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1. Introduction

The concept of deformations in the field–antifield formalism [1–3] based on a nilpotent higher-order �∗ operator was developed in
a series of papers [4–12]. Such deformations typically modify the Jacobi identity with BRST-exact terms. In contrast, in this Letter we
shall only discuss local deformations of the antibracket with a Grassmann-even deformation parameter such that the Jacobi identity holds
strongly, and without assuming an underlying �∗ operator a priori. Recently [13–15], a non-trivially deformed antibracket

( f , g)∗ := ( f , g) + (−1)ε f

(
κc(κ)

1 + κc(κ)
2 N

� f

)
·
(

1 − N

2

)
g +

((
1 − N

2

)
f

)
· κc(κ)

1 + κc(κ)
2 N

�g, (1.1)

for functions f , g of finitely many variables zA was constructed inside various algebras A (e.g., polynomial algebra, algebra of smooth
functions with compact support, etc.). Here κ is a deformation parameter; c(κ) = ∑∞

k=0 ckκ
k is an arbitrary formal power series in κ ; and

N := zA∂/∂zA is the Euler/conformal vector field. Moreover, it was shown [14] that this deformed antibracket (1.1) is unique modulo trivial
deformations and reparameterizations of the deformation parameter κ . Thus, it is expected to play a central rôle.

In this Letter, we propose how to incorporate the non-trivially1 deformed antibracket (1.1) into the quantum field–antifield formalism
[1–3]. Concretely, we suggest a κ-deformed odd Laplacian; quantum master action W = S + O(h̄); quantum master equation; and partition
function Z̃ such that the classical master equation is given in terms of the above κ-deformed antibracket

(S, S)∗ = 0; (1.2)

the classical BRST symmetry is s = (S, ·)∗; and the partition function Z̃ is formally independent of the gauge-fixing X .
How would a κ-deformation be realized in practice? Firstly, we stress that field theory implies infinitely many zA -variables, so that

both the Euler vector field N and the odd Laplacian � would need regularization. Nevertheless, it is reasonable to assume that the naive
finite-dimensional N-deformation (1.1) still serves as a model of what to come in field theory. Secondly, we note that the traditional field–
antifield approach [1–3] (where one starts from a classical action, which is independent of ghosts and antifields, and one introduces ghosts
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1 A trivial deformation ( f , g)∗ = T −1(T f , T g) of the antibracket with T = 1 + O(κ) amounts to a trivial deformation �∗ = T −1�T and f ∗ g = T −1(T f · T g) of the
underlying BV algebra (A;�∗; ∗).
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and antifields as generators of gauge- and BRST-symmetry, respectively) is not expected to produce a κ-deformation, as the antibracket
traditionally remains on Darboux form. Rather, a relevant physical system should have an antisymplectic phase space built in from the
beginning, like, e.g., closed string field theory [16], or generalized Poisson sigma models [17–19]. It is believed that the κ-deformation
here could be caused by a choice of regularization scheme that manifestly preserves the Jacobi identity.

The new construction is motivated by two key ideas, which may be symbolized with the introduction of a Bosonic and Fermionic
variable, t and θ , respectively, with collective notation τ := {t; θ}. Mathematically, they are, in fact, intimately tied to Lie cohomology
theory. We will only here sketch the Lie cohomology argument, and defer a more detailed explanation to an accompanying paper [20].
Recall that the ambiguity/uniqueness of deformations of a Lie-bracket is measured by the second Lie cohomology group, while the first
Lie cohomology group classifies outer (= non-Hamiltonian) Lie algebra derivations. Konstein and Tyutin have calculated [14] the first and
second Lie cohomology group for the constant, non-degenerated antibracket (·,·). The first Lie cohomology group is two-dimensional, and,
in detail, it is generated by the odd Laplacian � and the affine operator N − 2. The second Lie cohomology group is two-dimensional
as well, and, in accordance with the Künneth formula, it is generated by all possible non-zero2 cup product combinations of the first
cohomology. These are � ∪ (N − 2) = (N − 2) ∪ � and (N − 2) ∪ (N − 2), which lead to two deformed antibrackets, with an even and
an odd deformation parameter, respectively, where we here will only consider the former. The first key idea is to suspend the algebra
A by introducing a suspension parameter t to turn the affine operator N − 2 into a genuine vector field Nτ = N + t∂/∂t , which satisfies
the Leibniz rule. The non-triviality of the Nτ vector field in the {zA; t} space means that it is not a Hamiltonian vector field. The second
key idea is to complement the {zA; t} space with an antisymplectic partner θ , in such a way, that θ becomes (minus) the Hamiltonian
generator for the vector field Nτ = −(θ, ·)τ , and hence, so that the vector field Nτ becomes trivial, and, in turn, it makes the corresponding
(t; θ)-extended deformed antibracket (·,·)τ∗ trivial.

