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In their study of the representation theory of finite-dimensional tensor 
algebras Dlab and Ringet [Ill described certain modules which they called 
preprojective and preinjective modules. Platzeck in her work on the representa- 
tion theory of artin algebras stably equivalent to hereditary artin algebras [14], 
which includes among other things the tensor, hereditary, and square radical 
zero artin algebras, found and studied modules which are clearly analogs of the 
preprojective and preinjective modules introduced by Diab and Ring& Our 
purpose in this paper is to develop a general theory of preprojective and pre- 
inject& modules over arbitrary artin algebras. As would be expected, the pre- 
projective and preinjective modules described by the general theory coincide 
with the modules considered earlier by Dlah and Ringel and Platzeck in their 
respective situations. 

In view of these remarks it is perhaps surprising that the original impetus 
for our work did not come from the theory of hereditary artin algebras or those 
stably equivalent to hereditary artin algebras. Rather it came from an effort to 
explain a much older result of Gabriel and Roiter [12, 151 concerning artin 
algebras of finite representation type in terms of the technics and ideas developed 
by Auslander and Reiten in connection with almost split sequcnccs and irre- 
ducible morphisms [6, 71. Our generaiization of the Gabriel-Roiter result is as 
follows. 

Let n be an artin algebra (for instance, a finite-dimensional algebra over a 
field) and ind n the full subcategory of the category of finitely generated fl- 
modules consisting of the indecomposable A-modules. Then there is a unique 
collection of full subcategories {P6}deNVcr, of ind R where N is the non-negative 
integers having the following properties: 

(a) If  A E P, and 23 FZ A, then B E Pi for all i. 

(b) P, n P, = o for i # j and UitNvF/. P, = ind II. 
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(c) Pi has only a finite number of nonisomorphic objects for each i in N. 

(d) For each i in N, an indecomposable module A is in Pi if and only if 
every surjective morphism f : B + A is a splittable surjection whenever every 
indecomposable summand of B is in (Jk>i P, . 

This uniquely determined collection {Pi}iGNyu of subcategories of ind /I is 
called the preprojective partition of ind /I. In this terminology the Gabriel- 
Roiter theorem says that if /I is of finite representation type, i.e., ind /I has 
only a finite number of nonisomorphic modules, then ind (1 has a preprojective 
partition. 

It is in terms of preprojective partitions that preprojective modules are 
defined; namely, a finitely generated cl-module M is preprojective if each in- 
decomposable summand of M is in Pi for some i < co. While preprojective 
modules are defined in terms of the preprojective partition, they can also be 
given descriptions which do not depend on the preprojective partition. For 
example, an indecomposable module M is preprojective if and only if there is a 
maximal submodule M’ of M such that there are only a finite number of non- 
isomorphic indecomposable modules B, ,..., B, having a morphism f : Bi + M 
with Imf not contained in M’. The definition and existence of preinjective 
partitions and preinjective modules is given by duality. 

The proofs of the main existence theorem for preprojective and preinjective 
partitions are based on the following result concerning full subcategories C 
of ind LI. Suppose C has the property that there are a finite number of inde- 
composable modules B, ,..., B, such that if C is in ind A and not isomorphic 
to any Bi , then C is in C. Then given an X in ind /l we have: 

(a) There is a morphism f: C -+ X where every indecomposable sum- 
mand of C is in C such that for each morphism g: L - X with L in C there is an 
h: L - C satisfying g = f/z. 

(b) There is a morphism f: X + C’ where every indecomposable sum- 
mand of C’ is in C such that for each morphism g: X + L with L in C, there 
is an h: C’ + L satisfying hf = g. 

For technical as well as conceptual reasons, the initial discussion in this 
paper of preprojective and preinjective partitions as well as preprojective and 
preinjective modules is concerned with full subcategories of ind (1 rather than 
ind fl itself. While this necessitates slightly more abstract and longer proofs, 
we feel this approach is justified on two counts. 

First, some of the seemingly abstract notions have intrinsic value, especially 
the notion of mod /I being contravariantly or covariantly finite over a full 
subcategory C. As can be seen from the discussion here, the question of whether 
or not a subcategory C has left or right almost split morphisms is intimately 
connected with mod fl being contravariantly or covariantly finite over C. In 
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another paper [8] we will show how these notions are connected with C having 
almost split sequences. 

Second, the greater generality shows that many subcategories of ind rl and 
not just ind rl itself have preprojective and/or preinjective partitions: hence the 
greater applicability of the theory. This is particularly important in view of the 
work of Bautista and Martinez [9] showing that various classification problems, 
for instance, for representations of partially ordered sets, can be viewed as 
classification problems for specific subcategories in ind /I for suitably chosen 

artin algebras fl. 
Roughly speaking the paper is divided into three parts. The first four sections 

deal with basic concepts and existence theorems. In Sections 5 through 7, the 
preprojective and preinjective partitions of subcategories of ind /l are studied. 
The rest of the paper is devoted to applying these results to ind fl as well as 
giving more detailed information concerning the structure of preprojective and 
preinjective modules. 

A preliminary announcement of this work was given at the Antwerp Ring 
Theory Conference in the summer of 1978 [3]. 

After suitable reformulation, many of the notions and results of this paper are 
also applicable to lattices over orders over complete discrete valuation rings. In 
particular one obtains preprojective and preinjective partitions for lattices as 
well as preprojective and preinjective lattices. These matters will be discussed 
in another publication. 

1. MINIMAL MORPHISMS 

Throughout this section we assume that (1 is a left artin ring and all 
modules and morphisms are in mod /1, the category of finitely generated left/l- 
modules. 

Suppose f: B - C and g: X - C are morphisms. We say that a morphism 
h: X + B is a lifting of g to f  if fh = g. The morphism g: X -+ C is said to be 
liftable to f  if there is a lifting h: X -+ B of g to f.  Finally, we say that two 
morphisms fi: B, --j C and fi: B, -+ C are lifting equivalent if a morphism 
g: X -+ C can be lifted to& if and only if it can be lifted to fi . 

Clearly for a fixed C in mod fl, the relation on the collection of all morphisms 
X - C given by fi: B, - C is related to fi: B, - C if fi and fi are lifting 
equivalent is an equivalence relation. Our purpose in this section is to describe 
how the morphisms in one equivalence class, called a lifting equivalence class, 
are related. Even though this material has been discussed previously (see [2, 
pp. 28-311) we give here a self-contained account for the sake of completeness 
and ease of reference. We assume through out this discussion that C is a fixed 
module in mod rl. 

We begin with the following easily verified observations. 

48 x/66,1-5 
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LEMMA 1.1. Let fl: B, -+ C andf,: B, -+ C be morph&s in mod A: 

(a) fi can be lifted to f2 if and only if each g: X -+ C which can be lifted 
to fi can also be lifted to fi . 

(b) fi and fi are lifting equivalent if and only if fi can be lifted to f2 and fi 
can be lifted to fi . 

(c) Suppose fi and fi are lifting equivalent and the diagram 

B, -G-N C 

1 
I 
I 

B --f-+ C 

1 
I/ 
;I it fa B,--+C 

commutes. Then f ,  fi , and fi are lifting equivalent. 

Proof. Left as an exercise to the reader. 
Before giving the main result of this discussion, it is convenient to give the 

following definition. 
A morphism B +f C is said to be right minimal if every lifting off to f  is an 

isomorphism, i.e., h: B + B is an isomorphism if fh = f. 

PROPOSITION 1.2. Let d be a lifting equivalence class in the class of all morphism-s 
X+Cinmod& 

(a) I f  f: B + C in 6’ has the property that l(B) < l(X) (where l(Y) means 
the length of Y) for all X such that there is g: X ---f C in E, then f  : B -+ C is right 
minimal. Thus there is an f :  B -+ C in d which is right minimal. 

(b) If fi: B, - C and fi: B, - C are two right minimal morphisms in 8, 
then every lifting of fi to fi is an isomorphism. Hence, there is an isomorphism h: 
B, -+ B, such that fi = f,h. 

(c) Let f :  B -+ C be a morphism in 8. I f  B = B, u B, (direct sum) such 
that f  (B,) = 0, then f  ( B, : B, --f C in 8. 

(d) Let f :  B - C be in 8. Then there is a decomposition B = B, u B, 
such that f  (B,) = 0 and f  ) B,: B1 - C is a right minimal morphism in 8. 

Proof (a) Let h: B + B be such thatfh = f .  Then we have the commutative 
diagram 
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By Lemma 1.1(c), we know that f 1 h(B): h(B) + C is in B. Since Z(B) < Z(X) 
for all g: X + C in 8, we have that Z(h(B)) < Z(B) < Z(h(B)). Hence h(B) = B 
and so h: B ---f B is surjective and thus an isomorphism since B has finite length. 
The rest of (a) is obvious. 

(b) Supposef,: B, -+ C and fa: B, + C are two right minimal morphisms 
in 6. Since they are both in d we know by Lemma 1.1(b) that there are morphisms 
Zz,: B, --+ B, and ha: B, -+ B, such that fihl = fr and fi = frh, . Hence fih,h, = fi 
and so Z&h,: B, - B, is an isomorphism since fr is right minimal. Also fi = 
fzZz,h, and so hrh,: B, --f B, is an isomorphism sincef, is right minimal. Hence 
h,: B, ---f B, is an isomorphism such that fiZzI = fr . 

(c) Suppose f : B ---f C is in G and B = B, IJ B, a decomposition such 
thatf(B,) = 0. Then we have the commutative diagram 

i P I/ 
II 

B,fRf C 

where p: B, JJ B, -+ B, is the projection morphism and i: B, ---f B, LJ B, 
is the injection morphism. Therefore by Lemma 1.1(c) we have that f) B,: 
B, ---f C isinb. 

(d) Let f: B --P C be in 6. Then by part (a) we know there is a right 
minimal g: B' --f C in b. Thus there is a commutative diagram 

B'8-t C 
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Sinceg: B’ + C is right minimal, we know that h,h,: B’ - B’ is an isomorphism. 
Therefore B = Ker h, IJ Im h, and it is easy to see that f(Ker h,) = 0 and 
f 1 Im 12, is a right minimal morphism in d since h,: B’ + B induces an isomor- 
phism j: B’ + Im h, with the property g = (f 1 Im h,)j. Then B = B, u BL , 
where B, = Im h, and B, = Ker h, is our desired decomposition of B. 

In order to simplify our terminology we give the following definition: 
Let C be in mod A. Two morphisms fi: Xi + C and fi: X, - C are said 

to be isomorphic if there is an isomorphism h: X,. + X, which is a lifting of 
fr to fa . Obviously if a lifting h: Xi -+ X, of fr to fa is an isomorphism, then 
h-l: X, --f X1 is a lifting offa tofr . 

Thus, in this terminology, Proposition 1.2(b) has the following form. Let 8 
be a lifting equivalence class in the class of all morphisms X--f C in mod A. 
Then any two right minimal morphisms in d are isomorphic. 

In the rest of this paper, expecially Sections 2 and 3, we will often be interested 
in finding a solution to the following type of problem. Let C be in mod A and Y 
a family of morphisms Y -+ C. Is there a morphism f: B -+ C in 9’ with the 
property that each morphism g: X + C in 9’ is liftable to f ? While our dis- 
cussion so far gives no information concerning the existence of solutions to 
this problem, it does give considerable information concerning the structure of 
the solutions when they do exist, at least in the case Y satisfies some mild 
additional conditions. 

PROPOSITION 1.3. Let C be in mod A and Y a family of morphisms X + C 
satisfying the condition that if f : X+ C is in 9’ and g: Y + X is a splittable 
injection (i.e., there is a t: X + Y such that tg = idr), then the composition fg: 
Y -+ C is in Y. Suppose there is an f : B -+ C in Y such that every g in 9 is 
liftable to f. Then 

(a) There is a right minimal f ‘: B’ -+ C in 9 such that every g in Y can be 
lifted to f. 

(b) Any two right minimal morph&as f ’ : B’ --f C in 9 such that every g in Y 
can be lifted to f ’ are isomorphic. 

(c) Suppose f : B + C in Y has the property that every g in 9 can be 
lifted to f. Then there is a decomposition B = B, n B, such that (i) f / B,: B, * C 
is right minimal with the property every g in 9’ can be lifted to f 1 B, and (ii) 

f W = 0. 

Proof. (a) and (c). Let f: B -+ C in Y be such that every g in 9 can be 
lifted to f. We know by Proposition 1.2(c) that there is a decomposition B = 
B, u B, with f 1 B,: B, -+ C right minimal and f (B,) = 0. Since the inclusion 
ii: B, -+ B is a splittable injection, f 1 B, = fil is in Y. Because f(B,) = 0, we 
have that the projection pi: B + B, has the property f = (f ( B,) p, . Thus 
every g in 9’ can be lifted to f 1 B, . This proves (a) and (c). 
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(b) Supposef,: B, + C andf,: B, -+ C are two right minimal morphisms 

in Y such that every g in Y can be lifted to fi and f. . Then there are hi: 

B, -+ B, and h,: B, ---f B, such that fi = fihl and fi = fihz . From this it 
follows that h, and h, are isomorphisms since fi and fi are right minimal. 
This completes the proof of (b) and the entire proposition. 

In order to fix definitions and for ease of reference, we now state the duals of 

the above concepts and results. No proofs are given since they follow easily from 
the above using dual arguments. 

Suppose f: B ---f C and g: B + Y are morphisms. We say that a morphism 
h: C -+ Y is an extension of g to f if hf = g. The morphism g: B - I’ is said 

to be extendable to f: B ---f C if there is an extension h: C -+ Y from f to g. 
Finally, we say that two morphisms fi: B, ---f C, and fi: B -+ C, are extension 
equivalent if a morphism B -+ Y can be extended to fi if and only if it can be 

extended to f2 . 
Clearly for a fixed B in mod /I, the relation on the collection of morphisms 

B + Y given by fi: B + C, is related to fi: B -+ C, if fi and f2 are extension 

equivalent is an equivalence relation. The equivalence classes under this relation 
are called the extension classes. 

While we leave the dual of Lemma I. 1 to the reader to state and prove, we will 
state the dual of Proposition I .2 as soon as we define left minimal morphisms, 

which are the dual of right minimal morphisms. 
A morphism f  : B ---f C is left minimal if every extension off to f is an isomor- 

phism. 

PROPOSITION I .4. Let B be in mod A and SF an extension class of the class 

of all morphisms B + Y (BJixed) in mod A. 

(a) lff: B + C has the property that l(C) < l(Y) with B -+ Y in 9, then 

f  : B + C is left minimal. Thus there is a left minimal f  : B -+ C in g. 

(b) If  fi: B + C, and fi: B --f C, in 9 are left minimal, then every exten- 
sion from fi to f.. is an isomorphism. Hence there is an isomorphism h: C, - C, 
such that t3fi = fi . 

(c) Let f  : B -+ C be in .F. If  C = C, JJ C, and the projections pi: C - Ci 
haae the propert+y that pPf : B --, C, is zero, then p,f : B + C, is in F. 

(d) Let f  : B -+ C be in 9. Then there is a decomposition C = C, JJ C, 
such that pef: B - C, is zero and p,f : B - C, is a left minimal morphism in F. 

Let B be in mod /I. Two morphisms fi: B + Xi and fi: B -+ X.. are said 
to be isomorphic if there is an isomorphism h: Xi -+ X, which is an extension of 

fi tof1 . 
With this definition in mind we give the dual of Proposition 1.3. 

PROPOSITION I .5. Let B be in mod A and F a family of morphisms B - X 
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satisfying the condition that if f :  B + X is in LF and g: X+ Y is a splittable 
surjection (i.e., there is an s: Y + X such that gs = idy), then the composition 
gf : B -+ Y is in F. Suppose there is an f: B -+ C in F such that each g in 7 
can be extended to f. Then 

(a) There is a left minimal f  ‘: B -+ C’ in F such that each g in Jo can be 
extended to f  ‘. 

(b) Any two right minimal morphisms f  I: B + C’ in F such that each g in F 
can be extended to f’ are isomorphic. 

(c) Suppose f: B-t C in F has the property that each g in F can be 

extended to f. Then there is a decomposition C = C, IJ C, such that the projections 
pi: C ---f Ci have the property that pJ is a left minimal morphism in 9 such that 
each g in .7 can be extended top, f  and p, f  = 0. 

2. COVERS AND SPLITTING PROJECTIVES 

Throughout the rest of this paper we assume that R is a commutative artin 
ring and (1 an R-algebra which is a finitely generated R-module. It is obvious 
that the R-algebra structure on (1 induces an R-algebra structure on (lop in 
such a way that kJn is also a finitely generated R-module where L’IOP is the 

opposite ring of /I. We denote the category of finitely generated left cl-modules 
by mod (1. Clearly mod Aon is the category of finitely generated right (I-modules. 
Further, letting I be the injective envelope of R/rad R, the contravariant functor 
Hom,( , I): mod (1 --f mod Aon given by M --f Hom,(M, 1) is a duality with 

inverse Hom,( ,I): mod (lop --f mod II. We denote both of these dualities 
by D: mod (I -+ mod /IOn and D: mod flop + mod d. 

By a subcategory C of mod (1 we always mean a full subcategory having the 
property that if M in mod LI is isomorphic to a summand (direct) of C in C, 
then M is in C. Associated with each subcategory C of mod A is the subcategory 
D(C) of mod Aon consisting of all the flop-modules isomorphic to D(C) for 

some C in C. The duality D: mod /l ---f mod /lop clearly induces a duality D: 
C - D(C) which gives an equivalence of COP, the opposite category of C, with 
D(C). We will usually identify the categories COP and D(C) by means of this 
equivalence. 

In studying a subcategory C of mod (1, it is often convenient to also consider 
the categories add C and ind C which we now describe. 

The category add C is the subcategory of mod LI consisting of all cl-modules 
isomorphic to summands of finite sums of modules in C. Thus add C is an 
additive subcategory of mod n in which idempotents split. 

The category ind C is the subcategory of C consisting of all the indecomposable 
modules in C. Clearly add ind C = add C and ind addC = ind C. Also 
D(add C) = add D(C) and D(ind C) = ind D(C). 
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Of primary concern to us throughout this paper is the kinds of covers and 
cocovers a subcategory of mod (1 has; notions we now introduce. 

A cover for a subcategory C of mod n is a subcategory A of ind C such that 
for each C in C there is a surjective morphism f: A -+ C with A in add A. 
A cover A of C is said to be a minimal cover for C if no proper subcategory of A 
is a cover for C. Clearly a subcategory A of C is a (minimal) cover for C if and 
only if A is a (minimal) cover for ind C. 

Dualizing, we obtain the dual notions of a cocover and minimal cocover for 
a subcategory of mod A. 

