 11201
Submitted by Ky Fan

1. Introduction and Preliminaries

Let C^{n} denote the vector space of column n-tuples of complex numbers and let M_{n} denote the algebra of complex $n \times n$ matrices.
If $A \in M_{n}$, then the spectral abscissa of A, denoted $\alpha(A)$, is the largest real part of the eigenvalues of A, i.e.,

$$
\alpha(A)=\max \{\operatorname{Re} \lambda: \lambda \text { is an eigenvalue of } A\} .
$$

We denote by $e_{i}(i=1, \ldots, n)$ the vector in C^{n} whose components are $\delta_{i 1}, \ldots, \delta_{i n}$, where $\delta_{i j}$ is the Kronecker delta function. The identity matrix in M_{n} is denoted by I.

If $r_{0}, r_{1}, \ldots, r_{k}$ are nonnegative integers such that

$$
\begin{equation*}
0=r_{0}<r_{1}<\cdots<r_{k}=n, \tag{1}
\end{equation*}
$$

then the direct-sum decomposition of C^{n}, given by

$$
C^{n}=W_{1} \oplus \cdots \oplus W_{k}
$$

where

$$
W_{j}=\operatorname{span}\left\{e_{r_{j-1}+1}, e_{r_{j-1}+2}, \ldots, e_{r_{j}}\right\}
$$

will be called a partition of C^{n}. Clearly, a partition of C^{n} is completely determined by any finite collection of integers $\pi=\left\{r_{0}, r_{1}, \ldots, r_{k}\right\}$ satisfying (1). By abuse of language, we will say that π is a partition of C^{n}. The projections associated with this partition are the $k n \times n$ matrices P_{1}, \ldots, P_{k}, where

$$
P_{j}=\sum_{q=r, j-1+1}^{r_{j}} e_{q} e_{q}{ }^{*} .
$$

[^0]Let ϕ be a norm on C^{n}. The operator norm on M_{n} induced by ϕ (called also the matrix norm subordinate to $\phi[1])$ will be denoted by $\left\|\|_{\phi}\right.$. Thus, if $A \in M_{n}$, then

$$
\|A\|_{\phi}=\max _{\substack{x \in C^{n} \\ x \neq 0}}(\phi(A x) / \phi(x))
$$

It is known [1-3] that for $A=\left(a_{i j}\right) \in M_{n}$ and for the Hölder norms h_{∞}, h_{1}, h_{2}, we have, respectively,

$$
\begin{aligned}
& \|A\|_{h_{\infty}}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| \\
& \|A\|_{h_{1}}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right| \\
& \|A\|_{h_{2}}=\text { largest eigenvalue of }\left(A^{*} A\right)^{1 / 2}
\end{aligned}
$$

If $A, B \in M_{n}$, then we denote

$$
g_{\phi}(A, B)=\lim _{h \downarrow 0} \frac{\|A+h B\|_{\phi}-\|A\|_{\phi}}{h} .
$$

It is known [4-6] that this limit exists; it is called the right Gateaux derivative of the norm at A with respect to B. The number $g_{\phi}(I, B)$ is called the $\log a$ rithmic derivative of B corresponding to the norm $\phi[7,8]$. The mapping $B \rightarrow g_{\phi}(I, B)\left(B \in M_{n}\right)$ of M_{n} into the field of real numbers is called sometimes the logarithmic norm corresponding to ϕ, although it is not a norm [9]. The concept arises in stability problems of differential equations [5, 6]. It is known [5, 6] that for every $A \in M_{n}$ and for every norm ϕ on C^{n}, we have

$$
\begin{equation*}
\alpha(A) \leqslant g_{\phi}(I, A) \tag{2}
\end{equation*}
$$

Thus, $g_{\phi}(I, A)$ gives an upper bound for the spectral alscissa $\alpha(A)$ of the matrix A.