2. Basic setting: constant non-degenerate antibracket

Let A := C[[z]] be the algebra of formal power series f = f (z) in 2n variables zA of Grassmann parity ε(zA) ≡ εA , equipped with a
constant, non-degenerate antibracket E AB = (zA, zB) with Grassmann parity ε(E AB) = εA + 1 + εB corresponding to the odd Laplacian

� := (−1)εA

2

→
∂�

∂zA
E AB

→
∂�

∂zB
, �2 = 0, ε(�) = 1. (2.1)

The antibracket

( f , g) := (−1)ε f
[[→

�, f ], g
]
1 = −(−1)(ε f +1)(εg+1)(g, f ), f , g ∈ A, (2.2)

satisfies skewsymmetry (2.2), the Jacobi identity∑
cycl. f ,g,h

(−1)(ε f +1)(εh+1)
(

f , (g,h)
) = 0, f , g,h ∈ A, (2.3)

and the Leibniz rule/Poisson property

( f g,h) = f (g,h) + (−1)ε f εg g( f ,h), f , g,h ∈ A. (2.4)

3. Non-trivially deformed algebra A

We will from now on use the simplifying convention that the power series from Eq. (1.1) is c(κ) = −2. To reintroduce the whole c(κ)

series, just replace κ → − κc(κ)
2 . The deformed odd Laplacian �∗ and antibracket (·,·)∗ , cf. Eq. (1.1), read

�∗ := �
1

1 − K
= 1

1 − κN
�, �2∗ = 0, (3.1)

( f , g)∗ := ( f , g) + (−1)εf (�∗ f ) · (K g) + (K f ) · (�∗g) (3.2)

= (−1)ε f �( f g) − (1 − K )
{
(−1)ε f (�∗ f )g + f (�∗g)

}
(3.3)

= −(−1)(ε f +1)(εg+1)(g, f )∗, f , g ∈ A, (3.4)

K := κ(N − 2), N := zA

→
∂�

∂zA
, [�, N] = 2�, ε(κ) = 0. (3.5)

Within the algebra A, the deformed odd Laplacian �∗ is characterized by nilpotency, and the property

�∗( f , g)∗ = (�∗ f , g)∗ − (−1)ε f ( f ,�∗g)∗, f , g ∈ A, (3.6)

i.e., that �∗ differentiates the deformed antibracket (·,·)∗ . The standard Witten formula (2.2), cf. Ref. [21], is deformed into (3.3), which,
in turn, can be used to prove the Jacobi identity (3.7) for the deformed antibracket (·,·)∗ ,∑

cycl. f ,g,h

(−1)(ε f +1)(εh+1)
(

f , (g,h)∗
)
∗ = 0, f , g,h ∈ A. (3.7)

2 The last � ∪ � = 0 of the 2 × 2 = 4 possibilities vanishes identically, because the cup product ∪ is (graded) commutative.
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Note that the deformed antibracket (·,·)∗ does not satisfy the Leibniz rule/Poisson property, cf. Eq. (2.4), and hence the deformed an-
tibracket (·,·)∗ is, technically speaking, not an odd Poisson bracket. Therefore, the deformation and the corresponding cohomology must
be treated within the framework of (infinite-dimensional, graded) Lie algebras instead of (finitely generated, graded) Poisson algebras.

4. k-Suspended deformed operators

Define for later convenience a k-suspended deformed odd Laplacian �
(k)∗ and a (k, �)-suspended deformed antibracket (·,·)(k,�)∗ ,

�(k)∗ := �
1

1 − K (k)
,

(
�(k)∗

)2 = 0, K (k)� = �K (k−2), (4.1)

( f , g)(k,�)∗ := ( f , g) + (−1)ε f
(
�(k)∗ f

) · (K (�)g
) + (

K (k) f
) · (�(�)∗ g

)
(4.2)

= (−1)ε f �( f g) − (
1 − K (k+�+2)

){
(−1)ε f

(
�(k)∗ f

)
g + f

(
�(�)∗ g

)}
(4.3)

= −(−1)(ε f +1)(εg+1)(g, f )(�,k)∗ , f , g ∈ A, (4.4)