A cocover for a subcategory C of mod (1 is a subcategory B of ind C such that 
for each C in C there is an injective morphism f: C + B with B in add B. 
A cocover B of C is said to be a minimal cocover for C if no proper subcategory 
of B is a cocover for C. Clearly a subcategory B of C is a (minimal) cocover for 
C if and only if B is a (minimal) cocover for ind C. Finally, we observe that a 
subcategory A of C is a {minimal) cover for C if and only if D(A) is a (minimal) 
cocover for D(C). Thus the theory of covers of subcategories of mod/l is the 
dual of the theory of cocovers of subcategories of mod flop. 

In order to motivate our discussion of covers and cocovers for subcategories 
C of mod n we consider the special case C = mod .4. Let P, be the subcategory 
of ind mod A consisting of all the indecomposable projective modules in mod A. 
Then it is easily seen that P, has the following properties. 

(a) P, is a cover for mod (I. 

(b) Iff : X -+ P is surjection with P in P, , thenfis a splittable surjection. 

(c) If A is a cover for mod (1, then A contains P, . 

(d) A is a minimal cover for mod fl if and only if A = P, . 

Since (a) and (b) are well known, it only remains to establish (c) and (d). But (c) 
follows readily from (b) ( see Proposition 2.1) and (d) follows from (a) and (c). 
Thus P, is the unique minimal cover for mod n which gives a complete charac- 
terization of the subcategory of mod /I consisting of the indecomposable 
projective modules in terms of the notion of covers. 

Obviously, a similar discussion can be carried out for cocovers of mod fl, 
giving results dual to those given for covers. In particular, mod (1 has a unique 
minimal cocover which is the subcategory I, of mod /l consisting of the inde- 
composable injective moduIes in mod A. 

This discussion suggests that for an arbitrary subcategory C of mod A there 
might be some connection between the covers (cocovers) of C and some sort of 
suitably defined notion of “projective” (“injective”) objects in C. The right 
notion of “projective” in C seems to be the one given in property (b) for the 
projectives. 

Let C be a subcategory of mod A. We say that a C in C is a s~~i~~ing ~yojec~ive 
in C if each surjective morphism X ---)r C with Xin add C is a splittable surjection. 
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Clearly C in C is a splitting projective in C if and only if each indecomposable 
summand of C is a splitting projective in C. We denote by P,(C) the subcategory 

of ind C consisting of the indecomposable splitting projectives in C. It is clear 
that P,,(C) = P,(ind C) = P,(add C). 

Dually, we say that C in C is a spZitting injective in C if each injective mor- 

phism C -+ Y with Y in add C is a splittable injection. Obviously C in C is a 
splitting injective in C if and only if each indecomposable summand of C is a 
splitting injective in C. We denote by I,(C) th e subcategory of ind C consisting 

of all the indecomposable splitting injectives in C. It is clear that I,,(C) = I, 
(ind C) = I,(add C). Moreover it is easy to see that C in C is a splitting projective 
in C if and only if D(C) is a splitting injective in D(C). Hence D(P,(C)) = 

WW) and ~&(CN = P@(C)). 
While the notions of splitting projectives and splitting injectives are obviously 

intimately related to the usual notions of projectives and injectives there is the 
following important difference. Let f:  X - Y be a surjective morphism in C 
and P a splitting projective in C. Then it is not necessarily true that each g: 

P + Y can be lifted to f. A similar remark holds for splitting injectives in C. 
On the other hand, if C = mod A, then it is obvious that PO(C) is the subcategory 
of indecomposable projective A-modules, while I,,(C) is the subcategory of 

indecomposable injective A-modules. It should also be noted, as we will show 
later, that there are subcategories C of mod A for which P,,(C) or &,(C) is empty. 

Let A be a cover for the subcategory C of mod A. In the case C = mod A 
we saw that A is a minimal cover for C if and only if A = P,,(C). Our aim is to 

show that this result holds for arbitrary subcategories C of mod A. We begin 
with the following easily established preliminary result. 

PROPOSITION 2.1. Let C be a subcategory of mod A. 

(a) If A is a cover for C, then A contains P,,(C). 

(b) If B is a cocove~ for C, then B contains I,(C). 

Proof. (a) Let P be in P,,(C). Since A is a cover for C, there is a surjective 
morphism f: A -+ P with A in add A. Because P is a splitting projective in C, 
the surjection f: A + P is a splitting surjection. Hence P is isomorphic to an 
indecomposable summand of A and thus must be in A. Therefore A 3 PO(C). 

(b) Dual of (a). 

The rest of the proof that a cover A of C is minimal if and only if A = P,,(C) is 
based on the following general definitions and results which are also of interest 
in their own right. 

Let A and B be in mod fl. The trace of B in A is the submodule TV of A 
generated by all the homomorphic images of B in A. Since A is noetherian, it 
follows that there is a morphism f  : nB -+ A, where nB is a sum of n copies of B, 
such that Imf = TV. Also, viewing A as an End A-module, where End A 
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is the endomorphism ring of A, we have that TV is an End A-submodule of A. 

We now use these observations to prove the following general result. 

PROPOSITION 2.2. Let A and B be ilt mod A with A indecomposable. 

(a) Suppose fi: A --t A, i = l,..., n is a jinite family of morphisms and fo: 
B ---f A is a morphism such that the induced morphism f: B u nA -+ A is a surjec- 
tion which is not a splittable surjection. Then TV = A and so there is a surjection 

mB - A of m copies of B(mfinite) to A. 

(b) Suppose fi: A + A, i -1 I,..., n is a jinite family of morphisms and f,,: 
A + B a morphism such that the induced morphism f  : A + nA u B is an injection 
which is not a splittable injection. Then there is an injection A -+ mB, where mB is a 

jinite sum of copies of B. 

Proof. (a) Since the surjection f: B u nA --f A is not a splittable surjec- 
tion, none of the fi: A -+ A is an isomorphism. The fact that A is indecomposable 
implies that End A is local. Hence each of the fi: A --f A is in rad End A. Now 

f  : B u nA + A being surjective implies that the submodule xT=l fi(A) + f,(B) 
of A generated by the f<(A), i = I,..., n andf,(B) is all of A. Since eachfi(A) C 

(rad End A) A andf,(B) C TV, we have that A = (rad End A). A + TV. 
Thus viewing A as an End A-module, we have by Nakayama’s lemma that 
TV = A since TV is an End A-submodule of A and A is a finitely generated 
End A-module. 

(b) Dual of (a). 

We now prove our main result connecting minimal covers and cocovers of a 
subcategory C of mod A with P,(C) and I,,(C). 

THEOREM 2.3. Let C be a subcategory of mod A. 

(a) A cover A of C is a minimal cover of C if and only if A = P,,(C). 

(b) A cocover B of C is a minimal cocover of C is and only ifB = I,(C). 

Proof. (a) We have already seen, Proposition 2.1, that every cover of C 
contains P,(C). Hence if A is a cover of C and A = P,(C), then A is a minimal 
cover for C. We now finish the proof of (a) showing that if A is a cover of C 

and A # PO(C), then A is not minimal. 
Suppose A in A is not in P,,(C). Then there is a surjective morphismf: C + A 

in C which is not a splittable surjection. Since A is a cover for C, we know there 
is a surjection g: X + C with X in A. Then the composition h = gf : X -+ A 
is a surjection which is not a splittable surjection since f  is not a splittable sur- 
jection. We can write Xas a sum B u nA where B has no summands isomorphic 
to A. Then by Proposition 2.2, we know there is a surjection mB - A. Since B 
is in add(A - (A}), where {Af is the subcategory of A of all modules isomorphic 
to L4, it follows that A - (A} is a cover for A and hence for C. Hence, if there 
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is an A in A which is not in P,,(C), then A is not a minimal cover for C. Therefore 

A being a minimal cover for C implies P,(C) = A, which finishes the proof 
of (a). 

(b) Dual of (a). 

As an immediate consequence of Theorem 2.3 we have the following. 

COROLLARY 2.4. Let C be a subcategory of mod A. 

(a) If  A,, A, are two minimal covers of C, then A, = A, = P,,(C). 

(b) rf A J; ‘t 2s a nz e cover for C (i.e., A has only a finite number of ~on- 
isomorphic objects), then P,,(C) is a finite minimal cover for C. 

(c) If B, and B, are minimal cocovers for C, then Br = B, = b(C). 

(d) If C has a finite cocover, then I,(C) is afinite minimal cocover for C. 

Proof. (a) By Theorem 2.3 we know that A, = Pa(C) = A, and so 

A, = A,. 

(b) If  A is a finite cover for C, then there is a subcategory A’ of A with 
the smallest number of nonisomorphic objects such that A’ is a cover for C. 
Then by Proposition 2.3, A’ = Pt,(C) which shows that P,,(C) is a finite cover 
for C. 

(c) and (d). Duals of (a) and (b), respectively. 

Corollary 2.4 plays a critical role in the rest of this paper. We end this section 
with our first application of this result. 

We recall that a module M of finite length over a principal ideal domain R 
has two standard representations: (a) M w jJ:=, R/pFi R, where each pi is a 
prime, nonzero element in R and (b) M m I&, R/a,R, where a, 1 a2 1 ... 1 a, . 
Moreover each of these representations is unique in the sense that the p,“i and 

al ,-., a, are unique for any such representations. Since the R-modules of the 
form R/p”R with a p prime element in R are precisely the indecomposable 
modules of finite length, representation (a) has a ready analog for modules in 
mod /I, namely, the usual representation as a sum of indecomposable modules. 
We now show that each module M in mod /1 has two other decompositions 
each of which is the analog of the decomposition (b). Results similar to these 
were given by Roiter [15]. 

We say that a module L in mod A is multiplicity free if its representation 
UT=, Mi as a sum of indecomposable modules Mi has the property Mi = Mj 
implies i = j for all 1 < i < n and 1 < j < n. A module L is said to be covering 
indecomposable if TV # L for each proper summand K of L. Clearly if L is 
covering indecomposable, then L is multiplicity free. 

By a covering decomposition of a module M we mean a representation of M = 
u:_, Li having the following properties: (a) each Li is covering indecomposable 
and (b) T~,(L~,.J =-= Lit1 for all i = I ,..., f  - I. 
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Dually, a module L is said to be cocovering indecomposable if there is no injective 
morphism L --f nK with K a proper summand of L. Clearly a cocovering 

indecomposable module is multiplicity free. By a cocovering decomposition of a 
module M we mean a representation of M m &lLi having the following 
properties: (a) each Li is cocovering indecomposable and (b) for each i = 
1 ,..., s - 1 there is an injection L,+l ---f niL, for some ni . 

Before showing that every module in mod A has both a covering and cocover- 

ing decomposition, we show that these representations are essentially unique. 
To this end it is convenient to introduce the following definition. 

Let M be a module in mod A. We denote the subcategory of ind mod A 

consisting of those indecomposable modules which are isomorphic to summands 
of M by ind M. Clearly ind M is a finite category. 

PROPOSITION 2.5. Let M be a nonzero module in mod A. 

(a) Let M m urz, L, be a covering decomposition. Then for each i = 
1 ,..., n we have that indLi = P,(ind(M/&,Li)). Thus if M w uj”=lLi is 
.another covering decomposition, then n = m and Li w L; for all i = I,..., n. 

(b) Let M m u,“=, Ji be a cocovering decomposition. Then for each j = l,..., s 
we have that ind Ji = I,(ind(M/U,,j Ji)). Thus if M m ui=, Ji is another 
cocovering decomposition, then s = t and Jj m Jj for all j = I ,..., s. 

Proof. (a) Suppose M m JJr=, Li is a covering decomposition. Since 

M/&iLi = LI%iL~ , we have to show that P,(ind(UE, L,)) = ind Li . 
Because ind(I& L,) is finite, we have by Corollary 2.4 that it suffices to show 
that ind Li is a minimal cover for ind(UI==i Lk). Since T~~(L~+~) = Lk+l for all 

k = l,..., n - 1, it follows that ind(L,) is a cover for ind(I&LJ. But ind(Li) 
is a minimal cover for ind(JJzz=i Lk). Suppose L; is the sum of a complete set of 
nonisomorphic representatives of the objects of a proper subcategory of ind(L,). 

Because Li is multiplicity free, it follows that L; is a proper summand of Li . 
Therefore TV: # Li and so ind(L;) is not a cover for ind(uz==i Lk). Hence 
ind(Li) is a minimal cover for ind(JJizi Lk) and so ind(L,) = P,,(M/J& Lj) for 
all i -7 I,..., n. This proves the first part of (a). 

Since each Li is multiplicity free, the fact that ind(LJ = P, ind(M/UiciLj) 

implies that L, is isomorphic to the sum of any complete set of nonisomorphic 
representations of objects in P, ind(M/Ujci Lj). Hence L, is isomorphic to the 
sum of any complete set of nonisomorphic representatives of objects in P, 
(ind(M)). Thus if M m u,“=, L; is another covering decomposition for M, then 
L, m L;. Then M/L, m M/L;, and so L, JJ ..a UL, and Li u ... ULk are 
covering decompositions of the same module M/L, . Hence by induction on n, 
we have that n = m and Li m L: for i = 2,..., n. Combining this with the fact 
that L, Q L, , we have finished the proof of (a). 

(b) Dual of (a), 
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PROPOSITION 2.6. Let M be a nonzero module in mod A. 

(a) M has a covering decomposition ~~=, Li which is unique in the sense 
that the Li are uniquely determined up to isomorphism by M. Moreover ann(L,) C 

ann(L,) C ... C ann(L,). 

(b) M has a cocovering decomposition uy=, Jj which is unique in the sense 
that the Jj are uniquely determined up to isomorphism by M. Moreover ann(Ji) C 
ann(JJ C ... C ann&). 

Proof. (a) Suppose M = &, niMi with each Mi indecomposable and 
ni > 1. Proceed by induction on xi=, ni . I f  &, n, = 1, then M is indecom- 
posable and L, = M is our desired decomposition. Suppose (a) holds for all 

M = u:=, niMi with 1 < xj=, ni < k and suppose x,i”=, ni = k. Define L, to 
be the multiplicity-free module u Nj where Nj ranges over a complete set of 
nonisomorphic representatives of the objects in the finite subcategory P,(ind M). 
Since ind(M) is finite, we know by Corollary 2.4 that P,(ind M) is a finite 
minimal cover for ind M. In particular P,(ind M) is not empty so L, is not zero. 

Hence by the inductive hypothesis M2 = M/L, has a unique covering decom- 
position L, JJ ... UL, . We now claim that L, UL, u ... uLn is a covering 
decomposition for M. 

Since P,(ind M) is a minimal cover for ind M, it follows that L, has the 
following properties: (a) for each X in ind M there is a surjective morphism 
nL, + X for some n in N and (b) if L; is a proper summand of L, , then there 

is an indecomposable X in ind M such that there is no surjection nL; - X for 
any n in N. Therefore there is certainly a surjective morphism nL, + L, . 
Moreover if there were a surjective morphism nL; + L, with Li a proper sum- 
mand of L, , then ind(L;) would be a cover for ind M since, by Proposition 2.5, 
ind(L,) is a cover for ind(L, u ... uLn). But the fact that Li is a proper sum- 
mand of L, which is multiplicity free means that ind L; is a proper subcategory 

of ind L, . Therefore we would have that ind L, is not a minimal cover for ind M. 
But by Corollary 2.4 we know that P,(ind M) = ind L, is a minimal cover for 
ind M. This contradiction shows that TV; # L, and so we have that L, u 
L, u ... u L, is a covering decomposition of M. 

The uniqueness of the Li was shown in Proposition 2.5. 
Since for each i = I,..., n - 1 we have that there is a surjection niLi + Li+l , 

it follows that ann(L,) C ann(L<+J for all i = I ,..., n - 1. This completes the 
proof of (a). 

(b) Dual of (a). 

It is worth noting that in case A is a proper factor of a principal ideal domain 
and M is in mod A, then the covering and cocovering decompositions of M are 
the same, namely, the usual invariant factor decomposition of M. This is 
because modules over such a A are self-dual. However, for arbitrary A the 
covering and cocovering decomposition of M are usually not the same. 
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3. PREPROJECTIVE PARTITIONS 

Let C be a subcategory of mod A. In this section we are primarily concerned 

with giving our basic existence theorem for when C has a preprojective partition 
or a preinjective partition; notions we introduce after the following notation. 

Suppose C is a subcategory of mod A and X a subcategory of C. We denote 
by Cx the subcategory of C consisting of those objects in C with no summands 

in X. Clearly Cx = Cindx and if C is a subcategory of ind A, then Cx = 

c - x. 
Let C be a subcategory of mod A. We have already defined PO(C) to be the 

subcategory of ind C consisting of the splitting projectives in ind C. We define 

Pi(C) == P,(Cp,~c~) and, by induction, Pk(C) = Po(Cp,~c~v...up,~,~c~). Finally 
we denote the subcategory Uicac P,(C) of ind C by P(C) and ind(C,(c)) by 
P,,-(C). We now list some easily verified properties of these subcategories of C. 

(a) P,(C) n P,(C) = 0 for all ;, j < co if i f  j. 

(b) lf P,(C) = a, then P,(C) = ia for i < j < co. 

We say that the collection {Pi(C)}i,O,...,, is a preprojective partition of C if P,(C) 

is a finite cover for Cp,(,-) “...” p,.-l(c) for each i < co. We say that C has a 
preprojective partition if {P,(C)},=,,... ,m is a preprojective partition of C. If  C 
has a preprojective partition, then we say that C in C is preprojective if every 
indecomposable summand of C is in P(C) = Uicrn P,(C). 

Dually, we have already defined I,,(C) to be the subcategory of ind C consisting 

of the splitting injectives in ind C. By induction we define &(C) = 
I,(Cg(c~v...vr,_,(c~). Finally we denote the subcategory Uicrn Ii(C) of ind C 
by I(C) and ind(C)r(c, by Im(C). The following properties of these subcategories 
of C are easily verified. 

(a) Ii(C) n &(C) = 521 for i, j < cc with i fj. 

(b) If  Ii(C) = JZ, then &(C) = o for i <j < co. 

We say that the collection o,(C)),=,,...,, is a preinjective partition of C if Ii(C) is 

a finite cocover for CrO(c)v...vI,~,(c~ for each i < co. We say that C has a pre- 
injective partition if Q,(C)},=,, .. .,m is a preinjective partition of C. If  C has a 
preinjective partition, then we say that a C in C is preinjective if every indecom- 

posable summand of C is in I(C) = lJi+, Ii(C). 
We have already seen that D(P,(C)) = 1,(0(C)) and D&(C)) = P,,(D(C)). 

