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Abstract
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1. Introduction

In this paper we deal with a class of inequality problems for Navier–Stokes type
rators related to the model of motion of viscous incompressible fluids. We stud
stationary flow of inhomogeneous viscous fluid in a regular bounded domainΩ ⊂ R

d ,
d = 2,3. The Navier–Stokes equations are the following:

−ν

d∑
j=1

∂2ui

∂x2
j

+
d∑

j=1

uj

∂ui

∂xj

+ ∂p

∂xi

= fi, i = 1, . . . , d in Ω, (1)

d∑
j=1

∂uj

∂xj

= 0 in Ω. (2)

This system describes the flow of a viscous incompressible fluid which occupies th
main Ω , u = {ui}di=1 denotes the velocity of the fluid,p is the pressure,f = {fi} is the
volume density of external forces andν is a positive constant representing the coeffici
of kinematic viscosity. Using the standard Lamb formulation, we rewrite (1)–(2) i
equivalent form (see (12)–(13) in Section 4):

−ν rot rotu + rotu × u + ∇h = f, divu = 0 in Ω, (3)

where a functionh = p + 1
2|u|2 denotes the dynamic pressure. We consider this prob

under the following boundary conditions:

h ∈ ∂j (x,uN) and uτ = 0 onΓ. (4)

HereΓ = ∂Ω , uN anduτ denote the normal and the tangential component ofu on the
boundary,uN = u · n, uτ = u − uNn, n being the unit outward normal onΓ and∂j is the
Clarke subdifferential of a locally Lipschitz functionj (x, ·).

It should be noted that the subdifferential boundary condition in particular case
duces to the classical boundary conditions. If the functionj (x, ·) is assumed to be conve
the problem has been studied in papers by Chebotarev [6,7]. Next, still in a convex
Chebotarev [8] considered the boundary conditions (4) for the Boussinesq equatio
Konovalova [14] studied the evolution counterpart of (3)–(4). In all these papers the
sidered problems were formulated as variational inequalities involving maximal mon
operators (recall that the subdifferential of a convex function is a maximal monotone
cf. e.g. [11,15,24]). In this paper, due to the absence of convexity of the superpotenj ,
the formulation of (3)–(4) is not longer a variational inequality and it leads to the ex
sions called hemivariational inequalities. The latter have been introduced and stud
P.D. Panagiotopoulos in the early eighties as variational formulations for several clas
mechanical problems with nonsmooth and nonconvex energy superpotentials. Sin
time the notion of hemivariational inequality proved to be a useful and powerful too
formulation and solving several problems coming from mechanics and engineeri
mechanics the hemivariational inequalities express the principles of virtual work or p
see, e.g., unilateral contact problems in nonlinear elasticity and viscoelasticity, pro

describing frictional and adhesive effects, problem of delamination of plates, loading and
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unloading problems in engineering structures in Panagiotopoulos [20,22] and Nan
and Panagiotopoulos [19].

In a concrete situation the problem (3)–(4) describes a model in which it is desira
regulate the boundary orifices in a tube (or channel): our aim is to reduce the pres
the fluid onΓ when the normal velocity reaches a given value. The multivalued bo
ary condition can be used to model a control problem in which the pressure is reg
by a hydraulic control device. For other flow problems dealing with semipermeable
and membranes, and the flow through porous media, we refer to Panagiotopoulo
Naniewicz and Panagiotopoulos [19, Chapter 5.5.3], Goeleven et al. [13, Chapter 2
Alekseev and Smishliaev [1], Migorski and Ochal [18] and Chebotarev [8,9] and the
ences therein.

The goal of the paper is to show the results on the existence and uniqueness of w
lutions to a hemivariational inequality corresponding to the problem (3)–(4). The exis
will be proved by employing a surjectivity result for a pseudomonotone and coerciv
erator. Moreover, we study the sensitivity (stability) of the solution set of the problem
respect to perturbations in the boundary condition. We provide conditions under
such perturbations cause small perturbations of the solutions.

The paper is organized as follows. In Section 2 we recall some notation and p
some auxiliary material. In Section 3 we consider abstract Navier–Stokes type ope
and for inclusions involving such operators we present a surjectivity result. The fo
lation of the boundary value problem for the stationary Navier–Stokes equation w
subdifferential boundary condition as a hemivariational inequality is given in Section
this section we deliver the results on the existence and uniqueness of the weak sol
the hemivariational inequality and present an example to which our results can be a
Finally, in Section 5, we deal with the dependence of the solution with respect to ch
of the boundary condition.

2. Preliminaries

In this section we introduce the notation and recall some definitions needed in t
quel.

Let V be a reflexive Banach space. We denote by〈· , ·〉 the pairing betweenV and its
dualV ∗.

Definition 1. An operatorT :V → V ∗ is said to be pseudomonotone if

(i) it is bounded (i.e., it maps bounded subsets ofV into bounded subsets ofV ∗);
(ii) 〈T u,u − v〉 � lim inf〈T un,un − v〉 for all v ∈ V whenever the sequence{un} con-

verges weakly inV to u with lim sup〈T un,un − u〉 � 0.

Remark 2. The condition (ii) of Definition 1 is equivalent (still under condition (i)) to t

following one:
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(ii) ′ if un → u weakly inV and lim sup〈T un,un − u〉 � 0, thenT un → T u weakly inV ∗
and lim〈T un,un − u〉 = 0.

In fact, to show that (ii)′ implies (ii), it is enough to observe that for everyv ∈ V we have

lim inf〈T un,un − v〉 � lim inf〈T un,un − u〉 + lim inf〈T un,u − v〉 = 〈T u,u − v〉.
Conversely, puttingv = u in the condition in (ii), we have

0� lim inf〈T un,un − u〉 � lim sup〈T un,un − u〉 � 0,

hence〈T un,un − u〉 → 0. Moreover, takingv = u − λw, λ ∈ R, w ∈ V , we get

〈T u,λw〉 � lim inf〈T un,un − u + λw〉
= lim〈T un,un − u〉 + lim inf〈T un,λw〉 � lim inf 〈T un,λw〉.

Sinceλ ∈ R is arbitrary, we obtain lim〈T un,w〉 = 〈T u,w〉 for all w ∈ V .

Definition 3. A multivalued operatorT :V → 2V ∗
is said to be pseudomonotone if t

following conditions hold:

(i) the setT v is nonempty, bounded, closed and convex for allv ∈ V ;
(ii) T is usc from each finite dimensional subspace ofV into V ∗ endowed with the wea

topology;
(iii) if vn ∈ V , vn → v weakly inV andv∗

n ∈ T vn is such that lim sup〈v∗
n, vn −v〉 � 0, then

to eachy ∈ V , there existsv∗(y) ∈ T v such that〈v∗(y), v − y〉 � lim inf 〈v∗
n, vn − y〉.