It is also known [5, 6] that for $A=\left(a_{i j}\right) \in M_{n}$ and for the Hölder norms h_{∞}, h_{1}, h_{2}, we have, respectively,

$$
\begin{aligned}
& g_{h_{\infty}}(I, A)=\max _{i}\left(\operatorname{Re} a_{i i}+\sum_{\substack{j=1 \\
j \neq 1}}^{n}\left|a_{i j}\right|\right) \\
& g_{h_{1}}(I, A)=\max _{j}\left(\operatorname{Re} a_{j j}+\sum_{\substack{i=1 \\
i \neq j}}^{n}\left|a_{i j}\right|\right) \\
& g_{h_{\mathbf{2}}}(I, A)=\text { largest eigenvalue of } \frac{1}{2}\left(A+A^{*}\right)
\end{aligned}
$$

Let π be a given partition of C^{n}, let P_{1}, \ldots, P_{k} be the projections associated with π and let ϕ be a given norm on C^{n}. If $A \in M_{n}$, then we denote

$$
A_{\pi \phi}=\left(\begin{array}{llll}
g_{\phi}\left(P_{1}, P_{1} A P_{1}\right) & \left\|P_{1} A P_{2}\right\|_{\phi} & \cdots & \left\|P_{1} A P_{k}\right\|_{\phi} \\
\left\|P_{2} A P_{1}\right\|_{\phi} & g_{\phi}\left(P_{2}, P_{2} A P_{2}\right) & \cdots & \left\|P_{2} A P_{k}\right\|_{\phi} \\
\cdots \\
\left\|P_{k} A P_{1}\right\|_{\phi} & \left\|P_{k} A P_{2}\right\|_{\phi} & \cdots & g_{\phi}\left(P_{k}, P_{k} A P_{k}\right)
\end{array}\right)
$$

Clearly, the partition π of C^{n} induces a partitioning $A=\left(A_{i j}\right)_{i, j=1, \ldots, k}$ of A and the $n \times n$ matrix $P_{i} A P_{j}$ is nothing but the block $A_{i j}$ bordered appropriately by zeros. The matrix $A_{\pi \phi}$ is an essentially nonnegative $k \times k$ matrix [10].

The purpose of this paper is to prove that for a given partition π of C^{n} and for a large class of norms ϕ on C^{n} we have

$$
\begin{equation*}
\alpha(A) \leqslant \alpha\left(A_{\pi \phi}\right) \tag{3}
\end{equation*}
$$

for all $A \in M_{n}$. This inequality can give better upper bounds for the spectral abscissa of A than those given by (2). We will also see that inequality (2) is a special case of (3). Our result is similar to a result of Ostrowski [11] concerning the spectral radius of a square matrix.

2. Results

Theorem 1. Let A be a complex $n \times n$ matrix, let π be a partition of C^{n} with associated projections P_{1}, \ldots, P_{k} and let ϕ be a norm on C^{n} such that $\left\|P_{j}\right\|_{\phi}=1(j=1, \ldots, k)$. Then $\alpha(A) \leqslant \alpha\left(A_{\pi \phi}\right)$.

Proof. Denote $\beta=\alpha\left(A_{\pi \phi}\right)$. Since $A_{\pi \phi}$ is an essentially nonnegative matrix, β is an eigenvalue of $A_{\pi \phi}$.

First we will assume that $A_{\pi \phi}$ is irreducible. Then, there exists a positive eigenvector y of $\left(A_{\pi \phi}\right)^{T}$ (T denotes transpose) corresponding to β, i.e., $y^{T} A_{\pi \phi}=\beta y^{T}$. Let $y^{T}=\left(\eta_{i}, \ldots, \eta_{k}\right)$. Denoting $\quad q_{i i}=g_{\phi}\left(P_{i}, P_{i} A P_{i}\right)$, $q_{i j}=\left\|P_{i} A P_{j}\right\|_{\phi}(i \neq j ; i, j=1, \ldots, k)$, the equality $y^{T} A_{\pi \phi}=\beta y^{T}$ becomes

$$
\begin{equation*}
q_{1 i} \eta_{1}+q_{2 i} \eta_{2}+\cdots+q_{k i} \eta_{k}=\beta \eta_{i} \quad(i=1, \ldots, k) \tag{4}
\end{equation*}
$$

Now, let λ be an arbitrary eigenvalue of A and let x be a corresponding eigenvector. It can be easily seen that the relation $A x=\lambda x$ is equivalent to the following relations

$$
\left(P_{1} A P_{1}\right) P_{1} x+\left(P_{1} A P_{2}\right) P_{2} x+\cdots+\left(P_{1} A P_{k}\right) P_{k} x=\lambda P_{1} x
$$