Consequently it is easily seen that D(P,(C)) = &(0(C)) and D&(C)) = 
P,(D(C)) for all i < CO and D(P(C)) = I(D(C)) and D(I(C)) = P(D(C)). From 
these remarks it follows that {P,(C)},+,.,, is a preprojective partition of C if 
and only if (Ii(O(C))}i=,,~~,,, is a preinjective partition of D(C). 

Before stating our general criterion for when a subcategory C of mod A has 
a preprojective or a preinjective partition, we give the following result due to 
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Gabriel and Roiter [ 12, 1.51 which was also the starting point of our own investiga- 
tions. 

THEOREM 3.1. Let C be a subcategory of mod A of finite type (i.e., ind C is 
finite). Then C has both preprojective and preinjective partitions. 

Proof. Since ind C is finite, ind X is finite for all subcategories X of C. Hence 
by Corollary 2.4, we know that P,,(X) is a finite cover for X for each subcategory 
X of C. Since by definition, P,(C) = Po(Cp,~c~v...vp,~,~c~), it follows that each 

P,(C) is a finite cover for C P, c u ( ) . . . u~i-l(~) for all i < 0~). Hence {P,(C)l+..,~ 
is a preprojective partition of C which shows that C has a preprojective partition. 
That C also has a preinjective partition follows by duality. 

In connection with Theorem 3.1 we point out the following relationship 
between the preprojective and preinjective partitions of subcategories of mod A 
of finite type and the covering and cocovering decompositions of modules intro- 

duced in Section 2. 

PROPOSITION 3.2. Let C be a subcategory of mod A of$nite type. Let C, ,..., Ct 
be a complete set of nonisomorphic representatives of objects in ind C and let C = 

LL, G * 

(a) If  C = &ILj . as a covering decomposition for C, then P,(C) = 
indL, for i = l,..., r and Pj(C) = o for j > r. 

(b) Lf C - LIL, Ji is a cocovering decomposition of C, then ind Ji = 

Ii(C) for j = I,..., s and Ii(C) = m for i > s. 

Proof. Left as an exercise. 
We now state our main criterion for when a subcategory C of mod A has a 

preprojective partition or a preinjective partition. 

THEOREM 3.3. Let C be a subcategory of mod A. 

(a) Suppose for each M in mod A there is a morphism g: M + C with C 
in add C such that (g, X): (C, X) + (1111, X) . zs surjective for all X in C, where 
(C, X) = Hom,(C, X). Then C has a preprojective partition. 

(b) Suppose for each M in mod A there is a morphism f : C + M with C 
in add C such that (X, f) : (X, C) 4 (X, M) is surjective for all X in C, where 

(X, C) = Hom,(X, C). Then C has a preinjective partition. 

The proof of Theorem 3.3 will occupy the rest of this section. We begin with 
the following lemmas which, when suitably specialized, give a criterion for when 
a subcategory C of mod A has a finite cocover. This criterion is especially well 
suited to proving Theorem 3.3. 

LEMMA 3.4. Let D 3 C be subcategories of mod A and assume that I,,(D) is a 
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finite cocover for D. Then a Jinite subcategory A of ind C is a cocover for C af for 
each I in I,,(D) there is a morphism f,: A, -+ I with At in add A such that (X, f,): 
(X,A,)+(XI) . j t f as sur ‘ec ive or all X in C. Moreover if D = mod A and A 
in ind A is aJLinite cocover for C, then there exists for each I in I&mod A) a mor- 
phism fi: A, --f I with A, in add A such that (X, f,): (X, A,) ---f (X, I) is surjective 
for all X in C. 

Proof. Suppose that for each I in I,(D) there exists a morphism f,: A, - I 

with A, in add A such that (X, f,): (X, A,) + (X, I) is surjective for all X in C. 
Let X be in C and let g: X + I be an injective morphism with I in add I,,(D). 
Then there is an h: X -+ A, such that g = f,h. Therefore h: X --+ A, is injective 
with A, in add A. Since X is an arbitrary object in C, we have shown that A 
is a cocover for C. Now let D = mod A and assume that A is a finite cocover 
for C. Let A, ,..., A, be a complete set of nonisomorphic objects in A. Let I be 
in I,(mod A). Since (Ai , I) is a finitely generated End Aon-module, there is for 
each i = l,..., n a morphism fi: niAi -+ I such that (A,, f): (Ai, niAJ - 
(Ai , I) is surjective. Therefore the induced morphism f :  u niAi + I has the 
property that (A, f): (A, JJ n,A,) --f (A, I) is surjective for each A in A. Thus 
we have shown that for each indecomposable module I in I,(D) there is a mor- 
phism f,: A, -+ I with A, in add A such that (A, f,): (A, A,) -+ (A, I) is exact 
for each ,4 in A and hence for each A in add A. 

Let C be in C. Since we are assuming that A is a cocover for C, we know that 
there is a monomorphism: g: C -+ A with A in add A. Suppose h: C -+ I is a 
morphism with I in I,, (mod A). Then there is a i: A -+ I such that h = jg. 
Since A is in add A, we know by our previous remarks that there is t: A ---f A, 
such thatj = fit. Therefore h = f,tg. Because tg is in (C, A,) we have that h is 
in the image of (C, f,): (C, A,) -+ (C, I). Therefore (C, f,): (C, A,) - (C, I) is 
surjective for all C in C. This finishes the proof of the lemma. 

Assume that C is a subcategory of mod A which has a finite cocover. As a 
consequence of Lemma 3.4 we have the following description of the minimal 
cocover I,,(C) of the subcategory C. 

LEMMA 3.5. Suppose C is a subcategory of mod A which has a Jinite cocover. 
Then the following hold for a finite cocover A of C. 

(a) For each indecomposable injective I there is a unique (up to isomorphism) 
right minimal morphism ft: A, ---f I with A, in add A such that (X, f,): (X, A,) - 
(X, I) is surjective for all X in C. 

(b) I,(C) = U, ind A, as I runs through a complete set of nonisomorphic 
objects in I,, (mod A). 

Proof. (a) Since A is a finite cocover for C, we know by Lemma 3.4 that 
for each I in I,, (mod A) there is a morphism f ‘: A, -+ I with A, in add A such 
that (X, f ‘): (X, A,) + (X, I) is surjective for all X in C. Then by Proposition 
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1.3 we know there are unique (up to isomorphism) right minimal morphisms 
fj: A, -+ I with A, isomorphic to a summand of A, such that (X,f,): (X, A,) -+ 
(X, I) is surjective for all X in add A. Since the A; are summands of the A,, 
it follows that the A, are in add A which finishes the proof of (a), 

(b) Since the fi: A, + I have the property that (X,f,): (X, A,) + (X, 1) 
is surjective for all X in C, it follows from Lemma 3.4, that (J, ind(A,), as I runs 
through a complete set of nonisomorphic objects in I, (mod A), is a finite cocover 
for C. Hence I@(C) C lJ1 indfd,) by Proposition 2.1. We now show that I,(C) 3 
uil ind(A,) by showing that I,(C) Z-J ind(A,) f or each indecomposable injective I. 

Since C has a finite cocover, we know by Corollary 2.4 that I,(C) is the 
minimal cocover of C. Therefore by Lemma 3.4 we know that given an I in 
Is (mod A) there is a morphism g: C, -+ I with C, in Is(C) such that (X, g) is 
surjective for all X in C. In particular, there is an h: AI + C, such thatf, = gh. 
On the other hand there is an h’: C, -+ A, such that g = f&‘, Hence f,h'h = 

gh = f, so that h’h: A, + A, is an isomorphism since fi is right minimal. Thus 
AI is isomorphic to a summand of C, and so ind A, C I,,(C). Therefore we 
have our desired result I,(C) = VI ind 4 1 , as I runs through a complete set 
of nonisomorphic objects in I,(mod A). 

Summarizing Lemmas 3.4 and 3.5 we have the following result. 

PROPOSITION 3.6. Let C be a subcategory of mod A. Then the following 
statements are equivalent. 

(a) C has a finite cocover. 

(b) For each indeeomposable injective rnod~i~ I there is u morphism fi: 
A, + I with A1 in add C such that (C, fi) is surjective for ail C in C. 

(c) For each indecomposable injective module I there is a unique (up to 
isomorphism) right minimalf,: AI --f I with A, in add C such that (C, f,) is surjective 

for all C in C. 

Moreov~, if C has a finite cocover, then G(C), its rn~~irna~ cocover, can be 
described as follows. Let I, ,..., I, be a complete set of nonisomorphic indecom- 

posable injective modules and let fi: Aj -+ Ij be the unique right minimal 

morphisms with A, in add C such that (C, fi) is surjective for all C in C. Then 
I,(C) = (J:=, ind Ai . 

Dualizing Proposition 3.6 we obtain. 

PROPOSITION 3.7. Let C be a subcategory of mod A. Then the following are 
equivalent. 

(a) C has a finite cover. 

(b) For each inde&omposable projective module P there is a morphism g,: 
P + A, with A, in add C such that (g, , C) is surjective for all C in C. 
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(c) For each indecomposable projective module P there is a unique (up to 
isomorphism) left minimal morphism g,: P + A, with A, in add C such that 
(gp , C) is surjective for all C in C. 

Moreover, if C has a finite cover, then PO(C), its minimal cover, can be 
described as follows. Let PI ,..., P, be a complete set of nonisomorphic in- 
decomposable projective modules and let gj: Pj -+ Aj be the unique left minimal 
morphisms with Aj in add C such that (gi , C) is surjective for all C in C. Then 
P,(C) = (J’y=, ind Aj . 

Theorem 3.3, the result we want to prove, states: Suppose C is a subcategory 
of mod A with the property that for each M in mod (1 there is a C in C and a 
morphism f  : C + M such that (X, f) is surjective for all X in C. Then C has a 
preinjective partition. It obviously follows from Proposition 3.6 that I,(C) is a 
finite cocover for any subcategory C of mod A satisfying the hypothesis of the 
theorem. Suppose we can show that C satisfying the hypothesis of Theorem 3.3 
implies C~J~) also does. Then, proceeding by induction on n, it would follow 
trivially that In(C) is a finite cocover for C1,~c~v...vr,~,~c~ for all n, which is simply 
a restatement of Theorem 3.3. Hence to finish the proof of Theorem 3.3 it remains 
to show that if C is a subcategory of mod A satisfying the hypothesis of ‘l’heorem 
3.3, then C~J~) also does. This will be a consequence of some of the following 
considerations. 

We begin by recalling some of the basic facts concerning the radical of a 
category that we shall need in this section. Suppose C is a subcategory of mod (1. 
For each A and B in C the radical of (A, B), denoted by r(A, B) consists of all 
f: A + B such that for each Z in ind C, every composition Z - A - B + Z 
is in rad End 2 or, equivalently, is not an isomorphism. The radical of C, 
denoted by r(C), consists of all the morphisms in r(A, B) for some A and B in C. 
Further, for each integer n > 0, we define rQ(A, B) to consist of all morphisms 

f  : A + B which can be written as a sum C fi where each fi is a composition of 
at least n morphisms in r(C). W e d enote by r”(C) the collection of all morphisms 
in +(A, B) for some A and B in C. We now list some easily verified properties 

of rn(A, B) for all integers n >, 0 and A and B in C. 

(a) rn(A, B) is a subgroup of (A, B). 

(b) rO(A, B) = (A, B), +(A, B) = r(A, B), and rn(A, B) 3 rn+l(A, B). 

(c) The composition U -+ A +f B - V is in rn( U, V) if f is in rn(A, B). 

(d) ra(A, B) is functorial in A and B so that rn(&, Ai , B) = uitr rn(Ai , 
B) and rn(A, JJjEJ Bi) = ujcJ r”(A, Bi) for all finite families of modules 
{Ai}i.l and {Bj}j,J in C. 

add $1 +A, B) is the same whether we view A and B as objects in C or 

(f) rn(A, A) 1 (rad End A)n. 
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(g) Iffis in ri(A, B) andg is in ri(B, C), thengfis in ri+j(A, C). 

(h) r(A, B) = (A, B) ‘f d 1 an on1 I no indecomposable summand of A y  ‘f 
is isomorphic to an indecomposable summand of B. 

In connection with this last property we point out the following easily deduced 
facts. 

LEMMA 3.8. Suppose C is a subcategory of mod A and B is in ind C. 

(a) For a morphism f  : A -P B in C the following are equivalent: 

(i) f is not a splittable surjection, 

(ii) f is in r(A, B), 

(iii) for each X in C, the induced morhism (X, f): (X, A) ---f (X, B) has 
WX, f) C r(X, W. 

(b) For a morphism g: B -+ C in C, the following are equivalent: 
(i) g is not a splittable injection, 

(ii) g is in r(B, C), 

(iii) for each Y in C, the induced morphism (g, I’): (C, Y) -+ (B, Y) has 
Wg, Y) C @, Y). 

Lemma 3.8 naturally raises the question: given a C in ind C, is there a mor- 
phism f: B + C in add C such that Im((X, f): (X, B) + (X, C)) = r(X, C) 

for all X in add C or, equivalently, for all X in ind C ? If C = mod /l, it was 
shown in [6] that such anf: B -+ C always exists and it was called a right almost 
split morphism. 

Similarly, one can ask: given an indecomposable B in ind C, is there a g: 
B -+ C in add C such that Im((g, Y): (C, Y) ---f (B, Y)) = r(B, Y) for all Y in 

add C or, equivalently, for all Y in ind C ? Again, if C = mod fl, it was shown 
in [6] that such a g: B + C always exists and it was called a left almost split 
morphism. 

These remarks suggest the following terminology. 
Let C be a subcategory of mod /l and let C be in ind C. A morphism B + C 

in add C is said to be right almost split in C if for each X in add C we have that 
Im((X,f): (X, B) + (X, C)) = r(X, C). Clearly if f :  B - C is right almost 
split, then f  is in r(B, C). We say that C has right almost split morphisms if for 
each indecomposable C in ind C there is a right almost split morphismf : B + C. 
It is easy to see that C has right almost split morphisms if and only if given any 
C in C (not necessarily indecomposable) there is a morphism f: B ---f C in 
add C such that Im(X, S) = r(X, C) f  or all X in add C. Clearly such an f: 
B --f C is in r(B, C). 

Similarly, if B is in ind C a morphism g: B --t C in add C is said to be left 
almost split in C if for each Y in add C we have that Im((g, Y): (C, Y) + 
(B, Y)) == r(B, Y). We say that C has left aZmost split morphisms if for each 
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indecomposable B in ind C there is a left almost split morphism f  : B --f C. 

It is easy to see that C has left almost split morphisms if and only if given any B 

in C (not necessarily indecomposable) there is a g: B + C in add C such that 
Im(g, Y) = r(B, Y) f or all Y in add C. Clearly such a g: B ---f C is in r(B, C). 

The fact that certain subcategories C of mod A have right and/or left almost 
split morphisms plays an important role in our proof of Theorem 3.3. While 
we do not have a complete description of such subcategories, we do have a 
sufficient condition which is based on the following notion. 

Let C 1 D be subcategories of mod A. We say that a module C in C is 
contravariantly finite over D if there is a morphism f: D ---f C with D in add D 
such that (X,f): (X, D) ---f (X, C) is surjective for all X in add D. We say that 
C is covariantly jinite over D if there is a morphism g: C ---f D with D in add D 
such that (g, X): (D, X) -+ (C, X) is surjective for all X in add D. It is not hard 
to see that a C in C is contravariantly (covariantly) finite over D if and only if 
every indecomposable summand of C is contravariantly (covariantly) finite over D. 

The reason for this terminology is the following. Let C be in C and let ( , C) 1 D 
denote the restriction of the representable functor ( , C) to D. By definition, the 
functor ( , C) / D is finitely generated if and only if there is an epimorphism 
Al: ( , D) - ( , C) / D with D in addD. But every morphism 01: ( , D) ---f 
( , C) / D is of the form ( ,f): ( , D) + ( , C) j D for some morphism f: 
D - C since D is in add D. Thus the condition that there exists a morphism 
f  : D ---f C such that (X, f): (X, D) + (X, C) is surjective for all X in add D 
is equivalent to ( , C) 1 D being finitely generated over D. Hence the terminology 
C is contravariantly finite over D. Similar remarks hold for C being covariantly 
finite over D. Moreover it should be observed that C is contravariantly finite 
over D if and only if D(C) in D(C) is covariantly finite over D(D). 

Familiar arguments, based on Section 1, give the following result (see Propo- 
sitions 1.2 and 1.3.) 

PROPOSITION 3.9. Let C r) D be subcategories of mod il. 

(a) C in C is contravariantly jinite over D if and only if there is a right 
minimal morphism f: D -+ C with D in add D having the property that (X, f): 
(X, D) -+ (X, C) is surjective for all X in add D. Moreover such an f: D -+ C is 
unique (up to isomorphism) and we denote by fc: C, + C one particular such 

morphism chosen once and for all. 

(b) C in C is covariantly finite over D if and only if there z’s a left minimal 
morphism g: C ---f D with D in add D which has the property that (g, X): (D, X) - 
(C, 2’) is surjective for all X in add D. Moreover such a g: C - D is unique (up to 
isomorphism) and we denote by gc: C - CD one particular such morphism chosen 
once and for all. 

Globalizing these remarks we have the following. 
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Let C I) D be subcategories of mod (1. We say that C is contravariuntly 
(covariantly) jinite over D if every C in C is contravariantly (covariantly) finite 
over D. Finally we say that C is functorially finite over D if it is both contra- 
variantly and covariantly finite over D. The reader should observe that Theorem 

3.3 can be restated as follows using this new terminology. Let C be a subcategory 
of mod fl. Then (a) C has a preprojective partition if mod fl is covariantly 
finite over C and b) C has a preinjective partition if mod fl is contravariantly 

finite over C. 
Returning to the question of when a subcategory C of mod /l has right and/or 

left almost split morphisms, we have the following result. 

PROPOSITION 3.10. Suppose C 3 D are subcategories of mod A. 

(a) If  C has right almost split morphisms and is contravariant2yfinite over D, 

then D has right almost split morphisms. 

(b) If  C has left 1 a most split morphisms and is covariantly finite over D, 
then D has left almost split morphisms. 

Proof. (a) Let D be an indecomposable object in D and f: C + D a right 

almost split morphism in C, i.e., (X, f): (X, C) -+ (X, D) has image r(X, D) 
for all X in C. Since C is in add C and C is contravariantly finite over D, there 
is a morphism fc: Cn ---f C with Cn in add D such that Tm(X, fc) = (X, C) for 

all X in D. Consequently the composition Cn -+ C + D which we denote by 
g: Cn -+ n has the property Im(X, g) = r(X, D) for all X in add D. Therefore 
g: Cn + D is a right almost aplit morphism in D. Since D was an arbitrary 
indecomposable in D, this shows that D has right almost split morphisms. 