Definition 4. An operatorT :V → 2V ∗
is said to be generalized pseudomonoton

for every sequencesvn → v weakly in V , v∗
n → v∗ weakly in V ∗, v∗

n ∈ T vn and
lim sup〈v∗

n, vn − v〉 � 0, we havev∗ ∈ T v and〈v∗
n, vn〉 → 〈v∗, v〉.

The following result is well-known, cf. Browder and Hess [3] and Zeidler [24].

Proposition 5. If T :V → 2V ∗
is a generalized pseudomonotone operator which

bounded and has nonempty, closed and convex values, thenT is pseudomonotone.

We recall the definitions of the generalized directional derivative and the gener
gradient of Clarke for a locally Lipschitz function (see Clarke [10]).

Definition 6. Let h :E → R be a locally Lipschitz function defined on a Banach spaceE.
The generalized directional derivative ofh at x ∈ E in the directionv ∈ E, denoted by
h0(x;v), is defined by

h0(x;v) = lim sup
y→x, t↓0

h(y + tv) − h(y)

t
.

The generalized gradient ofh atx, denoted by∂h(x), is a subset of a dual spaceE∗ given
by { }
∂h(x) = ζ ∈ E∗: h0(x;v) � 〈ζ, v〉E∗×E for all v ∈ E .
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The locally Lipschitz functionh is called regular (in the sense of Clarke) atx ∈ E if for all
v ∈ E the one-sided directional derivativeh′(x;v) exists and satisfiesh0(x;v) = h′(x;v)

for all v ∈ E.

Finally we state the chain rules for the generalized directional derivative and the g
alized gradient which are needed in the sequel.

Proposition 7. Let X andY be Banach spaces,L ∈ L(Y,X) and letf :X → R ∪ {+∞}
be a locally Lipschitz function. Then

(i) (f ◦ L)0(x; z) � f 0(Lx;Lz) for x, z ∈ Y ,
(ii) ∂(f ◦ L)(x) ⊆ L∗∂f (Lx) for x ∈ Y ,

whereL∗ ∈ L(X∗, Y ∗) denotes the adjoint operator toL. If in addition eitherf or −f is
regular, then in both(i) and (ii) the equalities hold.

For the proof of the proposition we refer to Theorem 2.3.10 of Clarke [10].

3. Abstract setting

In this section we deliver the main result of the paper on the existence of solutions
abstract inclusion.

Let V be a reflexive separable Banach space and letV ∗ be its dual. We denote byH a
Hilbert space such thatV ⊂ H with dense and compact embedding. IdentifyingH with its
dual, we have an evolution triple of spacesV ⊂ H ⊂ V ∗ (cf. Lions [15], Zeidler [24]). The
norms inV , H andV ∗ are denoted by‖ · ‖V , | · |H and‖ · ‖V ∗ , respectively. The pairing
betweenV andV ∗ is denoted by〈· , ·〉.

Definition 8. An operatorN :V → V ∗ is called a Navier–Stokes type operator ifNv =
Av + B[v], where

(1) A :V → V ∗ is a linear, continuous, symmetric operator such that

〈Av,v〉 � α‖v‖2
V for v ∈ V with α > 0;

(2) B[v] = B(v, v), B :V × V → V ∗ is a bilinear continuous operator satisfying the c
ditions:
(2a) 〈B(u, v), v〉 = 0 for u,v ∈ V ,
(2b) the mapB[·] :V → V ∗ is weakly continuous.

Lemma 9. The Navier–Stokes type operator is coercive and pseudomonotone.

Proof. The coerciveness ofN is a consequence of the conditions (1) and (2a) of De
tion 8, namely for everyv ∈ V , we have〈 〉
〈Nv,v〉 = 〈Av,v〉 + B(v, v), v � α‖v‖2

V . (5)
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The boundedness ofN follows from the facts thatA is linear, continuous andB is bilinear
and continuous. Now we prove the condition (ii) of Definition 1. Letun → u weakly inV ,
lim sup〈Nun,un − u〉 � 0 and letv ∈ V . By the conditions (2a) and (2b) of Definition
we have〈

B[un], un − v
〉 − 〈

B[u], u − v
〉 = 〈

B[un], un

〉 − 〈
B[un], v

〉 − 〈
B[u], u〉 + 〈

B[u], v〉
= 〈

B[u], v〉 − 〈
B[un], v

〉 → 0,

which implies

lim
〈
B[un], un − v

〉 = 〈
B[u], u − v

〉
for all v ∈ V. (6)

Hence in particular we have lim〈B[un], un − u〉 = 0. Thus

lim sup〈Aun,un − u〉 = lim sup〈Aun,un − u〉 + lim
〈
B[un], un − u

〉
= lim sup

〈
Aun + B[un], un − u

〉 = lim sup〈Nun,un − u〉 � 0.

From the pseudomonotonicity ofA, we obtain

〈Au,u − v〉 � lim inf〈Aun,un − v〉 for all v ∈ V,

which together with (6) yields

〈Nu,u − v〉 � lim inf〈Nun,un − v〉 for all v ∈ V.

The proof is completed. �
In order to formulate the problem under consideration, we introduce a reflexive B

spaceZ such thatV ⊂ Z ⊂ H � H ∗ ⊂ Z∗ ⊂ V ∗. We assume that the embeddingsV ⊂
Z ⊂ H are dense and compact. The pairing betweenZ andZ∗ is denoted by〈· , ·〉Z∗×Z .

In what follows we also consider an operatorR :Z → 2Z∗
which satisfies the hypothes

H(R): R :Z → 2Z∗
is a multivalued map such that

(i) R has nonempty, convex and weakly compact values;
(ii) R has a graph closed inZ × (w–Z∗) topology;

(iii) ‖Rz‖Z∗ � c(1+ ‖z‖ρ
Z) for all z ∈ Z with c > 0 and 0� ρ � 1,

wherew–Z∗ denotes the spaceZ∗ equipped with the weak topology.

The goal is now to establish certain properties of the operatorF :V → 2V ∗
defined by

Fv = Nv + Rv for v ∈ V.