K (k) := κN(k), N(k) := N + k, N(k)∗ := N(k) 1

1 − K (k)
, K (k)∗ := κN(k)∗ , (4.5)

where k, � are integers. In particular, the k-suspended definitions (4.1)–(4.5) generalize definitions (3.1)–(3.5) of Section 3 in the following
way,

�(−2)∗ ≡ �∗, ( f , g)(−2,−2)∗ ≡ ( f , g)∗, K (−2) ≡ K , N(0) ≡ N. (4.6)

Eq. (4.3) is a (k, �)-suspended deformed Witten formula [21]. Note also the elementary, but useful, formula

K (k+�)( f g) = (
K (k) f

)
g + f

(
K (�) g

)
, f ∈ A. (4.7)

Eqs. (4.3) and (4.7) can be used to prove the Jacobi identity∑
cycl. ( f ,k),(g,�),(h,m)

(−1)(ε f +1)(εh+1)
(

f , (g,h)(�,m)∗
)(k,�+m+2)

∗ = 0, f , g,h ∈ A, (4.8)

and the differentiation rule

�(k+�+2)∗ ( f , g)(k,�)∗ = (
�(k)∗ f , g

)(k+m,�)

∗ − (−1)ε f
(

f ,�(�)∗ g
)(k,m+�)

∗ , f , g ∈ A. (4.9)

5. τ -Extended algebra Aτ

Let us now introduce a τ -extended algebra Aτ := C[[z; t; θ]][ 1
t ] of formal (lower truncated) Laurent series

F =
∞∑

k=−M F

F(k)(z; θ)tk, F(k)(z; θ) = F(k|0)(z) + θ F(k|1)(z), (5.1)

where the lower limit k = −M F may depend on the series F , and τ := {t; θ} is a collective notation for the two new variables t and θ of
Grassmann parity ε(t) = 0 and ε(θ) = 1, respectively. One introduces a suspension map �·	 : A → Aτ as

� f 	 := f

t2
, f ∈ A. (5.2)

The residue map π : Aτ → A reads π(F ) := ∮
0

t dt
2π i

∫
dθ θ F = F(−2|0) with Berezin integral convention

∫
dθ θ = 1. One has π ◦ �·	 = idA ,

or equivalently, π ◦ � f 	 = f for f ∈ A.

6. τ -Extended antisymplectic structure

Define generalized Darboux3 coordinates {zA
0 ; t0; t∗

0} as

zA
0 := zA

t
, t0 := ln(t), t∗

0 := θ, (6.1)

with inverse transformation

zA = et0 zA
0 , t = et0 , θ = t∗

0. (6.2)

The Berezin volume densities for the generalized Darboux and original coordinates are chosen as

ρ0 := 1, ρτ := ρ0

J
= 1

t
, J := sdet

∂{zA; t; θ}
∂{zA

0 ; t0; t∗
0} = t. (6.3)

3 Generalized Darboux coordinates are coordinates in which the (odd) Poisson bi-vector is constant, cf. Eq. (6.10).
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The algebra Aτ is equipped with the second-order odd Laplacian4

�τ := (−1)εA

2

→
∂�

∂zA
0

E AB

→
∂�

∂zB
0

+
→
∂�

∂t0

→
∂�

∂t∗
0

= t2� + Nτ

→
∂�

∂θ
, �2

τ = 0, (6.4)

Nτ := N + t

→
∂�

∂t
= −(θ, ·)τ , [Nτ ,�τ ] = 0, (6.5)

(F , G)τ := (−1)εF
[[→

�τ , F ], G
]
1, (6.6)

such that the suspension map �·	 intertwines between an operation and its τ -extended counterpart,

�τ � f 	 = � f , Nτ � f 	 = �(N − 2) f 	, f ∈ A, (6.7)(� f 	, �g	)
τ

= �( f , g)	, (
f , �g	)

τ
= ( f , g), f , g ∈ A. (6.8)

The non-vanishing antibrackets (·,·)τ of the fundamental variables {zA; t; θ} read(
zA, zB)

τ
= t2 E AB ,

(
zA, θ

)
τ

= zA, (t, θ)τ = t, (6.9)

or in terms of generalized Darboux coordinates {zA
0 ; t0; t∗

0},(
zA

0 , zB
0

)
τ

= E AB ,
(
t0, t∗

0

)
τ

= 1. (6.10)