(b) Dual of (a). 

Letting C = mod fl in Proposition 3.10 and recalling Propositions 3.6 and 

3.7, we obtain the following step toward proving Theorem 3.3. 

LEMMA 3.11. Let C be a subcategory of mod (1. 

(a) Suppose mod A is contravariantly finite over C. Then C has a jinite 
cocover and right almost split morphisms. 

(b) Suppose mod A is covariantly finite over C. Then C has a jinite cover 
and left almost split morphisms. 

In order to give our next result which, combined with Lemma 3.11, will finish 
the proof of Theorem 3.3, it is convenient to make the following definitions. 

Let C be a subcategory of mod fl. A C in C is said to be contravariuntly 
nilpotent if there is an integer n such that rn( , C) = 0, i.e., r”(X, C) = 0 for 
all Xin C. C is said to be locally contravariantly nilpotent if each C in C is contra- 
variantlp nilpotent. C is said to be contravariuntly nilpotent if there is an n such 
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that r”( , C) = 0 for all C in C. Obviously if C is contravariantly nilpotent it is 
locally contravariantly nilpotent, but the converse is not necessarily true. 

Dually, a C in C is said to be covariantly nilpotent if there is an n such that 
r”(C, ) = 0. C is said to be locally covariantly nilpotent if each C in C is covar- 
iantly nilpotent. C is said to be covariantzy nilpotent if there is an integer n such 

that rn(C, ) = 0 for all C in C. Obviously if C is covariantly nilpotent, it is 
locally covariantly nilpotent, but the converse is not necessarily true. 

Finally, we say that C is nilpotent if it is both covariantly and contravariantly 
nilpotent. Obviously C is nilpotent if and only if there is an integer n such that 

m(C, , C,) _- 0 for all C, , C, in C. If  C is of finite type, then the fact that the 
radical of the endomorphism ring of the sum of a complete set of nonisomorphic 
indecomposable modules in ind A is nilpotent implies that C is nilpotent. 

More generally, we have the following result of Harada and Sai [ 131. 

LEMMA 3.12. A subcategory C of mod A is nilpotent if it is bounded, i.e., there 

is an integer n such that the length of each indecomposable module in C is at most n. 

Returning to the proof of Theorem 3.3 we have the following result. 

PROPOSITION 3.13. Let C 1 D be subcategories of mod A. 

(a) Suppose C has right almost split morphisms and C,, is locally contruvar- 

iantly nilpotent. Then C is contravariantly finite over D. 

(b) Suppose C has left almost split morphisms and CD is locally covariantly 

nilpotent. Then C is covariantly finite over D. 

(c) If  C has right and left almost split morphisms and CD is nilpotent, then C 
is functorially Jinite over D. 

Proof. Since (c) is a trivial consequence of (a) and (b), and (b) is the dual 
of (a), it suffices to prove (a). 

(a) Suppose we can show that C having right almost split morphisms 
implies that for each C in Cn and each integer n > 0 there is a morphism 
f:nIJY-•Cwith YinaddCn, D in add D, and f  j Y in rn(Y, C) such that 
(X,f): (X, D fl Y) -+ (X, C) is surjective for all X in addD. Since we are 
assuming that C is contravariantly nilpotent, there is an n such that ra( Y, C) = 0 
for all I’ in Co . Therefore for this value of n we have that there is anf : D - C 
with D in add D such that (X,f): (X, D) + (X, C) is surjective for all X in 
addD. Hence we would have that each C in Cn is covariantly finite over D. 
Since each D in D is obviously covariantly finite over D, we would have shown 
that C is covariantly finite over D, under the hypothesis of the proposition. This 
would prove the proposition. Hence Proposition 3.13 follows from the following. 

LEMMA 3.14. Suppose C 1 D are subcategories of mod A. 
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(a) Suppose C has right almost split morphisms. For each C in CD and integer 

n > 0, there is a morphism f  : D u Y---f C with D in add D and Y in add C, such 
thatf 1 Y is in rn( Y, C) and Im(X, f) = (X, C)for all X in D. 

(b) Suppose C has left almost split morphisms. For each C in CD and integer 

n >, 0, there is a morphism g: C -+ D JJ Z with D in add D and Z in add Co such 
that pg is in r%(C, 2) and Im(g, X) = (C, X) for aZZ X in D, where p: D u 2 -+ 2 
is the projection morphism. 

Proof. Proceed by induction on n. For n = 0, f = id, works. Suppose k > 0 

and the lemma is true for 0 < n < k. Let C be in Cn . By the induction hypo- 
thesis we know there is a morphism f ‘: D’ u Y’ - C with D’ in add D, Y’ in 
add Cn such thatf’ j Y’ is in r”-I( Y’, C) and Im(X, f ‘) = (X, C) for all X in D. 
Since C has right almost split morphisms, we know that there is a morphism 

g: 2 + Y’ such that Im(X, g) = r(X, Y’) for all X in C. Since Y’ is in add Co, 
no indecomposable summand of Y’ is in D. Hence r(X, Y’) = (X, Y’) for all X 

in addD and so Im(X,g) = (X, Y’) f  or all X in D. Thus the composition 
D’ IJ 2 ,(idD’.g) D’ u y’ +f’ C which we denote by h has the property 
Im(X, h) = (X, C) for all X in add D. 

Write 2 as a sum D” IJ Y” where D” is in add D and Y” is in add Cn . Then 

h / Y” is in rk(Y”, C) since h 1 Y” is the composition of g 1 Y” which is in 
r(Y”, Y’) and f  1 Y’ which is in +i(Y’, C). Therefore the morphism h: D’ u 
D” n Y” + C is our desired morphism since D’ u D” is in add D, Y” is in 
add Co, hh / Y” is in rB(Y”, C), and Im(X, h) = (X, C) for all Xin addD. 

(b) Dual of (a). 

We are now ready to prove Theorem 3.3. To do this we must show that if 
mod A is contravariantly finite over C, then C has a preinjective partition. Since 
mod A is contravariantly finite over C, we know by Lemma 3.11 that C has a 
finite cocover and right almost split morphisms. Therefore I,,(C) is the finite 
minimal cocover for C. Since C also has right almost split morphisms and 

I,,(C) is finite and hence nilpotent, it follows from Proposition 3.13 that C is 
contravariantly finite over (+-) . Therefore by Proposition 3.6, CrO(c) has a 
finite cocover and so Ii(C) = Io(C1,(c)) is a finite cocover for Cr,cc) . The fact 
that &(C) is a finite cocover for C1,(c)V...vl,-,~c~ for all j > 0 now follows easily 
by induction on j, proving part (b) of Theorem 3.3. The rest of Theorem 3.3 
follows by duality. 

4. SUBCATEGORIES OVER WHICH mod/l Is FUNCTORIALLY FINITE 

This section is devoted to giving various criteria for mod A to be covariantly 
or contravariantly finite over C. In view of Theorem 3.3 such subcategories 
automatically have preprojective or preinjective partitions depending on whether 
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mod A is covariantly or contravariantly finite over C. Our main result is that if C 
has images (i.e., if f: C, -+ Ca is a morphism in C, then Imf is in C), then 
mod A is covariantly (contravariantly) finite over C if and only if C has a finite 
cover (cocover). Before taking up the proof of this result we point out the 
following results which are essentially recapitulations of results in Section 3. 

We begin with the following, which is essentially Proposition 3.13 with C = 
mod A. 

THEOREM 4.1. Let C be a subcategory of ind A such that ind A, is of bounded 
length. Then mod A is functorially Jinite over C and so C has the following 
properties. 

(a) C has preprojective and preinjective partitions. 

(b) C has right and left almost split morphisms. 

In particular, mod A has preprojective and pveinjective partitions. 

In some of our arguments in Section 3 we implicitely used the following. 

PROPOSITION 4.2. Let C be a subcategory of mod A of finite type. Then mod A 
is functorially finite over C. 

Proof, Let C, ,..., C, be a complete set of nonisomorphic indecomposable 
objects in C and let C = ~~=, Ci . Then (C, M) is a finitely generated End cop- 
module for each M in mod A. Let fi ,..., ft be a set of generators for (C, M) over 
End COP and let f: tC --f M be the morphism induced by the fi: C + M. Then 
(C, f ): (C, tC) + (C, M) is surjective. Since each C, is isomorphic to a summand 
of C, it follows that (Ci , f): (Ci , tC) + (Ci , M) is surjective for all i = I,..., n 
and hence (X, f): (X, tC) -+ (X, M) is surjective for all X in C. Hence mod A is 
contravariantly finite over C. 

The fact that mod A is also covariantly finite over C follows by duality. 
Therefore we have that mod A is functorially finite over C if C is of finite type. 

Our next criterion for mod A being contravariantly or covariantly finite over a 
subcategory C concerns subcategories C which have the property that if f: 
C, 3 C, is a morphism in C, then Imf is in C. Such subcategories C will be 
said to have images. It is easily seen that a subcategory C of mod A has images 
if and only D(C) in mod AOP has images. This follows from the fact that if 
f: C, ---f C, is a morphism in C, then Im(D( f ): D(C,) + D(C,)) = D(Imf). 

We now show that associated with each subcategory C of mod A is a smallest 
additive subcategory of mod A having images and containing C. For each 
subcategory C of mod A let Im C denote the collection of all M in mod A 
having the property that M = Im(f: C, --j C,) for some C, , C, in add C. 
Then we have the following. 
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PROPOSITION 4.3. Let C be a subcategory of mod A. Then Im C has the 
following properties. 

(a) Im C is an additive subcategory of mod A having images. 

(b) Add C has images if and only if add C = Im C. 

(c) Im C = Im ind C. 

(d) Im D(C) = D(Im C). 

(e) A subcategory A of ind C is a cover (cocover) for C zf and only zf it is a 

cover (cocover) for Im C. Hence C has a finite cover (cocover) if and only ;f  Im C 
has a finite cover (cocover). 

Proof. (a) Suppose f: C, --f C, is a morphism in add C and M = Imf. 

Suppose M’ is a summand of M. Then there is a morphism g: M -+ M’ such 
that the composition M’ -+ inc M --+ M’ is the identity where M’ -Jnc M is the 
inclusion morphism. Then the composition C, +f M +g M’ --@ C, has M’ 
as image. Thus M’ is in Im C. So Im C is a subcategory of mod /l. Since Im C 

is obviously closed under finite sums, Im C is an additive subcategory of mod /I. 
So it only remains to show that Im C has images. 

Suppose g: MI + M, is a morphism where Mi w Im(fi: Ci - Cl) for 
i = 1, 2 with the Ci and Ci in add C. Since the image of the composition C, + 

M,+Img-+ inc Ci is clearly Img and C, and CA are in add C, it follows that 
Im g is in Im C. Thus Tm C has images. This completes the proof of (1). 

(b)-(e) Trivial. 

As our final preliminary remark concerning additive subcategories C of 

mod fl with images we point out the following. 

LEMMA 4.4. Suppose C is an additive subcategory of mod A with images. 
Suppose {fi: X, - C}ier is a family of movphisms in C and f : IJiG, Xi - C the 

induced morphism. Then Im f  is in C. 

Proof. Since C is a finitely generated module over an artin ring, C is noet- 
herian, and so Imf is finitely generated. Hence there is a finite subset J of I 
such that f  (ujEJ Xi) = Im f. But ujcJ Xj is in C since C is additive. Hence 
Im f  = Im(f / ujoJ Xj) is in C since C has images. 

We now describe precisely when mod A is contravariantly or covariantly finite 
over an additive subcategory C with images. 

THEOREM 4.5. Suppose C is an additve subcategory of mod A with images. 

(4 mod A is contravariantlyfinite over C if and only if C has afinite cocover. 

(b) mod A is a covariantly finite over C if and only if C has a finite cover. 

(c) mod A is functorially Jinbe over C if and only zf C has a finite cover and 
a Jinite cocover. 
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Proof. (a) By Proposition 3.6 we know that C has a finite cocover if and 
only if I is contravariantly finite over C for all injective modules. Hence if mod il 
is contravariantly finite over C, then C has a finite cocover. 

Suppose now that C has a finite cocover A. Then again by Proposition 3.6, 
we know that for each injective module I there is a morphism f,: A, + I with A, 
in add A such that (X, f): (X, A,) -+ (X, I) is surjective for all X in C. Let M 

be a /l-module and inc: M --f I(M) its injective envelope. Since Im(X, fi(,,.,)) = 

(X, I(M)) for all X in C, it follows that the induced morphismg: f  &,(M)+ M 
has the property that Im(X, g) = (X, M) for all X in C. Letting (hj: Xi + 
A,(Mj}jeJ be the family of all morphisms in C with Im hj C f  ;;h)(M), we know by 

Lemma 4.4 that the induced morphism h: IJ Xj ---f AIcM) has the property that 
Im h C f&.,(M) is contained in C since C is an additive category with images. 
It is now easily seen that the induced morphism f  1 Im h: Im Iz * M has the 
property Im(X, f  1 Im h) = (X, M) f  or all Xin C. Therefore M is contravariantly 

finite over C. Because this is true for arbitrary A-modules M, it follows that mod /l 
is contravariantly finite over C if C has a finite cocover. 

(b) Dual of (a). 

(c) Trivial consequence of (a) and (b). 

We now give various examples of additive subcategories C closed under 
images with finite covers or cocovers. 

We say that a subcategory C has factor modules if whenever there is a surjection 
C - C’ with C in C, then C’ is in C. Clearly if C has factor modules, then C 

has images. If  C is an arbitrary subcategory of mod/l, then the collection of 
modules M such that there is a surjective C -+ M with C in add C is easily seen 
to be an additive subcategory of mod fl with factor modules which we denote by 
Fat C. Obviously C C Fat C and C = Fat C if and only if C is an additive 

subcategory of mod /l with factor modules. In particular, if M is a module we 
will denote Fat add M more simply by Fat M. 

PROPOSITION 4.6. Suppose C is an additive subcategory of mod A with factor 
modules. 

(a) C has a finite cocove~ so mod A is contravariafztly $nite over C. Hence 
C has a preinjective partition and right almost split morphisms. 

(b) C has a finite cover if and only if C = Fat C for some module C in C. 

(c) mod A is functorially Jinite over C if and only if C = Fat C for some C 
in C. 

Proof. (a) Let I be an indecomposable injective d-module. Let {fi: Ci --f 
lJiEJ be the family of all morphisms with the Ci a complete set of nonisomorphic 
objects in C. Then by Lemma 4.4, there is a finite subset J’ of J such that 
induced;morphisms f  ‘: ujEJ, Cj -+ I and f: JJisJ Ci - I have the same images 
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which denote by ~~(1). Then T,-(I) is in C since ujeJ Cj is in C and C is closed 
under factor objects. Clearly ~~(1) has the property that if g: C -+ I is a mor- 
phism with C in C, then Img C ~~(1). 

Let Ii ,... ,I, be a complete set of nonisomorphic indecomposable injective 
n-modules. We claim that the family C, = T&Q.., C, = T&) of objects in 
C has the property that if C is in C, then there is an injective morphism C + 
&=, niCi . For there is an injection f: C -+ Hi”_, n,l’, and for each projection 
p,: u,“=, nJ, -+ Ij we have that ImpJ C ~~(1~) = Cj . Therefore Imf C 
uF=, niCi . This shows that the subcategory of ind C consisting of the modules 
isomorphic to the Cj is a finite cocover for C. Since C has images and a finite 
cocover we have by Theorem 4.5 that mod (1 is contravariantly finite over C. 
Hence the proof of (a) is complete. 

(b) and (c) Trivial. 

The dual to a subcategory C having factor modules is that C have submodules. 
We say that C has submodules if whenever there is an injection C’ -+ C with C 
in C, then C’ is in C. Clearly if C has submodules, then C has images. Also it is 
obvious that C has submodules if and only if D(C) has factor modules. 

If C is an arbitrary subcategory of mod /l, then the collection of modules M 
such that there is an injection M + C with C in add C is easily seen to be an 
additive subcategory of mod A with submodules which we denote by Sub C. 
Obviously C C Sub C and C = Sub C if and only if C is an additive subcategory 
of mod fl with submodules. In particular, if M is a module, we will denote 
Sub add M more simply by Sub M. 

We now state without proof the dual of Proposition 4.6. 

PROPOSITION 4.7. Suppose C is an additive subcategory of mod A with sub- 

modules. 

(a) C has a$nite cover so mod A is covariantly Jinite over C. Hence C has a 
preprojective partition and left almost split morphisms. 

(b) C has a jinite cocovey if and only if C = sub C for some C in C. 

(c) mod A is functorially jinite over C if and only if C = Sub C for some C 
in C. 

In the course of proving Propositions 4.6 and 4.7 we implicitly proved the following 
,which we now state without proof. 

PROPOSITION 4.8. Let I1 ,..., I, and P1 ,..., P, be complete sets of nonisomorphic 

indecomposable injective and projective modules respectively and let C be an additive 
subcategory of mod A. 

(a) Suppose C has factor modules. 

(i) Each A-module M has a unique maximal submodule TV in C. 
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(ii) For each A-module M. the inclusion T,(M) + M induces an isomorphism 
(C, T,-(M)) + (C, M)for all C in C. 

(iii) I,(C) consists of the nonzero modules isomorphic to ~~(I~)forj = I,..., n. 

(iv) I f  C, ---f C, is an injection in C, then (C, , V) ---f (C, , V) is surjective 
for all V in add IO(C). 

(b) Suppose C has submodules. 

(i) Each A-module M has a unique submodule MC minimal with respect 

to M/MC being in C. 

(ii) The canonical morphism M --f M/MC has the property that (M/M, , 
C) ---f (M, C) is an isomorphism for all C in C. 

(iii) P”(C) consists of the nonzero modules isomorphic to P,/(P& for some 
i = l,..., n. 

(iv) I f  C, + C, is a surjection in C, then (U, C,) --) (U, C,) is surjective 

for all U in add P,,(C). 

As a corollary to this proposition we want to point out the following. 

COROLLARY 4.9. Let C be an additive subcategory of mod A. 

(1) Assume C has factor modules. Then the functor M + T,-(M) is the right 
adjoint of the inclusion from C to mod A. 

(2) Assume C has submodules. Then the functor M + M/MC is the left 
adjoint of the inclusion from C to mod A. 

Finally we point out the following connection between arbitrary categories 
closed under images and those closed under submodules and factor modules. 

PROPOSITION 4.10. Let C be an additive subcategory of mod A. Then 

(i) C has images if and only if C = Sub C n Fat C. 

(ii) C has images and a fkite cover if and only if C = Sub C n Fat M 
for some M in mod A. 