Proposition 10. LetN be the Navier–Stokes type operator and letR be an operator satis
fyingH(R). Then

(a) F is pseudomonotone;
(b) if 0 � ρ < 1, then F is coercive. If ρ = 1, then F is also coercive provided

2
α − cβ > 0, whereβ > 0 is an embedding constant ofV ⊂ Z.
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Proof. For the proof of (a) we apply Proposition 5. It is clear fromH(R)(i) thatF has
nonempty, convex and closed values. Moreover, fromH(R)(iii) and Lemma 9, it follows
thatF is a bounded map. It remains to show thatF is a generalized pseudomonotone.
this end, letvn → v weakly inV , v∗

n → v∗ weakly inV ∗, v∗
n ∈ Fvn and lim sup〈v∗

n, vn −
v〉 � 0. We will show thatv∗ ∈ Fv and 〈v∗

n, vn〉 → 〈v∗, v〉. Sincev∗
n ∈ Fvn, we have

v∗
n = Nvn + ζn with ζn ∈ Rvn. From the continuity of the embeddingV ⊂ Z, it follows

that {vn} lies in a bounded subset ofZ. Thus the boundedness of the mapR allows to
assume, by passing to a subsequence if necessary, that

ζn → ζ weakly inZ∗ with ζ ∈ Z∗. (7)

SinceV ⊂ Z compactly, we may also suppose that

vn → v in Z. (8)

By H(R)(ii) we deduce thatζ ∈ Rv. Moreover, from the equality〈
v∗
n, vn − v

〉 = 〈Nvn, vn − v〉 + 〈ζn, vn − v〉Z∗×Z

by using (7) and (8), we have

lim sup〈Nvn, vn − v〉 = lim sup
〈
v∗
n, vn − v

〉
� 0.

By virtue of the pseudomonotonicity ofN (cf. Lemma 9), from Remark 2, we obtain

Nvn → Nv weakly inV ∗ (9)

and

lim〈Nvn, vn − v〉 = 0. (10)

Exploiting (7) and (9), and passing to the limit in the equalityv∗
n = Nvn + ζn, we get

v∗ = Nv + ζ which together withζ ∈ Rv implies thatv∗ ∈ Nv + Rv = Fv.
Finally, from (7)–(10), we have

lim
〈
v∗
n, vn

〉 = lim〈Nvn, vn − v〉 + lim〈Nvn, v〉 + lim〈ζn, vn〉Z∗×Z

= 〈Nv,v〉 + 〈ζ, v〉Z∗×Z = 〈v∗, v〉,
which completes the proof of (a).

For the proof of (b), we observe that by (5), we have

〈Fv, v〉 = 〈Nv,v〉 + 〈ζ, v〉Z∗×Z � α‖v‖2
V + 〈ζ, v〉Z∗×Z for all v ∈ V

with ζ ∈ Rv. From the hypothesisH(R)(iii) we deduce∣∣〈ζ, v〉Z∗×Z

∣∣ � ‖ζ‖Z∗‖v‖Z � c
(
1+ ‖v‖ρ

Z

)‖v‖Z

= c‖v‖Z + c‖v‖ρ+1
Z � cβ‖v‖V + cβρ+1‖v‖ρ+1

V ,

whereβ > 0 is such that‖ · ‖Z � β‖ · ‖V . Hence

〈ζ, v〉Z∗×Z � −cβ‖v‖V − cβρ+1‖v‖ρ+1
V .

Therefore for 0� ρ < 1 the mapF is coercive without assuming any additional con
tions. If ρ = 1, thenF is coercive providedα − cβ2 > 0. This finishes the proof of th

proposition. �
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The following follows from the fundamental surjectivity result of nonlinear analysis
Zeidler [24, Section 32.4] or Denkowski et al. [11, Theorem 1.3.70].

Corollary 11. Under the hypotheses of Proposition10, the operatorF :V → 2V ∗
is sur-

jective, i.e., for everyf ∈ V ∗ there isu ∈ V such thatNu + Ru � f .

4. Application to hemivariational inequalities for Navier–Stokes equations

In this section we consider the boundary value problem for the stationary Navier–S
equation with a subdifferential boundary condition. We give a variational formulatio
the problem and applying results of Section 3, we establish the existence of weak so
Finally, we comment on the uniqueness of solutions to this problem.

LetΩ be a bounded simply connected domain inR
d , d = 2,3, with connected boundar

Γ of classC2. We consider the following system of stationary Navier–Stokes equatio

−ν�u + (u · ∇)u + ∇p = f, ∇ · u = 0 in Ω. (11)

The system describes the steady state flow of incompressible viscous fluid occupy
volumeΩ subjected to given volume forcesf . Hereu = {ui(x)}di=1 is the velocity field,
p the pressure,ν > 0 the kinematic viscosity of the fluid (ν = 1/Re, where Re is th
Reynolds number),f = {fi(x)}di=1 the density of external forces. The nonlinear te
(u · ∇)u in (11) (often called the convective term) is a symbolic notation for the ve{∑d

j=1 uj
∂ui

∂xj

}d

i=1. The divergence free condition in (11) is the equation for law of m
conservation and it states that the motion is incompressible. Similarly as in the p
of Chebotarev [6–8], Konovalova [14] and Alekseev and Smishliaev [1], in order to
a variational formulation of (11) and make use of some results from those paper
desirable to use the standard Lamb formulation and rewrite the problem in the follo
way. By using the identities (see Girault and Raviart [12, Chapter I])

(u · ∇)u = rotu × u + 1

2
∇(u · u), −�u = rot rotu − ∇ divu

and the incompressibility condition, we derive from (11) that

−ν rot rotu + rotu × u + ∇h = f in Ω, (12)

divu = 0 in Ω, (13)

where the total head of the fluid, sometimes referred to as “total pressure” or “Ber
pressure,” is given byh = p + 1

2|u|2.
We suppose that onΓ the tangential components of the velocity vector are known

without loss of generality we put them equal to zero (the nonslip condition):

uτ = u − uNn = 0 onΓ, (14)

wheren = {ni}di=1 is the unit outward normal on the boundaryΓ anduN = u ·n = ∑
uini

denotes the normal component of the vectoru. Moreover, we assume the following su
differential boundary condition:( )
h(x) ∈ ∂j x,uN(x) for x ∈ Γ. (15)
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Herej :Γ × R → R is called a superpotential and denotes the function which is loc
Lipschitz in the second variable and∂j is the subdifferential ofj (x, ·) in the sense o
Clarke (see Definition 6). We comment on a fluid flow control example which motiv
the study of the problem (12)–(15). The condition (15) arises in the problem of motio
fluid through a tube or channel: the fluid pumped intoΩ can leave the tube at the bounda
orifices while a device can change the sizes of the latter. In this problem we regula
normal velocity of the fluid on the boundary to reduce the total pressure onΓ . For instance
we consider the boundary condition (15) with

∂j (ξ) =




0 if ξ < 0,

[0, b] if ξ = 0,
c−b
d

ξ + b if 0 < ξ < d,

[a, c] if ξ = d,
a
d
ξ if ξ > d,

where 0� a < b � c andd > 0. The conditionuN > 0 represents the outflow of the flu
through the boundary. IfuN ∈ (0, d), the orifices on the boundary allow the fluid to infi
trate outside the tube; when the velocity increases so does the total pressure, say,
from the valueb to the valuec. If uN reaches the valued , a mechanism opens the orific
wider and allows the fluid to pass throughΓ . Therefore the pressure drops to a valua
and we may assume thath = c1uN + c2 for uN > d with suitable constantsc1 and c2.
Moreover, in (15) we allowj to depend on the variablex ∈ Γ which means that the sub
differential boundary condition can be of different character on different parts ofΓ (see
Example 18).