From these relations we obtain for all $h>0$
$\left(P_{1}+h P_{1} A P_{1}\right) P_{1} x+h\left(P_{1} A P_{2}\right) P_{2} x+\cdots+h\left(P_{1} A P_{k}\right) P_{k} x=(1+h \lambda) P_{1} x$, \cdots
whence

```
\(1+h \lambda\left|\phi\left(P_{1} x\right) \leqslant\left\|P_{1}+h P_{1} A P_{1}\right\|_{\phi} \phi\left(P_{1} x\right)+h\right| \mid P_{1} A P_{2} \|_{\phi} \phi\left(P_{2} x\right)+\cdots\)
    \(+h\left\|P_{1} A P_{k}\right\|_{\Phi} \phi\left(P_{k} x\right)\),
\(\ldots\)
```

or, taking into account that

$$
\begin{aligned}
& \quad\left\|P_{j}\right\|_{\phi}=1 \quad(j=1, \ldots, k) \\
& \frac{|1+h \lambda|-1}{h} \phi\left(P_{1} x\right) \leqslant \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned} \quad+\left\|P_{1} A P_{2}\right\|_{\phi} \phi\left(P_{2} x\right)+\cdots+\left\|P_{1} A P_{1}\right\|_{\phi}-\left\|P_{1}\right\|_{\phi} \|_{\phi} \phi\left(P_{k} x\right) .
$$

Letting $h \rightarrow 0$, we obtain

$$
(\operatorname{Re} \lambda) \phi\left(P_{1} x\right) \leqslant q_{11} \phi\left(P_{1} x\right)+q_{12} \phi\left(P_{2} x\right)+\cdots+q_{1 k} \phi\left(P_{k} x\right) .
$$

Multiplying these relations by $\eta_{1}, \ldots, \eta_{k}$, respectively, and adding them, we obtain, after making use of (4),

$$
(\operatorname{Re} \lambda) c \leqslant \beta c
$$

where

$$
c=\eta_{1} \phi\left(P_{1} x\right)+\cdots+\eta_{k} \phi\left(P_{k} x\right)
$$

Since $\eta_{j}>0$ for all $j=1, \ldots, k$ and $x=P_{1} x+\cdots+P_{k} x \neq 0$, we have $c>0$. Thus $\operatorname{Re} \lambda \leqslant \beta=\alpha\left(A_{\pi \phi}\right)$. Since this inequality holds for every eigenvalue of A, we obtain $\alpha(A) \leqslant \alpha\left(A_{\pi \phi}\right)$.

Now, let us assume that $A_{\pi \phi}$ is reducible. Then, without loss of generality, we may assume that $A_{\pi \phi}$ can be partitioned as

$$
A_{\pi \phi}=\left(\begin{array}{cccc}
Q_{11} & Q_{12} & \cdots & Q_{1 s} \\
0 & Q_{22} & \cdots & Q_{2 s} \\
\cdots \cdots \cdots \cdots \cdots \cdots & \cdots \\
0 & 0 & \cdots & Q_{s s}
\end{array}\right)
$$

where $Q_{j j}(j=1, \ldots, s)$ is either an irreducible square matrix or a 1×1 zero matrix. But, whenever an off-diagonal element $\left\|P_{i} A P_{j}\right\|_{\phi}$ of $A_{\pi \phi}$ is equal to zero, then $P_{i} A P_{j}=0$ and so the partitioning

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right),
$$

induced by the partition π of C^{n}, can be partitioned further as

$$
A=\left(\begin{array}{cccc}
B_{11} & B_{12} & \cdots & B_{1 s} \\
0 & B_{22} & \cdots & B_{2 s} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots & \cdots \cdots \\
0 & 0 & \cdots & B_{88}
\end{array}\right)
$$

Clearly, $Q_{j j}=\left(B_{j j}\right)_{\pi_{j} \phi_{j}}(j=1, \ldots, s)$ where π_{j} and ϕ_{j} are the restrictions of π and ϕ, respectively, to an appropriate subspace of C^{n}.