(iii) C has images and a finite cocover if and only if C = Fat C n Sub M 
for some M in mod A. 

(iv) C has images and afkite cover and cocover if and only if C = Sub M n 
Fat Nfor some M and N in mod A. 

Proof. The proof of this is straightforward and left to the reader. 

5. PRBPROJECTIVE AND PREINJECTIVE MODULES 

Let, as usual, mod A denote the category of finitely generated modules over 
the artin algebra A. Let C be a subcategory of mod A. We recall from Section 3 
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that C is said to have a preprojective partition if there exists a partition Pi , 

i = 0, l,..., co, of ind C, the category of indecomposable modules in C, satis- 
fying the following properties. 

(i) UTZOPi = indC. 

(ii) P,nP, = 0 wheni #j. 

(iii) Pi is finite when i < CO and is a minimal cover for Uj”=i Pj . 

An indecomposable module A in C was defined to be preprojective in C if 
A E Vi,+ Pi and a module M in C was defined to be preprojective in C if 
ME add Uicm Pi . We denote by P the subcategory of ind C consisting of the 

indecomposable preprojective modules. 
Dually, C is said to have a preinjective partition if there exists a partition Ii , 

i = 0, 1, 2 ,...) co, of ind C satisfying the following properties. 

(i) Uy=, Ii = ind C. 

(ii) Ii n Ij = @ when i # i. 

(iii) Ii is finite when i < co and is a minimal cocover for (JTZi Ij . 

A module M in C is defined to be preinjective if 1%’ is in add Uii?, Ii . We 
denote by I the subcategory of ind C consisting of the indecomposable preinjective 

modules. 
Our main purpose in this section is to give various characterizations of the 

preprojective and preinjective modules as well as some structure theorems for 
these types of modules. 

Before going on we recall the definition of the trace of a subcategory C in 

mod /l in a module M. Let A and B be two finitely generated /l-modules, then 
Q(A) is defined to be the submodule of A generated by {Imf 1 f  E Hom(B, A)). 
Similarly, if A is a finitely generated /l-module and C is a subcategory of mod fl, 
then T,(A) is defined to be the submodule of A generated by (Imf ; f  E Hom(B, 
A), B E C}. Observe also that T~( ) is a subfunctor of the identity functor. 

We now start out with the following characterization of the preprojective 

modules. 

THEOREM 5.1. Let C be a subcategory of mod A having apreprojectivepartition 
denoted by Pi, i = 0, 1, 2,..., co. The following are equivalent for an indecom- 
posable module A in C. 

(i) A is preprojective, i.e., A E P = vi<= Pi 

(ii) There exists an n < 00 such that A E P, . 

(iii) There exists an n < 00 such that if there is a nonsplittable surjective 
morphism B --f A in C, then B has a summandfrom (Jr:: Pi . 

(vi) There exists a Jinite subcategory A of ind C such that zf there is a 
nonsplittable surjective morphism B - A in C, then B contains a summand iso- 
morphic to a module in A. 
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(v) There exists a simple module S and a nonxero morphism f: A -+ S 
such that 7&,(A) C Ker f  for all but a finite number of modules M in ind C. 

(vi) (Jicr Tag # A [T.(A) = 0 by definition]. 
(vii) TPJA) f  A. 

Proof. WC want to prove the theorem by proving (i) > (ii), (ii) > (iii), 
(iii) z* (iv), (iv) 2 (v), (v) 3 (vi), (vi) 3 (vii), and (vii) * (i). 

(i) * (ii). This is just the definition that P = uicrn Pi . 

(ii) =- (iii). Let B - A be a nonsplittable surjective morphism in C. 

By (ii) there exists an n such that A E P, . Eut then A is an indecomposable 

splitting projective module in uTzn Pi . Therefore, since B + A is a non- 
sphttable surjcctive morphism B is not in add (Jy==n Pi and hence has to contain 
a summand isomorphic to a module in &i Pi . 

(iii) 2 (iv). Let B + A be a nonsplittable surjective morphism in C. 
Then by (iii), B contains a summand of U&alPpi for some n < cc depending 
only on A. Each Pi , i < co, is finite so UylOIPi is finite and hence (iv) follows. 

(iv) => (v). To prove this, assume A is a finite subcategory of ind C such 
that for each nonsplittable surjective morphism B -j A in C, B contains a 
summand isomorphic to a module in A. Let A’ = 7&A) where C’ = ind C - 

((A) u A). ‘Vl’e now claim that A’ # A. Assume for a moment that this was 
proven. Let 4” be a maximal submodule of A containing A’. Then TV C 
,4’ C -3” for all M in ind C which are not in A u {A} and A v  {A} is a finite 

subcategory of ind C. Hence TV C Ker f  for all but a finite number of 
modules >I2 in ind C where f: A --j A/A” = S is the natural surjective mor- 
phism. 

This shows that if we are able to prove A’ # A we have proven (vi) 3 (v). 
Assume to the contrary that A’ = .4. Then there exists a B in add C’ and a 

surjective morphism B + A which is not a splitting surjective morphism since 
A is not in C’. Hence B has to contain a summand isomorphic to module in A. 
This is a contradiction since A n C’ = E. 

(v) ma (vi) Assume there exists a simple module S and a nonzero mor- 
phism f: 24 --) S such that T,,,(A) C Kerf for all but a finite number of modules 
M in ind C. Under this hypothesis we want to prove Uz.,= rp,(4) + A. 

Assume to the contrary that &, Tag = A. Then Tag c Kerf fo: any 
i < CO. Hence, for each i, there exists an indecomposable module Bi in Pi such 
that ~~~(4) @ Ker f. S ince the Pi are disjoint, the Bi are all nonisomorphic. 
This is contradiction and proves (v) =- (vi). 

(vi) * (vii). By assumption n. t<m TV, $ A but then TV% f A 
since ~~~(4) C TV, for all i < co. 

(vii) =- (i). This is trivial. 
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Before we state the dual result we want to introduce the dual of the trace, 
called the cotrace, which is a quotient functor of the identity functor. 

Let A and B be in mod (1. Then the cotrace Co TV of B in A is A/A’ 
where A’ = n {Kerf 1 f E (A, B)}. Now this quotient is determined by A’ and 
A’ = (J {Ker f ( f  E (A, B)} is denoted by Rej,(A), the reject of B in A. Similarly if 

A is in mod (1 and B is a subcategory of mod (1, Rej,(A) is defined to be n {Kerf / 
f E (A, B), B E B} and Co Q(A) = A/Rej,(A). The Rej,( ) is a subfunctor 
of the identity functor on mod/l. The reject is not the dual of the trace, but 
rather the kernel of the map from the identity onto the cotrace and hence all 
statements about the cotrace may be transformed into statements about the 

reject. This justifies that we are using the trace and reject in dual statements 
even though the reject is not the formal dual of the trace. Ry definition, 
Rej .(A) = A. 

We now state the dual of Theorem 5.1. 

THEOREM 5.2. Let C be a subcategory of mod A having a preinjective partition 

denoted by Ii , i = 0, 1, 2 ,..., 00. The following are equivalent for an indecomposable 

module A in C. 

(i) A is preinjective, i.e., A E I = uicr, Ii . 

(ii) There exists an n < co such that A F I, . 

(iii) There exists an n < co such that zf there is a nonsplittable injective 
morphism A ---f B in C, then B contains a summandfrom UyLi Ii . 

(iv) There exists a Jinite subcategory of indecomposable modules A of C such 

that if there is a nonsplittable injective morphism A + B in C, then B contains a 
summand isomorphic to a module in A. 

(v) There exists a simple module S and a nonxero morphism f : S + ,4 
such that f(S) C Rej,(A) for all but a Jinite number of indecomposable modules 

B in C. 

(vi) The submodule A’ of A generated by RejIi(A), i < ~1 is dz#erent 

f rom zero. 

(vii) Rej,=(A) # 0. 

Proof. The proof of this theorem is dual to the proof of Theorem 5.1 and is 

left to the reader. 
Let C be a subcategory of mod /1 having a preprojective partition. We have 

seen in Theorem 5.1 that the submodules A,, = ni,, rPi(A) and A4A = rPm(A) 
determine whether an indecomposable module A in C is preprojective or not. 
Since T*( ) is a subfunctor of the identity functor on mod /l for any subcategory 
A we know that T*(M u M’) = TV u ~~(44’). From this observation with 
a similar remark for the reject the following consequence of Theorems 5.1 
and 5.2 telling when an arbitrary module M has a preprojectivc Or preinjective 
summand respectively. 
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COROLLARY 5.3. Let C be a subcategory of mod A. 

(a) Assume C has apreprojectivepartition and let M be a module in C. 

Then the following are equivalent. 

(i) M has a preprojective summand. 

(ii) MO = niio TV< f  M. 

(iii) Mi = Q-~,(M) # M. 

(b) Assume C has a preinjective partition and let M be a module in C. Then 
the following are equivalent. 

(i) M has a preinjective summand. 

(ii) The submodule M’ of M generated by Rej,<(M) i < a is d@nent 

f rom zero. 

(iii) Rejlm(M) # 0. 

Proof. This is a direct consequence of Theorem 5.1 and Theorem 5.2, 
respectively. 

We are now going to study the submodules A,, = nicrn rPi(A) and Ai = 
Tag of an indecomposable preprojective module A in a subcategory C of 
mod A having a preprojective partition and give different characterizations of 

them. 

LEMMA 5.4. Let C be a subcategory of mod A having a preprojective partition 

and let A be an indecomposable preprojective module in C. Then Ai = rpm(A) C 

4, = f&n ++9 

Proof. Observe that for each module M in P, and i < co there exists a 
module n/ri in add P, and a surjective morphism fi: Mi + M. Therefore 
Tag C Tag for all i < co which completes the proof of the lemma. 

PROPOSITION 5.5. Let C be subcategory of mod A having a preprojecthle 

partition and let M be a module in C. Then M,, = &, rpi(M) is characterized 
by each of the following properties. 

(i) M0 is the unique minimal submodule of M containing rt,(M) for all but 
a finite number of indecomposable modules B in C. 

(ii) MO is the unique minimal submodule of M such that for all but a fkite 
number of indecomposable modules B in C there exists no nonzero morphism to 
M/M,, factoring through the natural morphism M -+ M/M, . 

Proof. (i) First we observe that there is a unique minimal submodule M’ 
such TV C M’ for all but a finite number of indecomposable modules in C 
since the set of submodules of f l f  with this property is closed under intersections. 
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Now let Ni = To,. Then IV,, 3 .IV, 3 IV2 3 ... is a descending chain of 
submodules of M, hence stops say at k < co, since M is artinian. Then TV C 

iVk = I%$ for all B in (JFzk Pi . Hence M,, 3 M’. We now want to prove that 
this is an equality. Assume to the contrary that this inclusion is proper. Then 
7si(M) p M’ for any i < 03, hence there exist infinitely many B in ind C with 

TV ($ M’ since P, n Pj = o when i + i. This is a contradiction and hence 
M’ = MO. 

(ii) This is just a reformulation from submodules to kernels of morphisms. 

If  we assume that the subcategory C of mod fl with a preprojective partition 
is also closed under images, there are some other characterizations of the sub- 

module M0 L fiicm TV+ for a module M in C. 

PROPOSITION 5.6. Let C be a subcategory of mod A closed under images and 
having a preprojective partition. Let M be a module in C. Then the following are 
true f07 MO = nicx Tag. 

(i) Mo is in C and is the unique minimal submodule of M such that r8(M) C 

for all but a$nite number of modules in ind C. 

(ii) Ma = Q-~,(M). 

(iii) M, is the unique submodule of M maximal with respect to the properties 
that it is in C and does not contain any preprojective summands. 

Proof. (i) Since C is closed under images we have that MO is in C. The rest 
is just Proposition 5.5.(i) 

(ii) Since nicm ~pi(Mo) = fLm pi 7 (M) = M0 and Mo E C, we have by 

Proposition 5.3 that M,, does not contain any preprojective summands. Hence 
Icl, 3 Tag. The other inclusion is clear from Lemma 5.4. 

(iii) Since add P, is closed under images it is clear that there exists a 
unique submodule M’ of M maximal with respect to the property that M’ is in 
C and without preprojective summands. Now the claim that this submodule is 

M0 follows trivially from (ii). 

COROLLARY 5.7. Let C be a subcategory of mod A having a preprojective 
partition, let A be a preprojective module in C, and let A,, = nicrn TV*. 

(i) Let M be a module in C. Now, if there exists an f: M---f A such that 
Tm f Q A,, , then M contains a preprojective summand. 

(ii) A,, = 0 if and only if there is only a finite number of nonisomorphic 
indecomposable modules B in C such that Hom(B, A) + 0. 

(iii) rf C . 1 d d is c ose un er submodules, then any submodule of A not contained 
in A, contains a preprojective summand. In particular, if x + A, , Ax, the submodule 
generated by x, has a preprojective summand. 
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Proof. The proof is left to the reader. 
We now want to collect the dual statements of Proposition 5.5, Proposition 

5.6, and Corollary 5.7 in one proposition for a subcategory C of mod A having 
a preinjective partition. 

PROPOSITION 5.8. Let C be a subcategory of mod A having a preinjective 
partition and let M be a module in C. Let MO = xi+ Rej,i(M) be the submodule 
of Mgenerated by all Rej,*(M), i < co. 

(a) Then each of the following properties characterizes MO. 

(i) MO is the unique maximal submodule of M contained in Rej,(M) for all 
but a$nite number of nonisomorphic indecomposable modules B in C. 

(ii) MO is the unique maximal submodule of M such that for all but a finite 
number of nonisomorphic indecomposable modules B in C there exists no nonzero mor- 
phism MO to B factoring through the inclusion MO + M. 

(b) IfC in addt z ion to having a preinjective partition is closed under images 
we have that 

(i) MO = Rej,(M) and M/M0 is in C. 

(ii) MO is the submodule of M minimal with respect to the property M[Mo is 
in C and does not contain any preinjective summands. 

(c) Let A be a preinjective module in C. 

(i) I f  B is a module in C and there exists a morphism f: A + B with A0 q 
Ker f,  then B contains a preinjective summand. 

(ii) A0 r A if and only if there are only a j?nite number of nonisomorphic 
indecomposable modules B in C such that Hom(A, B) # 0. 

(d) rfC. 1 d d f  t ts c ose un er ac ors and A is a presnjective module in C and x 
an element of A such that A0 Q Ax, th e submodule of A generated by x, then A/Ax 
has a preinjective summand. 

Assume now that C is a subcategory of mod (1 which is closed under images 
and having a preprojective partition. We then know by Theorem 4.5(b) that 
mod A is covariantly finite over C and hence C has left almost split morphisms. 
We are now able to characterize the indecomposable modules in C which are 
summands of A, = n. l<io TV. for some preprojective module A in C in terms , 
of these minimal left almost split morphisms. 

PROPOSITION 5.9. Let C be a subcategory of mod A closed under images and 
having a preprojective partition. Let B be a module in P, and let B + M be a 
minimal left almost split morphism. Then B is a summand of A, = ni,, rP,(A) 

for some preprojective module A if and only if M contains a preprojective summand, 

481/66/I-7 
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Proof. Observe that we may assume that A is an indecomposable preprojective 
module. Suppose that B in P, is a summand of A, for an indecomposable pre- 
projective module A. Then the composed morphism B + A,, -+ A is not a 
splittable injective morphism and can therefore be factored through the minimal 
left almost split morphism B + M. We then get the diagram 

B---+M 

If Im f C A, , B + M will be a splittable injective morphism since B -+ A, is a 
splittable injective morphism. This is a contradiction, hence Imf Q A, and 
therefore by Corollary 5.7(i), M contains a preprojective summand. 

For the other implication, assume B is a module in P, and M contains a 
preprojective summand where B -+ M is a minimal left almost split morphism. 
Decompose M as M’ IJ A where A is an indecomposable preprojective summand 
of M. Then the image of the composed morphism B --+ M + A is in A,. 
Hence, the minimal left almost split morphism B --+ M can be factored to give 
the commutative diagram 

B-M 

i 

M’ LIAo 

Since the morphism B -+ M is not a splittable injective morphism, the induced 
morphism B -+ M + M’ is not a splittable injective morphism either. 

Now look at the induced morphism B -+ M’ fl A, . If this morphism is not 
a splittable injective morphism we get a commutative diagram 

B-M 

But B + M a left minimal morphism; hence, this is a contradiction since A, # 
A. This shows that B -+ M’ IJ A, is a splittable monomorphism. Since B is 
indecomposable, the induced morphism B + M’ u A, ---f A, has to be a 
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splittable monomorphism, since the induced morphism B --t M’ u A, -+ M’ is 
not. This completes the proof of the proposition. 

The dual statement is as follows. 

PROPOSITION 5.10. Let C be a subcategory of mod fl closed under images and 
having a preinjective partition. Let B be a module in I, and let M ---f B be a minimal 
right almost split morphism in C. Then B is a summand of AlAo for a preinjective 

module A if and only if M contains a preinjective summand. 

As the final general result in this section we have the following. 

PROPOSITION 5.11. (i) Assume C is a subcategory of mod A having a pre- 
projective partition. If  ind C is infinite, then there is no bound on the length of the 
preprojective modules in ind C. 

(ii) Assume C is a subcategory of mod A having a preinjective partition. 
If  ind C is injinite, then there is no bound on the length of the preinjective modules 
n ind C. 

Proof. We will prove (i). (ii) follows by duality. 

(i) Let Pi , i = 1, 2 ,..., co, denote the preprojective partition of C. Since 

for all n, P, is a cover for uz=n Pi , we can get for all n < cc a chain of epimor- 
phisms PO --f P1 -+ ... + P, with Pi in add P, . This gives that for each n there 
exists chains of maps Pi --f Pi -+ Pi --t ... + Pk with each Pi E Pi i = 0, 

1 ,...> n and the composition of the maps nonzero. Since Pi n Pj = o if i # j, 

the maps Pl -+ Pl+l are not isomorphisms. Then using the following Lemma 
of Harada and Sai [13] we get our desired result. 

LEMMA 5.12. Let A be any ring and {M~}i=l,z ,... a collection of indecomposable 
modules of length less than or equal to m and let fi: Mi --f Mi,l be nonisomorphisms 
between these modules. Then there exists an m’ such that fmf 0 ... 0 fi 0 fi = 0. 

6. SUBCATEGORIES OF FINITE TYPE 

Throughout this section C will denote a subcategory of mod /l closed under 
images and having both a preprojective and a preinjective partition denoted by 
Pi , i = 0, I,.. ., co, and Ii , i = 0, I,..., co, respectively. 