In order to give the weak formulation of the problem (12)–(15), we introduce the
lowing notation:

W = {
w ∈ C∞(

Ω;R
d
)
: divw = 0 in Ω, wτ = 0 onΓ

}
.

We denote byV andH the closure ofW in the norms ofH 1(Ω;R
d) andL2(Ω;R

d),
respectively. We defineA :V → V ∗ andB[·] :V → V ∗ by

〈Au,v〉 = ν

∫
Ω

rotu · rotv dx,

〈
B(u, v),w

〉 = ∫
Ω

(rotu × v) · w dx, B[v] = B(v, v)

for u,v,w ∈ V . It is known from Bykhovski and Smirnov [4] that in the case of sim
connected domainΩ , the bilinear form

((u, v))V =
∫

rotu · rotv dx
Ω
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uce

that
s
f

show
generates a norm inV , ‖u‖V = ((u,u))
1/2
V , which is equivalent to theH 1(Ω;R

d)-norm. It
is clear that the operatorA is coercive with a constantα > 0. Multiplying the equation o
motion (12) byv ∈ V and applying the Green formula, we obtain〈

Au + B[u], v〉 + ∫
Γ

hvN dσ(x) = 〈F,v〉,

where〈F,v〉 = ∫
Ω

f · v dx. From the relation (15), by using the definition of the Cla
subdifferential, we have∫

Γ

hvN dσ(x) �
∫
Γ

j0(x,uN(x);vN(x)
)
dσ(x),

wherej0(x, ξ ;η) denotes the directional derivative ofj (x, ·) at the pointξ ∈ R in the
direction η ∈ R. The two last relations yield the following weak formulation which
called a hemivariational inequality:{

find u ∈ V such that

〈Au + B[u], v〉 + ∫
Γ

j0(x,uN(x);vN(x)) dσ (x) � 〈F,v〉 for everyv ∈ V.
(16)

We have shown that the hemivariational inequality (16) is derived from (12)–(15)
following remark shows that in some sense the converse statement also holds.

Remark 12. If u ∈ V is a solution to the hemivariational inequality (16) andu is suf-
ficiently smooth, then there exists a distributionh such that the conditions (12)–(1
hold. Indeed, sinceu ∈ V from the definition ofV we have divu = 0 in Ω anduτ = 0
on Γ . Let us now takev = ±w, w ∈ V ∩ C∞

0 (Ω;R
d) in (16). Sincew is arbitrary and

j0(x,uN ;0) = 0, we obtain〈Au + B[u],w〉 = 〈F,w〉. From Proposition 1.1 in Chapter
of Temam [23] it follows thatAu + B[u] + ∇h = F which implies (12). Next letv ∈ V .
Multiplying the last equation byv and integrating by parts overΩ , we get〈

Au + B[u], v〉 + ∫
Γ

hvN dσ(x) = 〈F,v〉.

Comparing this equality with (16) entails
∫
Γ

[j0(x,uN(x);vN(x)) − hvN ]dσ(x) � 0
for every v ∈ V . Arguing as in Proposition 3.3.1 of Panagiotopoulos [20], we ded
j0(x,uN(x);vN(x)) � hvN onΓ . This shows the subdifferential condition (15).

In what follows we will prove the existence of solutions to (16). In order to show
the operatorN :V → V ∗ given byNv = Av + B[v] for v ∈ V , which appears in (16), i
a Navier–Stokes type operator, it is enough to prove thatB satisfies the condition (2) o
Definition 8. To this end we introduce the trilinear formb : [H 1(Ω;R

d)]3 → R defined by

b(u, v,w) = 〈
B(u, v),w

〉
for u,v,w ∈ H 1(Ω;R

d
)
.

Analogously as in Lemmata 1.1, 1.3 and 1.5 in Chapter II of Temam [23], we can
thatb is continuous,b(u, v,w) = −b(u,w,v), b(u, v, v) = 0 for u,v,w ∈ H 1(Ω;R

d) and
that if un → u weakly inV , then
b(un,un, v) → b(u,u, v) for all v ∈ V.
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This means that the bilinear operatorB :V × V → V ∗ satisfies the condition (2) of Defin
ition 8.

Concerning the superpotentialj , we admit the following hypothesis:

H(j): j :Γ × R → R is a function such that

(i) j (· , ξ) is measurable onΓ for eachξ ∈ R andj (· ,0) ∈ L1(Γ );
(ii) j (x, ·) is locally Lipschitz onR for eachx ∈ Γ ;

(iii) |η| � c1(1 + |ξ |ρ) for all η ∈ ∂j (x, ξ), (x, ξ) ∈ Γ × R with c1 > 0 and
0� ρ � 1.

We define now the functionalJ :L2(Γ ;R
d) → R by

J (v) =
∫
Γ

j
(
x, vN(x)

)
dσ(x) for v ∈ L2(Γ ;R

d
)
. (17)

Lemma 13. Assume that the integrandj :Γ ×R → R verifiesH(j). Then the functionalJ
defined by(17)satisfies

H(J ): J :L2(Γ ;R
d) → R is a functional such that

(i) J is well-defined and Lipschitz on bounded subsets ofL2(Γ ;R
d);

(ii) ‖ζ‖L2(Γ ;Rd ) � c̃(1 + ‖v‖ρ

L2(Γ ;Rd )
) for all ζ ∈ ∂J (v), v ∈ L2(Γ ;R

d) with

c̃ > 0;
(iii) for all u, v ∈ L2(Γ ;R

d), we have

J 0(u;v) �
∫
Γ

j0(x,uN(x);vN(x)
)
dσ(x), (18)

where J 0(u;v) denotes the directional derivative ofJ at a point u ∈
L2(Γ ;R

d) in the directionv ∈ L2(Γ ;R
d).

Moreover, if additionally eitherj or −j is regular in the sense of Clarke, thenJ or −J is
regular, respectively and the inequality(18)becomes equality.