Let λ be an eigenvalue of A. Then λ is an eigenvalue of $B_{j j}$ for some $j \in\{1, \ldots, s\}$. Since $Q_{j j}$ is irreducible (for our purposes, a 1×1 zero matrix can be viewed as an irreducible matrix since it admits a positive eigenvector), we have from the first part of the proof

$$
\operatorname{Re} \lambda \leqslant \alpha\left(\left(B_{j j}\right)_{\pi_{j} \phi_{j}}\right)=\alpha\left(Q_{j j}\right) \leqslant \max _{j} \alpha\left(Q_{j j}\right)=\alpha\left(A_{\pi \phi}\right) .
$$

Since this is true for every eigenvalue λ of A, we have $\alpha(A) \leqslant \alpha\left(A_{\pi \phi}\right)$. This completes the proof.

Corollary 1. Let $A=\left(a_{i j}\right)$ be a complex $n \times n$ matrix and denote

$$
\tilde{A}=\left(\begin{array}{cccc}
\operatorname{Re} a_{11} & \left|a_{12}\right| & \cdots & \left|a_{1 n}\right| \\
\left|a_{21}\right| & \operatorname{Re} a_{22} & \cdots & \left|a_{2 n}\right| \\
\cdots \\
\left|a_{n 1}\right| & \left|a_{n 2}\right| & \cdots & \operatorname{Re} a_{n n}
\end{array}\right)
$$

Then $\alpha(A) \leqslant \alpha(A)$.
Proof. In Theorem 1, taking π to be the finest partition of C^{n} (i.e., $\pi=\{0,1,2, \ldots, n\}$ and $\phi=h_{\infty}$, for example, we obtain $A_{\pi \phi}=\tilde{A}$ and so $\alpha(A) \leqslant \alpha(\widetilde{A})$.

Remark 1. A direct proof of Corollary 1 can be found in [12].
Remark 2. If in Theorem 1 we take π to be the coarsest partition of C^{n}, (i.e., $\pi=\{0, n\}$), then we reobtain inequality (2).

3. Examples

Example 1. Let

$$
A=\left(\begin{array}{crr:r}
-6+i & 0 & 0 & 0 \\
0 & -4 & 0 & 1 \\
0 & 0 & -4 & 1 \\
\hdashline 1 & 2 & 6 & -4+i
\end{array}\right)
$$

and consider the partition $\pi=\{0,3,4\}$ of C^{4} which induces the indicated partitioning of A. Taking the norm h_{∞} on C^{4}, we have

$$
A_{\pi h_{\infty}}=\left(\begin{array}{rr}
-4 & 1 \\
9 & -4
\end{array}\right)
$$

The eigenvalue of $A_{\pi h_{\infty}}$ are -1 , and -7 . Thus $\alpha(A) \leqslant \alpha\left(A_{\pi h_{\infty}}\right)=-1$. In particular, A is stable. Note that from the inequality (2), in the case of the most easily computable upper bounds, we obtain only

$$
\alpha(A) \leqslant g_{h_{\infty}}(I, A)=5, \quad \alpha(A) \leqslant g_{h_{1}}(I, A)=2
$$

The actual value of $\alpha(A)$ is $\frac{1}{2}(31)^{1 / 2}-4 \approx-1.216$.
Example 2. Let

$$
A=\left(\begin{array}{r:rrr}
5 & 2 & 5 & 1 \\
\hdashline 1 & -5 & 0 & 0 \\
1 & 0 & 5 & 0 \\
0 & 0 & 0 & -7
\end{array}\right)
$$

and consider the partition $\pi=\{0,1,4\}$ of C^{4} which induces the indicated partitioning of A. Taking the norm h_{∞} on C^{4}, we have

$$
A_{\pi n_{\infty}}=\left(\begin{array}{rr}
5 & 8 \\
1 & -5
\end{array}\right)
$$

The eiegenvalue of $A_{\pi h_{\infty}}$ are $\pm(33)^{1 / 2}$. Thus

$$
\alpha(A) \leqslant \alpha\left(A_{\pi h_{\infty}}\right)=(33)^{1 / 2} \approx 5.745
$$

Actually we have $\alpha(A)=(32)^{1 / 2} \approx 5.657$. Inequality (2), for $\phi=h_{\infty}, h_{1}$, gives, respectively,

$$
\alpha(A) \leqslant g_{h_{\infty}}(I, A)=13, \quad \alpha(A) \leqslant g_{h_{1}}(I, A)=7
$$