The main purpose of this section is to use the results of Section 5 to give 
characterizations of when C is of finite type in terms of the preprojective and 
preinjective partitions of C. The main result is the following. 
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THEOREM 6.1. The following are equivalent for C. 

(i) C is of finite ty$e. 

(ii) I, = @. 

(ii’) P,=B. 

(iii) All modules in C aye preinjective in C. 

(iii’) All modules in C are preprojective in C. 

(iv) All preprojective modules in C are preinjective in C. 

(iv’) Allp rein’ec j t ive modules in C are preprojective in C. 

(v) All preprojective modules in C which are quotients of some module in P, 
aye preinjective in C. 

(v’) All preinjective modules in C which are submodules of some module 
in I, are preprojective in C. 

Proof. The proof of the theorem will go as follows: (i) * (ii) * (iii) 3 
(iv) + (v) => (i). The proof of the rest is then the dual cycle and is left to the 
reader. 

(i) 3 (ii) is trivial since C is of finite type. 

(ii) * (iii). This is just the definition of I, . 

(iii) * (iv). Th is o f 11 ows directly from the fact that if every indecomposable 
module in C is preinjective, then every preprojective module in C is preinjective. 

(iv) 3 (v) is also a triviality. 

This leaves only (v) * (i) which will be proven after some intermediate 
results occupying the rest of this section. 

Associated with C we have for each n = 0, 1, 2,..., n < co the subcategories 
P” = (Jicn PI and I” = Uicn I, , andforn=coletPm=P=(Ji+,Piand 
Im = I = Ui<m Ii . N ow CPn and Cr, denote as usual the subcategories of C 
consisting of modules without summands from P” = Uicn Pi and In = Uicn Ii , 
respectively. Since P” = (Jicn Pi and 1” = (Jicn I$ are finite for all n < 00, 

C r,n and CIn have their own preprojective and preinjective partitions which we 
will denote by Pi(CPn), I$(&), Pi(Crn), and II(CIn), i = 0, 1, 2,..., 03, respec- 
tively. In order not to make the statements too complicated we will only deal 
with the subcategories Cr, , n < co since the results for Cpn will follow by 
duality. 

PROPOSITION 6.2. Let C be as before. 

(i) Let A be any module in C, let B be a module in Cs,, for some 

n = 0, l,..., co,andletf:A-+Bbeamorphism.ThenImf~C~,. 

(ii) CI,, has a preprojective partition for n = 0, l,..., co and also a pre- 
injectivepartition if n < co. 
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Remark. In the next section we will show that CIm does not have any pre- 
injective partition if CIm is nonempty. 

Proof. (i) Let f: A -+ B be a morphism with A in C and B in Cr” . Then 
Im f is in C since C is closed with respect to images. Assume for a moment that 
Im f contains a summand M’ from I”. The composed morphism M’ + Im f ---f B 
is a nonsplittable injective morphism since B does not contain any summand 
from I”, but then we know by Theorem 5,2(iii) that B has to contain a summand 
from I”, which gives us the desired contradiction. 

(ii) If n < co, then 1” is a finite category and hence by Lemma 3.12, 
1” is nilpotent. Proposition 3.13(iii) then states that C is functorially finite over 
C,, and hence Cr, has both a preprojective and a preinjective partition. 

To prove the rest of (ii) we will use Theorem 4.5(b) which says that if a sub- 
category of mod n is closed under images and has a finite cover, then mod/l 
is covariantly finite over C and hence C has a preprojective partition. From 
part (i) of the proposition we have that Cr is not only closed under images but 
also contains Im f if f  : A -+ B is a morphism in mod /l with A E C and B in Cr . 
Now let PO be the sum of a complete set of nonisomorphic modules in P, . 
It is not hard to see that add(P,/RejrmP,) is a finite cover for Cr = add I, . 
This then together with Theorem 4.5(b) completes the proof of the proposition. 

We now study the minimal covers for CF as n varies and find some relations 
between them. Before we start we make the following definition. 

DEFINITION. Let A be a finite subcategory of ind /l. Define Z(A) to be C Z(A) 
where the sum is taken over a complete set of nonisomorphic objects A in A and 
Z(A) denotes the length of the module A. 

PROPOSITION 6.3. Let C be as before. Then P, is a cover for Cl0 zf and only 
if P, n I, = @. Moreover, ;f P, n I, # @, then ZP, > Z(P,(C,J) and the 
modules in P,(CrO) are quotients of modules in P, . 

Proof. The proof of the first assertion in the proposition is trivial. 
To prove the second one, assume P, n I, rf a. Then we know that P, , the 

sum of a complete set of nonisomorphic modules in P, , contains a summand 
from I,. Hence A = Rej u~Go=,Ii PO f 0. Further, by Proposition 6.2(i) we know 
that PO/A E CrO since PO/A is the image of morphism f :  PO + M with M in 
CrO . Since all modules in CrO are quotients of a direct sum of copies of PO and 
A C Ker g for all morphism g: P,, + C with C in Cro , we have that all modules 
in CrO are quotients of sums of copies of P,,/A. Therefore, add(P,/A) is a finite 
cover for CrO and the first claim follows from the inequalities Z(P,) = Z(P,) > 

Wol4 2 w&d). 
Since the Re$ is a subfunctor of the identity functor, we know that A = 

Rejcl,(P,,) is mapped to itself by all morphisms f: PO ---f PO . Therefore every 
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indecomposable summand of Pa/A is a quotient of a module in P, . This finishes 
the proof of the proposition. 

As a corollary to this proposition we have the following. 

COROLLARY 6.4. Let C be as before. Then 

(9 Pw4) 3 PoG+~N with equality ;f  and only if P,,(C,,) = 
P&p+‘). 

(ii) For n < co, Z(P,(C,,)) > Z(P,(C,n+l)) if and only ifP&,,) n I, # @ . 
(iii) For n < 03, P,(C,,) is a minimal cover for Cp for all k >, n if and only if 

P,(C,,) n Ik = o for all n < k < co. 

Proof. (i), (ii), and (’ ) iii are all trivial consequences of the proposition. 
We are now in position to complete the proof of Theorem 6.1 by proving (v) 

implies (i), the last unproven implication. To do this, we assume all preprojective 
modules in C which are quotients of some module in P, are preinjective and 
show that C is of finite type. 

By Proposition 6.3 we have that the modules in P,,(C,,) are all quotients of 
modules in P, for all k < co. Further all these modules are preprojective in C 
by Theorem S.l(iii) since 1’” is finite when k < 00 and therefore by the assump- 
tion also preinjective. This is then the same as saying that P,(C,,) n (uncicrn Ii) # 
0 for all 12 < co, which by Corollary 6.4(iii) is the same as saying that there 
exists no n < co such that P,,(C,,) is a minimal cover for C$ for all k 2 n. 

This shows by Corollary 6.4(i) that there is no lower bound greater than zero 
for Z(P,(&)). This then implies that Z(P,(C&)) = 0 for some n < CO and hence 
ind C = 1% for some n < co which proves that C is of finite type. This completes 
the proof of the theorem. 

7. THE CATEGORIES P, AND I, 

In Section 6 we were studying subcategories of mod A closed under images 
with preprojective and a preinjective partition and characterized those of finite 
type. We will also in this section assume that C is a subcategory of mod (1 closed 
under images and with a preprojective and a preinjective partition denoted by 
Pi ) i = 0, l,..., co, and Ii , i = 0, l,..., co, respectively. Contrary to Section 6 
we will now be mainly interested in the case where C is of infinite type. We will 
be especially interested in properties of the subcategories P, and I, of C. 

In Proposition 6.2(ii) we showed that C, = addI, has a preprojective parti- 
tion and, by duality, that Cp = addP, has a preinjective partition. We will 
now show that C1 does not have a preinjective partition and C, does not have a 
preprojective partition. 

PROPOSITION 7.1. Let C be as before and assume C is of infinite type. Then 
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(i) Cp does not contain any splitting projective modules and hence no monimal 
cever. 

(ii) C, does not contain any splitting injective modules and hence no minimal 
cocever. 

Proof. We will prove (i). ( ii ) f  11 o ows then by duality. Since C is closed under 
images and has a preprojective and preinjective partition, mod fl is functorially 

finite over C by Theorem 4.5 and hence C has both left and right almost split 
morphism. P, is nonempty by Theorem 6.1 so let A be a module in P, and 
look at the right almost split morphism M -+ A in C. Since A is in P, we know 

that for each i = 0, 1, 2,... there exists a nonsplittable surjective morphism 

fi: Pi -+ A with Pi in add(Pi). Th ese morphisms factor through the right almost 
split morphism M + A. Let n/l, = &, TV< which is in Cp by Proposition 
5.6(i) since C is closed under images. This implies that there exists a k < co 

such that fi: P, + A factors through the composed morphism M0 -+ M + A 
for all j > K. From this we get that n/r, + A is a surjective morphism in Cp . 
Since the morphism M --f A is not a splittable surjective morphism, it follows 
that M0 + A is also not a splittable surjective morphism. This shows that A is 

not a splitting projective in Cp . Since A was an arbitrary module in P, = 

ind Cp we have shown that Cp does not contain any splitting projective modules. 
This also shows that Cp does not have a minimal cover since all modules in a 
minimal cover are splitting projectives by Theorem 3.4(a). The first part of the 
proposition is now proven. The second part follows by duality. 

As a consequence of Proposition 7.1 we have: 

COROLLARY 7.2. Let C be as before. Then the following are equivalent. 

(i) C is of injkite type. 

(ii) P, # m. 

(ii’) I, # 0. 

(iii) P, is of infinite type. 

(iii’) I, is of infinite type. 

Let C be as before and of infinite type. From Proposition 6.2 we know that Cp 
has a preinjective partition and by duality C, has a preprojective partition. 
Denote these by I,(P,), i = 0, l,..., co, and P,(I,), i = 0, I,..., co, respectively. 
From Proposition 7.1 we know that P, does not contain any splitting projective 
modules and hence has no preprojective partition and I, does not contain any 
splitting injective modules and hence has no preinjective partition. Some 
natural questions in this situation are 

(i) I f  I,(P,) is different from zero, does it contain any splitting projective 
or splitting injective modules ? 
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(i’) If P,(I,) is different from zero, does it contain any splitting injective 
or splitting projective modules ? 

(ii) What is the relation between I,(P,), P,(I,) and P, n I, ? 

We know that all preinjective modules M in C which are in P, are preinjective 
in P, . The problem is, can there be any other preinjective modules in P, 
except those which are already preinjective in C? The next proposition deals 
with this problem and gives a necessary condition for this to happen. 

PROPOSITION 1.3. Let C be as before and of infinite type. 

(i) I f  there exists a module M in P, which is preinjective in P, but is not 
preinjective in C, then there exist inJinitely many indecomposable nonisomorphic 
modules A in C which are both preprojective andpreinjective in C. 

(ii) I f  there exists a module N in I, which is preprojective in I, but is not 
preprojective in C, then there exist infkitely many indecomposable nonisomorphic 
modules B in C which are both preprojective and preinjective in C. 

Proof. (i) Let M be a preinjective module in P, which is not preinjective 
in C. Then for each i = 0, 1, 2 ,... there exists a module Bi in add I+ and an 
injective morphism f : M - Bi . Bi and Bj have no common summands if i f j, 
therefore only a finite number of the Bi are in Cp = add P, , i.e., all but a 
finite number of the B, contains a preprojective direct summand which then is 
both a preprojective and a preinjective module in C. 

(ii) Dual to (i). 

THEOREM 7.4. Let C be as before of infinite type satisfying one of the following 
conditions. 

(i) I f  A is a preprojective module in ind C and A + B is a minimal left 
almost split morphism in C, then all summands of B are preprojective. 

(ii) I f  C is a preinjective module in ind C and B - C is a minimal right 
almost split morphism, then all summands of B are preinjective. 

Under these hypothesis P,I, = I,P, = P, n I, . 

Proof. Assume C satisfies (ii). 
If now P,I, # P, n I, we know by Proposition 7.3 that there are infinitely 

many preprojective modules which are preinjective. Therefore by the assump- 
tion each minimal cover of mod fl,, contain a preinjective module. But then by 
Corollary 6.4 we know that l(P,,(Cr,)) = 0 for some n < cc and hence C is of 
finite type. This is a contradiction and therefore P,I, = P, n I, which 
finish the first part of the proposition. 

If now I,P, # P, n I, we know again by Proposition 7.3 that there are 
infinitely many preprojective modules which are preinjective, hence by the same 
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argument as above C has to be of finite type. This is again a contradiction 
and hence I,P, = P, n I,,, . 

We have now proven half of the theorem. The other half follows by duality. 
The rest of this section is devoted to applying some of our results to the 

situation that A = R, a commutative local artin ring and C = mod A. In 
particular, we develop several criteria for R to be Gorenstein, i.e., self-injective. 

To do this, we need a result from [lo] about the indecomposability of quotient 
modules of a sum of copies of the same module M. For the convenience of the 
reader, we state this result here. 

THEOREM 7.5. Let R be any ring with identity, A and B be two unitary 

modules and @ and $ be two homomorphisms from A to B satisfying the following: 

(i) Extl(B, I$): Extl(B, A) + Extr(B, B) is a monomorphism. 

(ii) I f  h is an idempotent endomorphism of A with @h = t@ for some endo- 

morphism t of B, then h = 0 or h = 1. 

(iii) If t is an endomorph&n of B with t$ = 0, then t is in the radical of 
End(B). 

(iv) For any f, g E End(B) and h E End(A) zff,b = g+ + $h, then f# = 0. 

(v) If f  E End(B) and f# = 0, then f+ = 0. 

Let g,:AUAU...UA~BUBUBU...UB (n copies of each) be 
given by the matrix 

! 4 0 0 * 0 ! 4 0 0 * 0 I$ 0 * 0 0 I$ 0 * 0 0 $ 0 0 0 0 $ 0 0 0 0 .” ‘.. “’ ‘.. .‘. .” ‘.. “’ ‘.. .‘. 4 0 0 0 y% 4 0 0 0 y% 4 0 0 0 0 4 0 0 0 0 1 1 

Then coker g, is indecomposable for all n E N. 
Now if R is a commutative local artinian ring and l(Soc R) >, 2, we know that 

there are two di@erent simple ideals in R. Let 4 and ~,4 be embeddings of R/r = S 
(r is the radical of R) into R such that 4(S) n #(S) = 0. Then it is clear that 4 
and 4 satisfy the conditions in Theorem 7.5 and we can use this to construct in$nitely 
many indecomposable modules. 

THEOREM 7.6. Let R be a commutative local ring. Then the following statements 
are equivalent. 

(i) R is self-injective. 

(ii) R is preinjective as an R-module. 

(iii) I, the indecomposable injective R-module, is preprojective. 
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Proof. I f  R is a commutative artinian ring, the duality D is a duality from 
mod R to mod R. This induces a duality between the preprojective and the 
preinjective R-modules. Hence (ii) is equivalent to (iii). 

(i) 3 (ii) is trivial. 

(ii) 3 (i). Assume R is preinjective in mod R. To show that R is self- 
injective it suffices to show that R has simple socle. Assume to the contrary 

that R does not have a simple socle. Then we can find morphisms $ and 4 from 
R/r = S to R satisfying the conditions of Theorem 7.5. So let g,: S u S U. 
... u S - /l JJ /l u ... u /l (n copies of each) be given by the matrix 

i I) + 0 0 $4 0 0 0 .‘. ..’ “. ... 0 4 0 * (b 0 0 0 
1 

Then by Theorem 7.5 coker g, is indecomposable for all n E N. Note also that 
the composed morphism 

(1 o... 0) RNRJJRU*..UR+cokerg, 

is a monomorphism. Hence R can be embedded in infinitely many nonisomor- 

phic indecomposable modules which gives the desired contradiction since R was 
assumed to be preinjective. Therefore the socle of R is simple. But then R C I 

(1 the indecomposable injective R-module) and the length of them are the same, 
soR =I. 

As a consequence of Theorem 7.6 we have: 

COROLLARY 7.7. Suppose R is a commutative local self-injective artinian ring. 
Then 

(i) r, the radical of R, is preprojective if and only if R is Nakayama. 

(ii) RISoc R ispreinjective if and only if R is Nakayama. 

Proof. (i) Suppose r, the radical of R, is preprojective. Then it is also a 
preprojective R/Sot R-module since Sot R . r = 0. But since r is an injective 

R/Sot R-module we have by Theorem 7.6 that R/Sot R is self-injective. It is 
well-known result that this is equivalent to the ring being Nakayama. 

The other implication is trivial since all modules in ind R are preprojective 
if R is of finite representation type and R is Nakayama if and only if it is of 
finite representation type. 

(ii) This is just the dual of (i) and left to the reader. 
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THEOREM 7.8. Suppose R is a commutative local artin ring and let ai = 

Rejri R. Then 

(i> a, = 0 for all n if R is not self-injective. 

11 

ring (“) 
a, = Sot R for all n > 1 if R is a self-injective ring and not a Nakayama 

‘(iii) a, = Socn R if R is a Nakayama ring where So? R = pk., Soc(R/ 

Soc+l R) with pnml the natural morphism R -+ RISoc+’ R. 

Proof. (i) Assume R is not self-injective. Then by Theorem 7.6, R as an 
R-module is not preinjective, and hence a, = Rej,,(R) = 0 for all n. 

(ii) Suppose R is a self-injective ring which’is not Nakayama. Then by 

Corollary 7.7(ii), R/Sot R is not preinjective and therefore a, = Sot R for all n. 

(iii) This follows since R/Sot” R is injective as R/Sot” R-module when 
R is Nakayama. 

It would be nice to know if a similar result holds for arbitrary indecomposable 
self-injective rings. 

8. THE PREPROJECTIVE AND PREINJECTIVE IRREDUCIBLE MAPPING PROPERTY 

In the rest of this paper we will deal with the preprojective and preinjective 
partitions of mod (1 which we know exist by Theorem 3.3. We will denote the 
preprojective partition by Pi, i = 0, l,..., 00, and the preinjective partition by 

Ii , i = 0, 1 ,..., co, throughout the rest of the paper. Some of the earlier results 

will also be restated for mod (1. Before we start we recall some constructions 
and notion from [6, 71. 

If  n is an artin algebra over the commutative artin ring R, we will let D denote 
the functor Hom( , &(R/rad R)) from mod (1 to mod flop, where (lop is the 
opposite ring of (1,& stands for the injective envelope, and rad R is the radical 

of R. D is a duality. Another way to obtain a module in mod /lop from a module 
in mod/l is by means of the following construction. Let M be a module in 
mod (1 and let PI --tf P,, + M -+ 0 be a minimal projective presentation of M. 
We now apply the functor Hom,( , fl) and we denote by Tr M the Cokernel 

of Hom,(f, /l). This gives a duality Tr: mod/l + mod flop, the transpose, 
where mod /l is the category mod /l modulo projectives. 