Proof. First we study the properties of the integrandj . We definej1 :Γ × R
d → R by

j1(x, ξ) = j (x, ξN) for (x, ξ) ∈ Γ × R
d . We observe thatj1(x, ξ) = j (x,Lξ), whereL ∈

L(Rd,R), Lξ = ξN = ξ · n and thatL∗ ∈ L(R,R
d) is given byL∗r = rn for r ∈ R. From

the hypothesesH(j)(i) and (ii), and the fact thatL is linear continuous operator, we hav{
j1(· , ξ) is measurable for allξ ∈ R

d, j1(· ,0) ∈ L1(Γ ),

j1(x, ·) is locally Lipschitz forx ∈ Γ.

Using these properties, from Proposition 7(ii), we obtain

∂j1(x, ξ) = ∂
(
j (x,Lξ)

) ⊂ L∗∂j (x,Lξ) = ∂j (x, ξN)n, (19)

where all subdifferentials are taken with respect to the second variable. We show t
lowing estimate:( )
|η|Rd � c1 1+ |ξ |ρ

Rd for all η ∈ ∂j1(x, ξ), (x, ξ) ∈ Γ × R
d . (20)
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In fact, from (19) we know that forη ∈ ∂j1(x, ξ) we haveη = an, a ∈ ∂j (x, ξN). Hence
by H(j)(iii) we obtain |η|Rd = |a| � c1(1 + |ξN |ρ) � c1(1 + |ξ |ρ

Rd ) which implies (20).
Next, we observe thatH(J )(i) follows from Theorem 2.7.5 of Clarke [10]. The estimate
H(J )(ii) is a consequence of (20). By the Fatou lemma, we also have

J 0(u;v) �
∫
Γ

j0
1

(
x,u(x);v(x)

)
dσ(x) for u,v ∈ L2(Γ ;R

d
)
. (21)

This inequality together with the following one

j0
1 (x, ξ ;η) � j0(x,Lξ ;Lη) = j0(x, ξN ;ηN) for ξ, η ∈ R

d

(cf. Proposition 7(i)) impliesH(J )(iii). Furthermore, if eitherj or −j is regular, we know
(cf. Clarke [10, Theorem 2.7.2]) that (21) becomes equality. Also by using Proposition
we havej0

1 (x, ξ ;η) = j0(x, ξN ;ηN) for ξ , η ∈ R
d . Hence we deduce

J 0(u;v) =
∫
Γ

j0
1

(
x,u(x);v(x)

)
dσ(x)

=
∫
Γ

j0(x,uN(x);vN(x)
)
dσ(x), u, v ∈ L2(Γ ;R

d
)
.

This completes the proof of the lemma.�
We continue the formulation of the problem in the form of an operator inclusion

need to introduce the operator of a subdifferential type. To this end we define the spZ

to be the closure ofW in the norm ofHδ(Ω;R
d) with δ ∈ (1

2,1). We have

V ⊂ Z ⊂ H � H ∗ ⊂ Z∗ ⊂ V ∗

with all embeddings being dense and compact. Denoting byi :V → Z the embedding
injection and byγ :Z → L2(Γ ;R

d) andγ0 :H 1(Ω;R
d) → H 1/2(Γ ;R

d) ⊂ L2(Γ ;R
d)

the trace operators, for allv ∈ V we getγ0v = γ (iv). For simplicity we omit the notation
of the embeddingi and we writeγ0v = γ v for v ∈ V .

We define the operatorR :Z → 2Z∗
by

Rz = γ ∗(∂J (γ z)
)

for z ∈ Z, (22)

whereγ ∗ :L2(Γ ;R
d) → Z∗ is the adjoint operator toγ .

The reason we have introduced the operatorR of the form (22) is explained in th
remark below.

We consider the following inclusion:

find u ∈ V such that Au + B[u] + γ ∗(∂J (γ u)
) � F. (23)

Definition 14. An elementu ∈ V is a solution to (23) if and only if there existsη ∈ Z∗
such thatAu + B[u] + η = F andη ∈ γ ∗(∂J (γ u)).

Remark 15. If the functionalJ is of the form (17) andH(j) holds, then every solutio

to (23) is also a solution to the inequality (16). Moreover, if eitherj or −j is regular, then
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the converse is also true. Indeed, ifu ∈ V solves (23), then for everyv ∈ V , we have〈Au+
B[u], v〉 + 〈η, v〉Z∗×Z = 〈F,v〉 with η = γ ∗ζ andζ ∈ ∂J (γ u). From the definition of the
subdifferential we obtain〈ζ, z〉L2(Γ ;Rd ) � J 0(γ u; z) for all z ∈ L2(Γ ;R

d) and therefore
by usingH(J )(iii) we get

〈η, v〉Z∗×Z = 〈γ ∗ζ, v〉Z∗×Z = 〈ζ, γ v〉L2(Γ ;Rd ) � J 0(γ u;γ v)

�
∫
Γ

j0(x,uN(x);vN(x)
)
dσ(x)

for everyv ∈ V . Henceu is also a solution to (16).
Now we will show that under regularity ofj or −j every solution to (16) solve

also (23). From Lemma 13 we have

〈
F − Au − B[u], v〉

�
∫
Γ

j0(x,uN(x);vN(x)
)
dσ(x) = J 0(γ u;γ v).

By the chain rule (see Proposition 7(ii)), we get∂(J ◦ γ )(v) = γ ∗ ◦ ∂J (γ v) so

F − Au − B[u] ∈ ∂(J ◦ γ )(u) = γ ∗(∂J (γ u)
)
,

which implies (23).

In view of Remark 15, we will establish the existence of solutions to (23).

Lemma 16. If the functionalJ verifiesH(J ), then the operatorR given by(22) satisfies
H(R).

Proof. The values ofR are nonempty and convex which immediately follows from
analogous properties of the Clarke subdifferential.

To show that the values ofR are weakly compact, letz ∈ Z and{z∗
n} ⊂ Rz. Thusz∗

n =
γ ∗wn with wn ∈ ∂J (γ z). Since∂J (γ z) is a weakly compact subset ofL2(Γ ;R

d), we can
find a subsequence{wnk

} of {wn} such thatwnk
→ w0 weakly in L2(Γ ;R

d) with w0 ∈
∂J (γ z). From the fact thatγ ∗ is linear continuous, we havez∗

nk
= γ ∗wnk

→ γ ∗w0 =: z∗
weakly inZ∗. Soz∗ = γ ∗w0 andw0 ∈ ∂J (γ z) imply z∗ ∈ Rz, which shows that the value
of R are weakly compact inZ∗.