The upper bound $g_{h_{g}}(I, A)$ is more difficult to compute. It is the largest eigenvalue of the self-adjoint matrix

$$
\frac{1}{2}\left(A+A^{*}\right)=\left(\begin{array}{ccrr}
5 & 1.5 & 3 & 0.5 \\
1.5 & -5 & 0 & 0 \\
3 & 0 & -5 & 0 \\
0.5 & 0 & 0 & -7
\end{array}\right)
$$

We obtain

$$
\alpha(A) \leqslant g_{h_{2}}(I, A)=\frac{1}{2}\left((171)^{1 / 2}-1\right) \approx 6.039 .
$$

It is interesting to note that we can obtain a better upper bound than the last one without even computing the spectral abscissa of $A_{\pi h_{\infty}}$. Indeed, applying inequality (2) to $A_{\pi h_{\infty}}$, with $\phi=h_{1}$, we obtain

$$
\alpha(A) \leqslant \alpha\left(A_{\pi h_{\infty}}\right) \leqslant g_{h_{1}}\left(I, A_{\pi h_{\infty}}\right)=6 .
$$

Remark 3. Examples 1 and 2 show that for a given $A \in M_{n}$, a given partition π of C^{n} and a given norm ϕ on C^{n} (satisfying the assumptions of Theorem 1), the number $\alpha\left(A_{\pi \phi}\right)$ may be a better upper bound for $\alpha(A)$ than the most easily computable upper bounds of $\alpha(A)$ given by inequality (2). If $\alpha(A)<\alpha\left(A_{\pi \phi}\right)$, then $\alpha\left(A_{\pi \phi}\right)$ cannot be smaller than $g_{\psi}(I, A)$ for every norm ψ on C^{n}, since inf $g_{\psi}(I, A)=\alpha(A)$, where the infimum is taken over all norms ψ on $C^{n}[7,9]$. However, it may happen that $\alpha(A)=\alpha\left(A_{\pi \phi}\right)$ but $\alpha(A)<g_{\psi}(I, A)$ for every norm ψ on C^{n}. We illustrate this by a very simple example.

Example 3. Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Then $\alpha(A)=1$. Since 1 is a double root of the minimal polynomial of A, we have $\alpha(A)<g_{\psi}(I, A)$ for every norm ψ on $C^{3}[8,9]$. Consider the partition $\pi=\{0,2,3\}$ of C^{3}. Then

$$
A_{u h}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

and we have $\alpha\left(A_{\pi n_{\infty}}\right)=1$, i.e., $\alpha(A)=\alpha\left(A_{\pi h_{\infty}}\right)$.

References

1. A. S. Householder, "The Theory of Matrices in Numerical Analysis," Blaisdell, New York, Toronto, London, 1964.
2. D. M. Young and R. T. Gregory, "A Survey of Numerical Mathematics," Vol. II, Addison-Wesley, Reading, MA, 1973.
3. G. W. Stewart, "Introduction to Matrix Computations," Academic Press, New York, London, 1973.
4. G. Köthe, "Topological Vector Spaces I," Springer, New York, 1969.
5. G. Dahlquist, Stability and error bounds in the numerical integration of ordinary differential equations, Trans. Roy. Inst. Tech. 130, Stockholm, Sweden, 1959.
6. W. A. Coppel, "Stability and Asymptotic Behavior of Differential Equations," Heath and Co., Boston, 1965.
7. C. V. Pao, Logarithmic derivates of a square matrix, Linear Algebra and Appl. 6 (1973), 159-164.
8. C. V. PAO, A further remark on the logarithmic derivatives of a square matrix, Linear Algebra and Appl. 7 (1973), 275-278.
9. T. Ström, On logarithmic norms, Report NA 69.06, Department of Information Processing Computer Science, The Royal Institute of Technology, Stockholm, Sweden, 1969.
10. R. S. Varga, "Matrix Iterative Analysis," Prentice-Hall, Englewood Cliffs, NJ, 1962.
11. A. M. Ostrowski, On some metrical properties of operator matrices and matrices partitioned into blocks, J. Math. Anal. Appl. 2 (1961), 161-209.
12. E. Deutsch, On the spectral abscissa of a matrix, to appear.

[^0]: * Research supported by National Science Foundation Grant GP-32834.