DEFINITION. An exact sequence 0 + A -+ B + C - 0 in mod fl is called 
an almost split sequence if 

(i) A and C are indecomposable, 

(ii) the morphism B + C is a minimal right almost split morphism. 

(iii) The morphism A + B is a minimal left almost split morphism. 
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From [6] we have the following existence and uniqueness theorem for almost 

split sequences. 

THEOREM 8.1. (a) Let C be a Jinitely generated nonprojective indecomposable 
A-module. Then there exists a unique up to isomorphism, almost split sequence 

0 + A + B -+ C -+ 0. Moreover A N D Tr C. 

(b) Let A’ be a$nitely generated noninjective indecomposable /I-module. Then 

there exists a unique up to isomorphism almost split sequence 0 -+ A’ ---f B’ + 
C’ + 0. Moreover C’ Y Tr DA’. 

Another notion taken from [7] which is closely connected to minimal left and 
right almost split morphism is that of irreducible morphism. 

DEFINITION. Let A and B be in mod d. A morphism f  : A + B is called an 
irreducible morphism if f is neither a splittable epimorphism nor a splittable 

monomorphism but whenever the diagram 

A f -+B 

commutes either g is a splittable monomorphism or h is a splittable epimorphism. 

The connection between irreducible morphisms and minimal left and right 
almost split morphisms is given in the next proposition taken from [7]. 

PROPOSITION 8.2. Let A be an indecomposable module in mod A. A morphism 

f : A + C is irreducible if and only if there exists a morphism f ‘: A -+ c’ such that 
the induced morphism A -+ C u c’ is a minimal left almost split morphism. A 
morphism g: B - A is irreducible if and only if there exists a morphisms g’: B’ + A 

such that the induced morphism B u B’ -+ A is a minimal right almost split 

morphism. 

. By using the notion of irreducible morphism we are now able to give a necessary 
condition on an indecomposable module A in mod /I to be preprojective. 

PROPOSITION 8.3. Let A be an indecomposable preprojective module in mod fl. 
Then there exist indecomposable modules A = MI , Mz ,..., Mk and irreducible 
morphisms M,+l -+ Mi , i = 1, 2 ,..., k - 1, with each Mi , i -= 2 ,..., k - 1, 
preprojective and M, projective. 

Note. This proposition can be strengthened to the result that the composition 
of the irreducible morphisms is nonzero, but we leave this out here since the 
proof is based on some other technics. 
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Proof. The proof goes by induction on i where A E Pi . If A E PO, A is 
projective and the result holds with k = 1 and Mr = A. Assume now that if 
B E Pi , i < 12, then there exists an integer K and indecomposable modules 
B = MI ,..., Mk with irreducible morphisms M,+l ---f Mi , j = I,..., k - 1, 
Mj , j = 2,..., k - 1, preprojective and Mk projective. Let A be a module in 
P %+r . A is not projective so the right almost split morphism C ---f A in mod /l 
is surjective and it is not a splittable surjection, hence C contains a summand 
from Pn-1 = uy:i Pi since A is a splitting projective module in (mod n),,-1 . 
Let B be such a preprojective module, then there exists an irreducible morphism 
B --f A and by induction hypothesis there exist indecomposable modules 
M; ,..., Mk and irreducible morphisms M?!+, + Mj , j = I,..., h - 1, with 
Mi = B, Mi preprojective for j = 2,..., K - I, and ML projective. Then 

M 1 ,..., J&+1 > where MI = A and Mj = Mi-, for j = k + l,..., 2, have the 
right properties. This completes the proof of the proposition. 

We know that in many cases the converse of Proposition 8.3 also holds. 
However, this is not true in general. Alperin [I] has shown that this is not the case 
for the group algebra F[A,] where F is an algebraically closed field of charac- 
teristic 2. It would be nice to know a classification of the artin algebras where 
Proposition 8.1 completely describes the preprojective modules; i.e., all artin 
algebras with the property that if A is an indecomposable preprojective module, 
B is an indecomposable module, and there exists an irreducible morphism 
A - B, then B is preprojective. We will say that an artin algebra with this 
property satisfies the irreducible mapping property for preprojective modules. 

In their work on the representation theory for hereditary tensor algebras, 
Dlab and Ringel [ll] defined an indecomposable module A to be preprojective 
if A = Tr DnP for some 71 E N (the natural numbers) and some indecomposable 
projective module P. In [5] Auslander and Platzeck proved that these modules 
could also be described as indecomposable modules A such that Hom(B, A) # 0 
for only a finite number of indecomposable modules B. They also showed that 
this was equivalent to the existence of indecomposable modules n/ri , i = l,..., k, 
with Mk projective, MI = A, and irreducible morphisms fi: M,,, + Mi . 

By now combining the result in Theorem 6.l(iv) specialized to mod fl and the 
result of Auslander and Platzeck, we obtain that the modules we have defined to 
be preprojective in mod fl coincide with Dlab and Ringel’s definition of pre- 
projective modules for hereditary artin algebras. Moreover, the second descrip- 
tion of these modules by Auslander and Platzeck shows that the hereditary 
artin algebras satisfy the irreducible mapping property for preprojective 
modules. 

We now state the dual result of Proposition 8.3, giving a necessary condition, 
on an indecomposable module A to be preinjective in mod fl. 

PROPOSITION 8.4. Let A be an indecomposable preinjective module in mod A. 
Then there exists indecomposable modules A = MI , Mz ,..., Mk and irreducible 
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morphisms Mi -+ Mi+l , i = I, 2 ,,.., k - 1, with each Mi , i = 1, 2 ,..., k - 1, 
preinjective and Mk injective. 

Proof. The proof is dual to the proof of Proposition 8.3 and is left to the 
reader. 

Again, the converse of Proposition 8.4 is not valid in general but holds in 

many cases. We will say that an artin algebra n satisfies the irreducible mapping 
property forpreinjective modules if whenever f  : A -+ B is an irreducible morphism 
between indecomposable modules A and B and B is preinjective, A is also 

preinjective. By the duality this is the same as flop (the opposite ring of /l) 
satisfies the irreducible mapping property for preprojective modules. 

PROPOSITION 8.5. Let A be an indecomposable preprojective module in mod A 
and let B be an indecomposable module with an irreducible morphism A ---f B. 
Then B or D Tr B is preprojective. Moreover, if A E P, and B is not preprojective, 

thenDTrBEPjforsomej<n-1. 

Proof. I f  B is preprojective, there is nothing to prove, so we may assume 
that BEP,, hence B, is not projective. Let A be in P, and look at the almost 
split sequence 

O+DTrB-tC+B-+O. 

Since we have an irreducible morphism A --f B, A is a summand of C. Since 

mod fl is closed under images and has both a preprojective and a preinjective 
partition, we know by Proposition 7.1 that add P, = Cp does not contain any 
splitting projective modules. Therefore there exists a nonsplittable surjective 
morphism F + B in Cp . Since C --f B is minimal right almost split, the sur- 
jective morphism F + B can be lifted to C. Hence we have a surjective morphism 
D Tr B UF + C. Composing this morphism with the splittable surjective 

morphism C -+ A which represents A as a summand of C, we obtain a non- 
splittable surjective morphism D Tr B JJ F --f A. Since A is a splitting projec- 

tive module in mod fl,, , D Tr B MF has to contain a summand from Pn-l- 
But all summands in F are in P,.; hence D Tr B is in P+l which completes the 
proof of the proposition. 

As a corollary to this proposition we have the following characterization 
of the case when .4 satisfies the irreducible mapping property for preprojective 
modules. 

COROLLARY 8.6. For an artin algebra A the following are equivalent. 

(i) A satisfies the irreducible mapping property for preprojective modules. 

(ii) Tr DB is preprojective for all noninjective indecomposable preprojective 
modules B. 
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Proof. (I) * (ii). Assume B is an indecomposable preprojective non- 

injective module in mod (1 and that (1 satisfies the irreducible mapping property 
for preprojective modules. If  0 + B + C - Tr DB --f 0 is an almost split 

sequence, we get by choosing any indecomposable summand C’ of C a chain 
of irreducible morphisms B ---t C’ -+ Tr DB with B’, C’, and Tr DB inde- 
composable. Hence C’, and therefore also Tr DB, is preprojective. 

(ii) =+ (i) Now assume Tr DB is preprojective for all indecomposable 

noninjective preprojective modules B and let f :  A + C be an irreducible 
morphism with A preprojective and C indecomposable. If  C is projective, 
there is nothing to prove, so we may assume C is not projective. Then by Propo- 

sition 8.5, C or D Tr C is preprojective. In particular by the hypothesis, C = 
Tr D(D Tr C) is preprojective since D Tr C is not injective. 

We now state the dual results for preinjective modules in mod (1 without 
proofs. 

PROPOSITION 8.7. Let A be a preinjective module and assume there is an 
irreducible morphism B + A with B indecomposable. Then B or Tr DB is pre- 

injective. Moreover if A E I, and B is not preinjective, then Tr DB E Ij for some 
j<?i-1. 

COROLLARY 8.8. For an artin algebra A the following are equivalent: 

(i) A satisfies the irreducible mapping property for preinjective modules. 

(ii) D Tr B is preinjective for all indecomposable nonprojective preinjective 
modules B. 

9. THE SUBMODULE A, OF A 

ln this section we continue our study of the preprojective and preinjective 
partitions of mod fl. 

In Theorem 5.1 we gave several characterizations of the preprojective modules 
for an arbitrary subcategory of mod/l which, of course, holds for the pre- 
projective modules in mod /1 itself. Keeping the same notation as in Section 5 we 
know that the submodule A, = n. z<m rPiA for an indecomposable module A 
plays an important role in determinating whether A is preprojective or not, and 
this submodule together with its dual will be studied in this section. At the end 
of this section we give some conditions on the preprojective modules which are 
equivalent to fl, being 0. 

We start out by recalling the different characterizations of the submodule A,, 
of a preprojective module A in mod /l. 
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THEOREM 9.1. Let A be a preprojective module in mod A and let A,, = 

r)i<m TP,W. Z'/WZ 

(i) A,, = TV, (T,(A) = 0 by defkition). 

(ii) A, is the unique submodule of A maximal among submodules A’ of A 
without preprojective summands. 

(iii) A, is the unique submodule of A minimal among submodule A’ of A such 
that T&A) C A’ for all but a finite number of indecomposable modules M in mod A. 

(iv) A, is the unique submodule of A minimal among submodules A’ of A 
such that for all but a finite number of modules B in ind A there is no nonxero 
morphism from B to A/A’ factoring through the natural morphism A --+ A/A’. 

From [4] we have the following way of calculating the length of a functor from 
mod A to Ab, the category of abelian groups. 

If F is a functor from mod A to abelian groups, then l(F) = C IF(A), where 
the sum is taken over all nonisomorphic indecomposable modules A in mod A 
withF(A) f 0 and IF(A) is the length ofF(A) as End(A)-module. In particular, 
if F is a factor of a representable functor, then Z(F) < co if and only if there are 
only a finite number of nonisomorphic modules A in ind A such that F(A) # 0. 
These observations enable us to reformulate parts of Proposition 9.1 as follows. 

PROPOSITION 9.2. Let A be a preprojective module in mod A and let A,, be as 
usual. Then the canonical surjection p: A -+ A/A, has the following properties: 

(9 W-4 , P>> -c 00. 

(ii) I f  f  : A + B has l(Im( , f)) < 00, then there is a unique morphism 

g: A/A,, -+ B such that f  = gp. 

Proof. The proof of this is straightforward and left to the reader. 
We can now write down some consequences of these propositions. 

COROLLARY 9.3. Let A be a preprojective module in mod A and let A,, = 

h<m TP#- 

(i) Let B be a submodule of A such that B Q A,, . Then B contains a pre- 
projective summand. 

(ii) I f  xEA and x$A,, then the submodule of A generated by x has a 
preprojective summand. 

(iii) A, = 0 if and only ;f Hom(B, A) # 0 for only a finite number of 
modules B in ind A. 

(iv) A, = 0 if and only if all submodules of A are preprojective. 

(v) A, = 0 if and only if I(( , A)) < 00. 

Proof. All these statements follows easily from the proposition. 
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Using Proposition 8.7 we give an analog of Proposition 5.9, characterizing 
the summands of the submodules A, of the preprojective modules A in mod A. 

PROPOSITION 9.4. Let B be in P, . Then B is a summand of A, for some 
preprojective module A if and only if Tr DB is preprojective. 

Proof. Let B be a noninjective module in P, and let 0 -+ B - M + 

Tr DB -+ 0 be an almost split sequence. Then we know by Proposition 5.9 
that B is summand of A, for a preprojective module A if and only if M contains 
a preprojective summand. But this happens if and only if there exist a preprojec- 
tive module C and an irreducible morphism C + Tr DB. By Proposition 8.7 
this happens if and only if Tr DB is preprojective. 

We have been studying the submodule A,, of a preprojective module A. By 
dualizing these results we get information about B” = xicrn Rejri(B), the 
submodule of B generated by Rejr.(B), i < cc, for preinjective modules B. 

PROPOSITION 9.5. Let B be a preinjective module in mod A and let B” = 

xi<m R&(B). Then 

(i) B” = RejrJB) (Rej o(B) = B by definition). 

(ii) B” is the unique submodule of B minimal along submodules B’ of B such 
that BIB’ does not contain any preinjective summands. 

(iii) B” is the unique submodule of B maximal among submodules B’ of B 

such that B’ C Rej,(B) for all but a finite number of indecomposable modules M 
in mod A. 

(iv) B” is the unique submodule of B maximal among submodules B’ of B 
such that for all but a $nite number of modules M in ind A there are no nonzero 
morphisms from B’ to M factoring through the natural inclusion B’ + B. 

PROPOSITION 9.6. Let B be a preinjective module in mod A and letB0 be as 
usual. Then the canonical inclusion i: B” + B has the following properties. 

(i) l(Im(i, )) < co. 

(ii) I f  f :  C 4 B is such that I(Im(f, )) < CO, then there exists a morphism 
g: C + B” such that f  = ig. 

COROLLARY 9.7. Let B be a preinjective module in mod A and let B” = 

Cica, RejIi(W 

(i) If B’ is a submodule of B such that B” @ B’, then BIB’ contains a 
preinj’ective summand. 

(ii) I f  x E B such that Bo q (x), then B/( x contains a preinjective summand ) 
where (x) denotes the submodule of B generated by x. 
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(iii) B” = B if and only if Hom(B, M) # 0 for only a finite number of 
modules M in ind A. 

(iv) B” = B ifand only tfl((B, )) < GO. 

The dual of Proposition 9.4 states: 

PROPOSITION 9.8. Let A be in I, . Then A is a summand of BIB0 where BO = 
xi+ Rej, B for a preinjective module B if and only if D Tr A is preinjective, 

We have been giving descriptions of the summands of A, for the preprojective 
modules A and the summands of B/B0 for the preinjective modules B. We will 
now take a look at the summands of A/A, for the preprojective modules A and 
the summands of B” for the preinjective modules B. 

Let A be a preprojective module and let P +f A/A, be a projective cover 
for A/A, . We have then that all nonzero morphisms from any module M in 
ind /1 which factors through f  factors through the natural epimorphism A + 
A/A,. I f  we denote by P(M, A/A,) the subgroup of Hom,(M, A/A,) consisting 
of morphisms factoring through a projective module, we get that all f  E P(M, 

A/A,) factor through the natural epimorphism A -+ A/A,. But from Proposi- 
tion 9.l(iv) we have that there are only a finite number of indecomposable 
modules M with a nonzero morphism M -+ A/A, which factor through the 
natural morphism A ---f A/A,. From this discussion we have the following 

proposition. 

PROPOSITION 9.9. Let A be a preprojective module, A, as usual, and P(M, N) 
be the subgroup of Hom,(M, N) consisting of morphisms factoring through a projec- 
tive module. Then P(M, A/A,) is d#erent from zero for only a Fnite number of 

modules M in ind A. Moreover ifP(M, A/A,,) # 0, then M ispreprojective. 

We do not know a complete characterization of the indecomposable modules 
occurring as summands of A/A, for the preprojective modules A in mod II, 
but we have a complete description of all indecomposable modules B such that 
P(M, B) is different from zero for only a finite number of indecomposable 
modules M in mod (1. 

PROPOSITION 9.10. Let M be a module in mod A. Then P(N, M) is d$ferent 
from zero for only a finite number of modules N in ind A if and only zf A, M = 0, 
where A, = ni+ 7p (A), i.e., l(P( , M)) < co if and only if A, . M = 0. 

Proof. Assume first that (1, . M = 0 and let P -+f M be a projective cover 
for M. Then we know that A, . P = niCrn Tag C Kerf. Hence, there is 
only a finite number of indecomposable modules N such that TV is not in 
Kerf, i.e., P(N, M) is different from zero for only a finite number of modules 
N in ind A. This finishes one of the implications. 
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For the other impIication, assume P(N, M) is different from zero for only a 
finite number of modules N in ind A and assume to the contrary that A, . M # 0. 

This is the same as saying that there exists a morphism f: A --f M such that 
A, q Kerf. But then for each i = 0, l,..., there exists a module N in Pi and a 

nonzero morphism g: N + 111 factoring through f, i.e., P(N, M) is different 
from zero for infinitely many modules N in ind A. This is a contradiction; 
hence A, . M = 0 which completes the proof of the proposition. 

COROLLARY 9.11. A, = 0 ;f and only if Z(P( , M)) < co for all modules M 
in mod A. 

For an hereditary artin algebra A, A,, = flicrn 7 pi (A) = 0 for all preprojective 
modules A in mod A. This shows that ind(mod(A/A,,) is by no means a complete 
characterization of the indecomposable modules occurring as summands of 
A/A,, for preprojective modules A in mod A. It would be nice to know if the 

summands of A/A,, for the preprojective modules A can be completely described. 
For instance, is it possible that these modules are the preprojective modules 
over A/& ? 

We now discuss when A, = 0. 

Let mod A be the category given by the following. The objects are the same 
as in mod A and if A, B E mod A, then Hom(A, B) = Hom(A, B)/P(A, B). 

Similarly, let mod A be the category given by the following: The objects are 
the same as in mod A and if A, B E mod A, then Hom(A, B) = Hom(A, B)/ 
I(A, B), where I(A, B) is the subgroup of Hom(A, B) consisting of morphism 
factoring through an injective module. 

From [6] we have the following. 

THEOREM 9.12. D Tr: mod A + mod A is an equivalence with inverse 
Tr D: mod A + mod A. 

In what is coming up we will need the following lemma. 