Next, we prove thatR satisfiesH(R)(ii). Let {zn} ⊂ Z, {z∗
n} ⊂ Z∗ be such thatz∗

n ∈ Rzn,
zn → z in Z and z∗

n → z∗ weakly in Z∗. We will show thatz∗ ∈ Rz. By assumption

we havez∗
n = γ ∗wn andwn ∈ ∂J (γ zn). Using the fact that∂J :L2(Γ ;R

d) → 2L2(Γ ;Rd )

is a bounded map (cf.H(J )(ii)), we may assume thatwn → w0 weakly in L2(Γ ;R
d).

Hencez∗
n = γ ∗wn → γ ∗w0 = z∗ weakly in Z∗. From the closedness of the graph

∂J in L2(Γ ;R
d) × (w–L2(Γ ;R

d)) topology (cf. [10]), passing to the limit in the re
lation wn ∈ ∂J (γ zn), we obtainw0 ∈ ∂J (γ z). This together withz∗ = γ ∗w0 implies
z∗ ∈ γ ∗(∂J (γ z)) = Rz and proves the closedness of the graph ofR in Z × (w–Z∗) topol-
ogy.
Finally, by usingH(J )(ii), for z ∈ Z, we have
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‖Rz‖Z∗ � ‖γ ∗‖∥∥∂J (γ z)
∥∥

L2(Γ ;Rd )
� ‖γ ∗‖c̃(1+ ‖γ z‖ρ

L2(Γ ;Rd )

)
� c̃‖γ ∗‖(1+ ‖γ ‖ρ‖z‖ρ

Z

)
� ĉ

(
1+ ‖z‖ρ

Z

)
(24)

with a positive constant̂c > 0, where‖γ ‖ = ‖γ ∗‖ = ‖γ ‖L(Z;L2(Γ ;Rd )). This shows tha
H(R)(iii) holds and completes the proof of the lemma.�

Now we are in a position to deduce from Remark 15, Lemma 16 and Corollary 1
main result of this section.

Theorem 17. Let hypothesisH(j) hold andf ∈ V ∗. If 0 � ρ < 1, then the hemivariatio
nal inequality(16)corresponding to the Navier–Stokes system(12)–(15)admits a solution
The same conclusion holds forρ = 1, providedα − ĉβ2 > 0, whereα is a coercivity con-
stant ofA, ĉ is a constant in(24)andβ is the embedding constant ofV ⊂ Z.

Example 18. Let us assume that the boundaryΓ of Ω consists of two disjoint parts suc
thatΓ = Γ1 ∪ Γ2. Given real numbersλ1 < λ2 � λ3 < λ4 andh0 < 0 < h1, we consider
the functionj :Γ × R → R such that

j (x,λ) =




h1
2(λ2−λ1)

(λ − λ1)
2 if x ∈ Γ1, λ < λ2,

h1
2 (λ2 − λ1) if x ∈ Γ1, λ � λ2,

0 if x ∈ Γ2, λ � λ3,
h0

2(λ3−λ4)
(λ − λ3)(λ + λ3 − 2λ4) if x ∈ Γ2, λ > λ3.

(25)

Then forx ∈ Γ1 we have

∂j (x,λ) =



h1
λ2−λ1

(λ − λ1) if λ < λ2,

[0, h1] if λ = λ2,

0 if λ > λ2,

while for x ∈ Γ2 we have

∂j (x,λ) =



0 if λ < λ3,

[h0,0] if λ = λ3,
h0

λ3−λ4
(λ − λ4) if λ > λ3.

It is clear that for(x,λ) ∈ Γ × R, we have|η| � c1(1 + |λ|) for all η ∈ ∂j (x,λ) with
c1 = max

{−h0, h1,
h1

λ2−λ1
,

h0
λ3−λ4

}
. Sincen denotes the unit outward normal onΓ , the

conditionuN � 0 (uN � 0, respectively) represents the outflow (inflow, respectively
the fluid through the boundary. The boundary conditionuN = 0 means that there is no flo
across the boundary. In particular, ifλ2 = λ3 = 0, the function (25) describes the followin
boundary conditions for velocity and the total head:

onΓ1:

 if uN < 0, thenh = h1λ
−1
1 (λ1 − uN),

if uN = 0, then 0� h � h1,

if uN > 0, thenh = 0,
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if uN < 0, thenh = 0,

if uN = 0, thenh0 � h � 0,

if uN > 0, thenh = h0λ
−1
4 (λ4 − uN).

We now address the question of uniqueness of solutions to the inclusion (23). T
end we need an additional hypothesis on the functionalJ .

H(J )1: J :L2(Γ ;R
d) → R satisfiesH(J ) and the following relaxed monotonicity con

dition:

〈z1 − z2,w1 − w2〉L2(Γ ;Rd ) � −m‖w1 − w2‖2
L2(Γ ;Rd )

(26)

for all zi ∈ ∂J (wi), wi ∈ L2(Γ ;R
d), i = 1,2, with m > 0.

Proposition 19. Let the operatorsA andB satisfy conditions(1) and (2) of Definition8,
let H(J ) hold,f ∈ V ∗ and letu ∈ V be a solution to(23). If 0� ρ < 1, then there exists
constantC > 0 such that

‖u‖V � C. (27)

If ρ = 1 andα − c̃β2‖γ ‖2 > 0, then(27) holds withC := ‖f ‖V ∗+c̃β‖γ ‖
α−c̃β2‖γ ‖2 . If 0 � ρ � 1, the

condition(26)holds andα −mβ2 ‖γ ‖2 − cbC > 0, wherecb > 0 is the continuity constan
of the formb associated to the operatorB, then the solution to problem(23) is unique.

Proof. We start with the proof of a priori estimate (27). Sinceu ∈ V solves (23), we have

〈Au,u〉 + 〈
B[u], u〉 + 〈η,u〉Z∗×Z = 〈F,u〉

with η = γ ∗z andz ∈ ∂J (γ u). By H(J )(ii), we get‖η‖Z∗ � ‖γ ∗‖‖z‖L2(Γ ;Rd ) � c̃‖γ ‖(1+
‖γ ‖ρ‖u‖ρ

Z), which implies∣∣〈η,u〉Z∗×Z

∣∣ � c̃‖γ ‖β(
1+ ‖γ ‖ρβρ‖u‖ρ

V

)‖u‖V ,

whereβ > 0 is such that‖ · ‖Z � β‖ · ‖V . Hence and from the properties (1), (2) of Defi
tion 8, we deduce

α‖u‖2
V − c̃βρ+1‖γ ‖ρ+1‖u‖ρ+1

V − c̃β‖γ ‖‖u‖V � ‖f ‖V ∗‖u‖V .

Then

α‖u‖V � c̃
(
β‖γ ‖)ρ+1‖u‖ρ

V + c̃β‖γ ‖ + ‖f ‖V ∗ .

Forρ < 1 the bound (27) follows. Ifρ = 1, then(α − c̃β2‖γ ‖2)‖u‖V � c̃β‖γ ‖ + ‖f ‖V ∗ ,
so (27) also holds with the suitable positive constantC.

Next we assumeρ ∈ [0,1] andα − mβ2‖γ ‖2 − cbC > 0, and letu1, u2 ∈ V be two
solutions of (23). We have

A(u1 − u2) + B[u1] − B[u2] + η1 − η2 = 0
with ηk = γ ∗zk andzk ∈ ∂J (γ uk) for k = 1,2. By hypothesisH(J )1, we have
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26).
〈η1 − η2, u1 − u2〉Z∗×Z = 〈z1 − z2, γ u1 − γ u2〉L2(Γ ;Rd )

� −m‖γ (u1 − u2)‖2
L2(Γ ;Rd )

� −m‖γ ‖2‖u1 − u2‖2
Z � −mβ2‖γ ‖2‖u1 − u2‖2

V .

Hence and from the inequality〈B[u1] − B[u2], u1 − u2〉 = b(u1 − u2, u2, u1 − u2) �
cb‖u2‖V ‖u1 − u2‖2

V , we obtain

α‖u1 − u2‖2
V − m‖γ ‖2β2‖u1 − u2‖2

V � cb‖u2‖V ‖u1 − u2‖2
V .

So (α − mβ2‖γ ‖2 − cbC)‖u1 − u2‖2
V � 0 which impliesu1 = u2 and completes th

proof. �
We remark that whenJ ≡ 0 (som = 0 and c̃ = 0), the uniqueness of solutions w

obtained by Temam [23] in Theorem 1.3, p. 167. In this case the condition of Proposit
under which we proved uniqueness reduces toα2 − cb‖f ‖V ∗ > 0.

We close this section with an example of the functional which satisfies hyp
sisH(J )1.

Example 20. Let us consider the functionalJ :L2(Γ ;R
d) → R defined by

J (v) =
∫
Γ

( vN (x)∫
0

ϕ(s) ds

)
dσ(x) for all v ∈ L2(Γ ;R

d
)

(for simplicity we drop thex-dependence in the integrand ofJ ), where the functionϕ
satisfies the following hypothesis:

H(ϕ): ϕ ∈ L∞
loc(R) verifies the growth condition|ϕ(s)| � c0(1+|s|) for s ∈ R with c0 > 0

and

ess inf
ξ1 �=ξ2

ϕ(ξ1) − ϕ(ξ2)

ξ1 − ξ2
� −m with somem > 0. (28)

We associate withϕ a multivalued map̂ϕ :R → 2R defined byϕ̂(ξ) = [ϕ(ξ), ϕ(ξ)], where

ϕ(ξ) = lim
δ→0+ ess inf

|t−ξ |�δ
ϕ(t), ϕ(ξ) = lim

δ→0+ esssup
|t−ξ |�δ

ϕ(t)

and[· , ·] denotes the interval. Roughly speaking,ϕ̂ results fromϕ by “filling in the gaps”
procedure. As a consequence of Theorem 1.2.20 of Chang [5],J is Lipschitz continuous
on bounded sets inL2(Γ ;R

d) and there is a locally Lipschitz functionj :R → R, deter-
mined up to an additive constant by the relationj (s) = ∫ s

0 ϕ(τ) dτ and∂j (s) = ϕ̂(s) for
s ∈ R. Thus we haveJ (v) = ∫

Γ
j (vN(x)) dσ (x) = ∫

Γ
j1(v(x)) dσ (x) for v ∈ L2(Γ ;R

d),
wherej1 :Rd → R is given byj1(ξ) = j (ξN) for ξ ∈ R

d . Sincej1 is locally Lipschitz and
∂j1(ξ) = ∂(j (ξN )) ⊂ ∂j (ξN)n = ϕ̂(ξN)n, we have forη ∈ ∂j1(ξ)

|η|Rd � c0
(
1+ |ξN |) � c0

(
1+ |ξ |Rd

)
for all ξ ∈ R

d

(cf. the proof of Lemma 13). We will show the relaxed monotonicity condition (

Let w1, w2, z1, z2 ∈ L2(Γ ;R

d), z1 ∈ ∂J (w1) and z2 ∈ ∂J (w2). By Theorem 2.7.5
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of Clarke [10] we have∂J (v) ⊂ ∫
Γ

∂j1(v(x))dσ (x) for all v ∈ L2(Γ ;R
d). Therefore

zk(x) ∈ ∂j1(wk(x)) ⊂ ϕ̂(wkN)n for a.e.x ∈ Γ andk = 1,2. Hence

zk(x) = ak(x)n, ak(x) ∈ ϕ̂(wkN) a.e. onΓ for k = 1,2. (29)

On the other hand, from (28), we get

ess inf
ξ1>ξ2

ϕ(ξ1) − ϕ(ξ2)

ξ1 − ξ2
� −m. (30)

Let Γ 1 = {x ∈ Γ : w1N(x) > w2N(x)} andΓ 2 = {x ∈ Γ : w2N(x) > w1N(x)}. Using (29)
and (30), we obtain

〈z1 − z2,w1 − w2〉L2(Γ ;Rd )

=
∫
Γ

(
a1(x)n − a2(x)n

) · (w1(x) − w2(x)
)
dσ(x)

=
∫
Γ

(
a1(x) − a2(x)

)(
w1N(x) − w2N(x)

)
dσ(x)

=
∫
Γ 1

(
a1(x) − a2(x)

)(
w1N(x) − w2N(x)

)
dσ(x)

+
∫
Γ 2

(
a1(x) − a2(x)

)(
w1N(x) − w2N(x)

)
dσ(x)

�
∫
Γ 1

(
ϕ
(
w1N(x)

) − ϕ
(
w2N(x)

))(
w1N(x) − w2N(x)

)
dσ(x)

+
∫
Γ 2

(
ϕ
(
w2N(x)

) − ϕ
(
w1N(x)

))(
w2N(x) − w1N(x)

)
dσ(x)

� −m

∫
Γ 1

∣∣w1N(x) − w2N(x)
∣∣2 dσ(x) − m

∫
Γ 2

∣∣w2N(x) − w1N(x)
∣∣2 dσ(x)

= −m

∫
Γ

∣∣w1N(x) − w2N(x)
∣∣2 dσ(x) � −m

∫
Γ

∥∥w1(x) − w2(x)
∥∥2

dσ(x)

= −m‖w1 − w2‖2
L2(Γ ;Rd )

,

which proves the relaxed monotonicity condition (26).