LEMMA 9.13. Let 0 + D Tr C -+ B -+ C + 0 be an exact sequence and 
assume l(P( , C)) < co and Z(( , D Tr C)) < co. Then I(( , C)) and I(( , B)) 
are also jkite. 

Proof. By Theorem 9.12, D Tr: mod A -+ mod A is an equivalence and we 
have therefore that D Tr: Hom(X, c) HG(D Tr X, D Tr C) for all X in 
ind A. Since I(( , D Tr C)) < co, we have that Z(Hom( , D Tr C)) < co and 
therefore also Z(Hom( , C)) < co. But, 0 -+ P( , C) + ( , C) + Hom( , C) + 0 
is exact so Z(( , C)) < co since l(P( , C)) and I(Hom( , C)) are finite. Finally, the 
exact sequence 0 + ( , D Tr C) -+ ( , B) + ( , C) gives that I(( , B)) < co. 

PROPOSITION 9.14. Let A be an artin algebra such that A, = 0. 



114 AUSLANDER AND SMAL0 

(a) The following are equivalent for a module A in ind A. 

(i) A is preprojective. 

(ii) l(( , A)) < 00 and if f  : B + A is an irreducible morphism then 

l(( , 4) < cJs* 

(iii) There exist an n and modules Mi , i = l,..., n, with M, projective, 
M,, w A, and irreducible morphisms fi: Mi --f Mi+l , i = l,..., n - I. 

(b) A satisfies the irreducible mapping property for preprojective modules. 

Proof. (a) That (ii) implies (i) follows directly from Theorem 5.l(iv) and 
that (i) implies (iii) is just Proposition 8.3. The proof of (iii) implies (ii) will be 
by induction on n where n is the number of modules Mi in ind /l needed to 
connect M,, m A to a projective module P m M, by irreducible morphisms 
Mi -+ Mi+l . If n = I, then A is a projective module; hence by assumption 
I(( , A)) < co. Further iff: B -+ A is irreducible, p is a summand of rA; hence 
( , B) C ( , A) and therefore Z(( , B)) < Z(( , A)) < co. Assume now the claim 
is true for n = K. We want to prove it for n = K + 1. By assumption there 
exists a module Mk in ind n and an irreducible morphism M, --tf A such that 
I(( , Mk)) < 03 and whenever there is an irreducible morphism g: B -+ Mk , 
then I(( , B)) < co. We may assume that A is not projective, so look at the 
almost split sequence 0 -+ D Tr A - C -+ A --f 0. Since there is an irreducible 
morphism f: M, - A, we have that Mk is a summand in C and there exists 
an irreducible morphism h: D Tr A --f Mk . Therefore by induction hypothesis 

4 , D Tr A)) < co. By combining Corollary 9.11 and Lemma 9.13 we get that 
1(( , A)) < co and Z(( , C)) < DC). If now h’: B’ -+ A is an irreducible morphism, 
then B’ is a summand of C and hence I(( , B’)) < 00 which completes the proof 
that (iii) implies (ii). 

(b) is a trivial consequence of (a). 

THEOREM 9.15. For an artin algebra A the following are equivalent: 

(i) /1, = 0. 

(ii) I(( , A)) < co. 

(ii) Z(P( , M)) < 00 for all modules M in mod /1. 

(iv) A module A in ind A is preprojective if and only if l(( , A)) < 00. 

(v) A module A in ind A ispreprojective if and only if A, = 0. 

Proof. The equivalence of (i), (ii), and (iii) is trivial by Corollary 9.11. 
Similarly, the equivalence of (iv) and (v) is just Corollary 9.3(v). Since in 
particular n is preprojective, (iv) implies (ii) and finally, by Proposition 9;14, 
we have that (ii) j (iv). 

From [2] we have the following relation on ind (1. Let A and B be in ind /I, 
then A -BifA M B or there exists an irreducible morphism f :  A + B or an 
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irreducible morphism g: B - A. This relation generates an equivalence relation 
on ind /1. Let [A] denote the equivalence class of A with respect to this relation. 

With this notation in mind we have the following result. 

PnoposrrroN 9.16. Let A be an artin algebra. Then the following are equivalent. 

(i) (1, = 0. 

(ii) A module A in ind A is preprojective if and only if [A] = [P] for some 
projective module P in ind /l. 

Proof. Observe first that the “only if” part of (ii) is always satisfied by Propo- 
sition 8.3. Therefore we only have to prove the equivalence of (i) /Ia = 0 and 
(ii’) .A module A in ind (1 is preprojective if [A] = [P] for some projective 
module P in ind (1. 

We want to prove that (i) implies (ii’). So assume (1, = 0 and let A be a 
module in ind /l such that [A] = [P] f  or a projective module P in ind /l. I f  
there are modules Mi, i = I,..., n, and irreducible morphisms M,+, + M2 
with &I, projective and Mi = A, Proposition 9.14 gives that A is preprojective. 
Also, if B is preprojective and C + B is an irreducible morphism, it follows 

that C is preprojective since I(( , B)) < co and all modules X in ind (1 with 
Hom(X, B) # 0 is preprojective. Now by an easy induction argument we get 
that A is preprojective which proves that (i) implies (ii). 

For the other implication, assume (1, # 0. Then there exists a projective 
module P in ind (1 with PO # 0. Let X be an indecomposable summand of P,, . 
Then by Proposition 9.4 we know that Tr DX is preprojective, but then [X] = 
[Tr DX] = [P’] for some projective module P’ in ind /I. By (ii), this implies 
that X is preprojective which is a contradiction since all indecomposable sum- 
mands of PU are in P, by Theorem 9.1. This finishes the proof of the proposition. 

For the sake of completeness we now state the dual of the results from Propo- 
sition 9.9 to Proposition 9.16. 

PROPOSITION 9.17. Let B be a preinjective module, B” = Xi<= RejIi B and 
I(M, N) be the subgroup of Horn&V, N) consisting of morphisms factoring through 
an injective module. Then I(BO, M) is different from zero for only a finite number of 
modules M in ind A which, in addition, are all preinjective. 

PROPOSITION 9.18. Let M be a module in ind A. Then I(M, X) is different 
from zero for only a finite number of modules X in ind A if and only tf  rM(I) C I0 
for all injective modules I in mod A, i.e., l(I(M, )) < co if and only zf TV C In 
for all injective modules in ind A. 

COROLLARY 9.19. I0 = I for all injective module I in ind A if and only zf 
l(I(M, -)) < co for all modules M in mod A. 

481/66/l-9 
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LEMMA 9.20. Let 0 --f A + B + Tr DA + 0 be an exact sequence and 

assume l(I(A, )) < co andl(Tr DA, )) < co. Then l((A, )) < co andl((B, )) < co. 

THEOREM 9.21. For an artin algebra A, the following are equivalent: 

(i) I0 = Ifor all injective A-modules I. 

(ii) l((I, )) < co for all injective A-modules I. 

(iii) l(I(M, )) < o3 for all modules M in mod /l. 

(iv) A module B is preinjective in ind A if and only ;f  l((B, )) < 00. 

(v) A module B is preirtjective in ind A if and only if B” = B. 

PROPOSITION 9.22. Let A be an artin algebra such that I0 = Ifor all injective 
modules in mod A. Then 

(i) A satisfies the irreducible mapping property for preinjective modules. 

(ii) B in ind A is preinjective if and only if [B] = [II for some injective 
module I in ind A. 

The obvious examples where I(( , A)) < cc are the rings of finite type and the 
hereditary artin algebras. However, these rings are not the only artin algebras A 
satisfying the property that I(( , A)) < co. Green has, in private correspondence, 

given a method of constructing many such algebras. Hereditary and artin 
algebras of finite type also have I((& )) < 00 for all injective I. Dualizing Green’s 
construction it is possible to obtain artin algebras satisfying this condition. 
It would be interesting to have a description of the artin algebras A such that 
I(( , A)) < co and also a description of the artin algebras satisfying both 
Z(( , A)) < 00 and /((I, )) < co for I injective. 

10. STRONGLY PREPROJECTIVE MODULES 

We now return to the study of the submodule A, = flicm TV* for a pre- 
projective module A in ind A. For hereditary artin algebras and more generally 
for all artin algebras with l(( , A)) < CO we know that A, = 0 for all preprojec- 
tive modules A in ind A, but in general we only know that A, # A. The result 
we are going to prove is that if A, C rA for all preprojective modules A in ind A 
where r is the radical of A, then A satisfies the irreducible mapping property 
for preprojective modules. The dual result holds for preinjective modules and 
is as follows: A satisfies the irreducible mapping property for preinjective 
modules if Sot B C B” = Cicco Rejri B for all preinjective modules B in ind A. 

DEFINITION. A module A is called strongly preprojective if A, C rA where r 
is the radical of A. 
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Note. All strongly preprojective modules are preprojective. 

DEFINITION. A module B is called strongly preinjective if B” 3 Sot B 

is the socle of B. 

Note. All strongly preinjective modules are preinjective. 

We may reformulate these definitions as follows. 

PROPOSITION 10.1. (a) Let A be in ind A. Then the following are equivalent: 

(i) A is strongly preprojective. 

(ii) For any simple module S in ind A there exist only a $nite number of 

modules M in ind A with a nonzero morphism f  : M + S factoring through A. 

(iii) For all simple modules S in ind A and morphismsg: A+ S, l( Im( , g)) < co 

(b) Let B be in ind A. Then the following are equivalent. 

(i) B is strongly preinjective. 

(ii) For any simple module S in ind A there exist only a finite number of 
modules M in ind A with a nonzero morphism S -+ Mfactoring through B. 

(iii) For all simple modules S in ind A and morphisms g: S - B, 

@m(g, )) < ~0. 

Proof, The proof of this is straightforward and left to the reader. 

Let Hom(M, N) be the quotient group Hom(M, N)/P(M, N) where P(M, N) 
is the subgroup of Hom(M, N) consisting of morphisms factoring through a 
projective module. From Corollary 9.3(“‘) m we have that A, = 0 for a preprojec- 
tive module A in mod A if and only if Hom(N, A) # 0 for only a finite number 
of modules N in ind A. By using the quotient group Hom(M, A) of Hom(M, A) 

for a preprojective module A, we give a condition for A, to be in rA. 

PROPOSITION 10.2. Let A be a module in ind A. If Hom(M, A) # 0 for only 
a finite number of modules M in ind A, then A, C rA and hence A is strongly 
preproj*ective. 

Proof. Assume Hom(M, A) # 0 for only a finite number of modules M 
in ind A. Then there is an n, 0 < n < co, such that every f: B + A with 

B~pm, n < m < co, factors through a projective module, i.e., everyf: B - A 
is equal to some hg where g: B -+ P and h: P --+ A with P projective. Therefore 
Im f = Im hg, Jm f = Im hg C h(rP) C rA since B is not projective. This 
shows that 7,, (A) C rA for n < m < co and hence A, C rA. 

Another cotdition on a module A in ind A which implies that A is strongly 
preprojective is given in the next proposition. 

PROPOSITION 10.3. Let A be in ind A. Then Hom(M, A) # 0 'JOY only a 
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finite number of modules M in ind A if and only if ExtJ(A, N) # 0 for only 
a finite number of modules N in ind A. Hence, A is strongly projective if Ext,l(A, 
N) # 0 for only a $nite number of modules N in ind A. 

Proof. The proof is easily obtained by using the isomorphism 

Hom,(Hom,(M, A), I,,(R/rad R)) = Ext,l(A, D Tr M), 

where R is the center of A and I,,(R/rad R) stands for the injective envelope of R 

modulo the radical of R. See [2, p. 19.1 
From Platzeck’s work on the representation theory of an artin algebra A 

stably equivalent to a hereditary artin algebra [14] we know that the following 
are equivalent for a module A in ind A: 

(i) Hom(M, A) # 0 for only a finite number of modules M in ind A. 

(ii) There exist modules Mi , i = 0, l,..., n, in mod A with Ma projective, 
M, w A, and irreducible morphisms Mi + Mi+, . 

This result together with Proposition 8.3 and Proposition 10.2 then gives that 
Hom(M, A) # 0 for only a finite number of modules M in ind A is a complete 
description of the preprojective modules in mod A when A is stably equivalent to 
a hereditary artin algebra. 

Let HG(M, N) = Hom(M, N)/I(M, N) where I(M N) is the subgroup 
of Hom(M, N) consisting of morphisms f :  M--f N that factors through an 
injective module. The duals of Propositions 10.2 and 10.3 now state: 

PROPOSITION 10.4. Let B be in ind A. 

(i) I f  Hom(B, N) # 0 for only a Jinite number of modules N in ind A, 
Sot B C B” = Xi+ RejIi B and hence B is strongly preinjective. 

-- 
(ii) Hom(B, N) # 0 for only a finite number of modules N in ind A ;f and 

only if Extl(M, B) # 0 for only a finite number of modules M in ind A. 

For an artin algebra A stably equivalent to a hereditary artin algebra we get 
by dualizing the result of Platxeck that the preinjective modules B in ind A are 
completely described by the property that Hom(B, M) # 0 for only a finite number 
of indecomposable modules M in ind A. Therefore, all preinjective modules are 
strongly preinjective in ind A when A is stably equivalent to an hereditary artin 
algebra. 

Before proving that A satisfies the irreducible mapping property for pre- 
projective modules if all preprojective modules are strongly preprojective, we 
give a couple of general results. 

PROPOSITION 10.5. Let A be in ind A. Then 

(i) A E PO if and only if A is projective in mod A. 
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(ii) I f  A is not projective, then A E P, if and onZy if there exists an irreducible 

morphism C -+ A with C projective. 

(iii) A E PI if and only if A = Tr DB where B is a ~ummand of r as a left 

module. 

Proof. (i) This is just the definition of P, . 

(ii) By Proposition 4.1 in [7] we know for a nonprojective module A in 
ind /l that the following are equivalent. (a) D Tr A is a summand of r as a left 
module. (b) There exists an irreducible morphism C + A with C projective. 

This shows that the statements in (ii) and (iii) are equivalent, so we need 
only prove (iii). 

Assume first that A E P, . We then know that there is an irreducible morphism 
C -+ A with C in P, . Since A is not projective we know that A = Tr D(D Tr A) 

and there exists an irreducible morphism D Tr A --+ C with C projective. But 
then we know that D Tr A is isomorphic to a summand in rC; i.e., D Tr A is 
isomorphic to a summand in r. 

To prove the other implication assume A = Tr DB where B is an indecom- 
posable summand of r. Then A is not projective and there exists a projective 
module P in ind /l and an irreducible morphism P + A. Now let A’ -+ A be 
an epimorphism with A’ in mod Ar, . Since P is projective, we know that the 
irreducible morphism P + A facto; through the epimorphism A’ -+ A; i.e., 
we have obtained a commuting diagram 

Since A’ is in mod ~3,~ , P + A’ is not a splittable injective morphism; hence 
A’ + A is a splittable surjective morphism. This shows that A is a splitting 
projective module in mod IIpO , hence A is in P, . This completes the proof of 
the proposition. 

In general, very little is known about which modules appear in P, , 71 3 2. 
The only case where one has a good description is in the hereditary case where 
Todorov [16] has given the following description of the modules in P,: A E P, 
if and only if the following two conditions hold. (a) For every irreducible mor- 
phism f :  M -+ A with M in ind A, M is in P,-, u P, . (b) There is an M,, in 
P,-, and an irreducible morphism f :  M,, --f A. 

Dualizing Proposition 10.5 we obtain the following. 

PROPOSITION 10.6. Let 3 be in ind A. 

(i) B E I, if and only if B is injective. 
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(ii) B E I, if and only if B is not injective but there exists an irreducible 
morphism f  : B + N with N inj’ective. 

(iii) B E I, if and only if B is not injective but Tr DB is a summand of 
N/Sot N for some injective module N where as usual Sot N, the socle of N, is the 
maximal semisimple submodule of N. 

The main result in this section is a consequence of these observations and the 

following proposition. 

PROPOSITION 10.7. Let A be a nonprojective module in ind A. If  the middle 

term B of the almost split sequence 

O+DTrA+B+A--+O 

is strongly preprojective, then A is strongly preprojective and D Tr A is also 
strongly preprojective if D Tr A is not simple. 

Proof. Let A be a nonprojective module in ind A and assume that B, the 
middle term of the almost split sequence 0 4 D Tr A + B +f A --+ 0, is a 

strongly projective module. Then there exists an n such that A $ Unci+ Pi . 
Therefore Tag C f  (TPi(B)) for all i, n < i < CO. Hence A, C f  (nicm -rPi(B)) C 
f  (r B) C r A, i.e., A is a strongly preprojective module in mod A. 

For the other part of the proposition assume that D Tr A is not simple, but 
assume that (D Tr A)e q r(D Tr A). Then there exists a C in P, and a simple 
module S in mod /l with a nonzero morphism C --, S factoring through D Tr A. 

C-+DTrA-B 

\ I J 
s 

Since the morphism D Tr A -+ S is not a splittable injective morphism, there 

exists a morphism B + S making the diagram commute. But then T,(B) Q r B 
which is a contradiction since C E P, and T~,JB) C r B. This shows that D Tr A 
is strongly preprojective if it is not simple. 

We now prove the main result of this section. 

THEOREM 10.8. Let A be an artin algebra. If  all preprojective modules in 
mod A are strongly preprojective, then A satisfies the irreducible mapping property 

for preprojective modules. 

Proof. We are going to prove the theorem by proving that if we have a 
preprojective module A with an irreducible morphism A -+ B with B in P, , 
there is a preprojective module which is not strongly preprojective. So assume 
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there exists an n < 00 with A E P, and an irreducible morphism A -+ B with B 

in P, . Choose n minimal with this property. By using Proposition 8.5 we then 

know that D Tr B is in Pj for some i < n - 1, and hence the middle term A’ 
of the almost split sequence 0 --, D Tr B - A’ - B + 0 is preprojective. 
Now if A’ was strongly preprojective, B would also be strongly preprojective 
by Proposition 10.6. This is a contradiction, so A’ is preprojective but not 
strongly preprojective. 

We do not know if the converse of the last theorem is true or false. In any 
event it would be interesting to know which artin algebras have the property 
that all preprojective modules are strongly preprojective. 

We now state the dual of the two last results. 

PROPOSITION 10.9. Let A be a noninjective module in ind A. If  the middle 
term of the almost split sequence 

O+A+B-,TrDA+O 

is strongly preinjective in mod A, then A is strongly preinjective and Tr DA is also 
strongly preinjective if Tr DA is not simple. 

THEOREM 10.10. Let A be an artin algebra. If  all preinjective modules in 
mod A are strongly preinjective, then A satisfies the irreducible mapping property 

for preinjective modules. 
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