We remark that the growth condition (28) appearing inH(ϕ) was earlier considered b

Miettinen [16], cf. also Migórski [17].
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5. Dependence result

In this section we study the dependence of solutions of hemivariational inequalit
with respect to the superpotentialJ given by (17). We consider a sequence of fu
tions jk :Γ × R → R for k ∈ N ∪ {∞} and defineJ k :L2(Γ ;R

d) → R by J k(v) =∫
Γ

jk(x, vN(x)) dσ (x) for v ∈ L2(Γ ;R
d). We admit the following hypothesis:

H(j)1: jk :Γ × R → R, k ∈ N ∪ {∞}, are such that

(i) jk(· , ξ) are measurable onΓ for all ξ ∈ R andjk(· ,0) ∈ L1(Γ );
(ii) jk(x, ·) are locally Lipschitz onR for all x ∈ Γ ;

(iii) |ηk| � c1(1 + |ξ |ρ) for all ηk ∈ ∂jk(x, ξ), (x, ξ) ∈ Γ × R with c1 > 0 and
0� ρ � 1 independent ofk;

(iv) j∞(x, ·) is regular in the sense of Clarke;
(v) lim supk→∞ Gr∂jk(x, ·) ⊂ Gr∂j∞(x, ·) for all x ∈ Γ , where the upper limi

is taken in the sense of Kuratowski (cf. [2,11]).

The main result of this section is the following.

Theorem 21. Assume thatH(j)1 holds andf ∈ V ∗. Let {uk}k∈N denote a sequence
solutions of the problem(23), whenJ is replaced byJ k . Then there exists a subsequen
of {uk} (denoted by the same symbol) such thatuk → u∞ weakly inV , whereu∞ ∈ V is a
solution to(23)corresponding toJ∞.

This result is important in fluid mechanics applications, since it shows what kin
tolerances is admissible in the mathematical model. It demonstrates that perturbat
the superpotentialj of typeH(j)1 (and therefore, of the boundary conditions) cause s
perturbations of the solutions.

Proof. The existence of solutions{uk}, for every fixedk ∈ N, follows from Theorem 17
By Proposition 19 andH(j)1 (where the bounds hold uniformly ink), we know that{uk}
remains in a bounded subset ofV . Thus, for a subsequence, we have

uk → u∞ weakly inV with u∞ ∈ V. (31)

By the compactness of the trace ofV into L2(Γ ;R
d), it follows that uk → u∞ in

L2(Γ ;R
d). This impliesuk

N = uk ·n → u∞ ·n = u∞
N in L2(Γ ) and for a next subsequen

uk
N(x) → u∞

N (x) for a.e.x ∈ Γ. (32)

Sinceuk is a solution to (23), we know thatAuk +B[uk]+ ηk = F , whereηk = γ ∗wk and
wk ∈ ∂J k(γ uk). We conclude byH(j)1 and Lemma 13 that{wk} lies in a bounded subse
of L2(Γ ;R

d). So, up to a subsequence, we have

wk → w∞ weakly inL2(Γ ;R
d
)

with w∞ ∈ L2(Γ ;R
d
)
. (33)

Consequently
ηk = γ ∗wk → γ ∗w∞ =: η∞ weakly inZ∗. (34)
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BecauseA(·) + B[·] :V → V ∗ is a Navier–Stokes type operator, from (31), we
Auk +B[uk] → Au∞ +B[u∞] weakly inV ∗. Hence and from (34) it follows thatAu∞ +
B[u∞] + η∞ = F . To conclude the proof, it remains to show thatw∞ ∈ ∂J∞(γ u∞).

Since the integrandsjk for k ∈ N satisfyH(j)1(i)–(iii), we apply Theorem 2.7.5 o
Clarke [10] to the functionalsJ k and we obtain

∂J k(v) ⊂
∫
Γ

∂jk
1

(
x, v(x)

)
dσ(x) for all v ∈ L2(Γ ;R

d
)

andk ∈ N,

where jk
1 (x, ξ) = jk(x, ξN) for (x, ξ) ∈ Γ × R

d . Proposition 7 gives∂jk
1 (x, ξ) ⊂

∂jk(x, ξN)n for all k ∈ N (compare also (19)). Thereforewk ∈ ∫
Γ

∂jk(x,uk
N(x))ndσ(x).

This means (see [10, Section 2.7]) that there exists a sequence{zk} ⊂ L2(Γ ;R
d) satisfying

zk(x) ∈ ∂jk
(
x,uk

N(x)
)
n a.e.x ∈ Γ (35)

and such that

〈
wk,ψ

〉
L2(Γ ;Rd )

=
∫
Γ

zk(x) · ψ(x)dσ(x) for all ψ ∈ L2(Γ ;R
d
)
. (36)

From (35), it is clear that

zk(x) = ak(x)n with ak ∈ L2(Γ )

and

ak(x) ∈ ∂jk
(
x,uk

N(x)
)

a.e.x ∈ Γ. (37)

It follows from hypothesisH(j)1(iii) that {ak} remains in a bounded subset inL2(Γ ).
Thus

ak → a∞ weakly inL2(Γ ) with a∞ ∈ L2(Γ ),

zk → z∞ weakly inL2(Γ ;R
d) with z∞ ∈ L2(Γ ;R

d
)
. (38)

Hence we havez∞(x) = a∞(x)n. Applying Theorem 7.2.1 of Aubin and Frankowska [
from (32), (37) and (38), we deduce

a∞(x) ∈ conv
(

lim sup
z→u∞

N (x), k→∞
∂jk(x, z)

)
⊂ ∂j∞(

x,u∞
N (x)

)
for a.e.x ∈ Γ.

The latter follows fromH(j)1(v) since∂j∞(x, ·) has closed and convex values. Passin
the limit in (36), by (38) and (33), we obtain

〈
w∞,ψ

〉
L2(Γ ;Rd )

=
∫
Γ

z∞(x) · ψ(x)dσ(x) for all ψ ∈ L2(Γ ;R
d
)
.

Hence and fromz∞(x) = a∞(x)n ∈ ∂j∞(x,u∞
N (x))n, we get
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w∞ ∈
∫
Γ

∂j∞(
x,u∞

N (x)
)
ndσ(x).

Exploiting the regularity ofj∞(x, ·), by Proposition 7(ii) it follows that∂j∞
1 (x,u∞(x)) =

∂j∞(x,u∞
N (x))n, wherej∞

1 (x, ξ) = j∞(x, ξN) for (x, ξ) ∈ Γ × R
d . This together with

[10, Theorem 2.7.5] shows that

w∞ ∈
∫
Γ

∂j∞
1

(
x,u∞(x)

)
ndσ(x) = ∂J∞(

γ u∞)
,

which concludes the proof of the theorem.�
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