7. Trivially deformed τ -extended odd Poisson algebra Aτ

Define a trivially deformed odd Laplacian

�τ∗ := �τ
1

1 − Kτ
= T −1�τ T , �2

τ∗ = 0, (7.1)

Kτ := κNτ , [Kτ ,�τ ] = 0, (7.2)

cf. Appendix A, where T is the trivialization map in the τ -extended algebra Aτ ,

T := 1 + κθ�τ∗, T −1 := 1 − κθ�τ , T −1T = 1 = T T −1, (7.3)

cf. Appendix B, so that in the suspended sector,

�τ∗� f 	 = �∗ f , Kτ � f 	 = �K f 	, f ∈ A. (7.4)

If one expands with respect to the t variable, one gets

�τ∗ F =
∑

k

(
t2�(k)∗ F(k) + N(k)∗ F(k|1)

)
tk, F ∈ Aτ , (7.5)

Kτ F =
∑

k

(
K (k) F(k)

)
tk, F ∈ Aτ . (7.6)

Define a trivially deformed antibracket

(F , G)τ∗ := T −1(T F , T G)τ = (F , G)τ + (−1)εF (�τ∗ F ) · Kτ G + (Kτ F ) · �τ∗G (7.7)

= (−1)εF �τ (F G) − (1 − Kτ )
{
(−1)εF (�τ∗ F )G + F�τ∗G

}
(7.8)

= −(−1)(εF +1)(εG+1)(G, F )τ∗, F , G ∈ Aτ , (7.9)

cf. Appendix C, so that in the suspended sector,(� f 	, �g	)
τ∗ = ⌊

( f , g)∗
⌋
, f , g ∈ A. (7.10)

If one expands with respect to the t variable, one gets

(F , G)τ∗ =
∑
k,�

(
t2(F(k), G(�))

(k,�)∗ + (−1)εF

(
1

1 − K (k)
F(k|1)

)
· N(�)G(�) + (

N(k) F(k)

) · 1

1 − K (�)
G(�|1)

)
tk+�, F , G ∈ Aτ . (7.11)

The trivially deformed antibracket (·,·)τ∗ satisfies the Jacobi identity,∑
cycl. F ,G,H

(−1)(εF +1)(εH +1)
(

F , (G, H)τ∗
)
τ∗ = 0, F , G, H ∈ Aτ . (7.12)

4 Theoretically, the parameter t serves as a unit of suspension. In practice, it may be more convenient to expand in terms of its square t2 := t2, so that � f 	 := f /t2;
Nτ := N + 2t2∂/∂t2; �τ := t2� + Nτ ∂/∂θ ; etc.
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Eq. (7.10) therefore gives an alternative derivation of the Jacobi identity (3.7). Define a trivial associative and commutative star product as

F ∗ G = T −1(T F · T G) = F G − (−1)εF κθ(F , G)τ∗, F , G ∈ Aτ , ε(∗) = 0, (7.13)

cf. Appendix D, so that in the suspended sector,

� f 	 ∗ �g	 = �� f g		 − (−1)ε f κθ�( f , g)∗	, f , g ∈ A. (7.14)

The trivially deformed Witten formula [21] reads

(F , G)τ∗ = (−1)εF �τ∗(F ∗ G) − (−1)εF (�τ∗ F ) ∗ G − F ∗ �τ∗G, F , G ∈ Aτ . (7.15)

The Leibniz rule/Poisson property reads

(F ∗ G, H)τ∗ = F ∗ (G, H)τ∗ + (−1)εF εG G ∗ (F , H)τ∗, F , G, H ∈ Aτ . (7.16)

The Getzler identity [22] for the BV algebra (Aτ ;�τ∗; ∗) reads

0 = �τ∗(F ∗ G ∗ H) − �τ∗(F ∗ G) ∗ H − (−1)εF F ∗ �τ∗(G ∗ H) − (−1)εGεH �τ∗(F ∗ H) ∗ G

+ (�τ∗ F ) ∗ G ∗ H + (−1)εF F ∗ (�τ∗G) ∗ H + (−1)εF +εG F ∗ G ∗ �τ∗H, F , G, H ∈ Aτ , (7.17)

which encodes the vanishing of higher antibrackets [7,8,23]. The star exponential is defined as

eB∗ := 1 + B + 1

2
B ∗ B + 1

3! B ∗ B ∗ B + 1

4! B ∗ B ∗ B ∗ B + · · · = T −1e(T B)

= eB
(

1 − 1

2
κθ(B, B)τ∗

)
= eB− 1

2 κθ(B,B)τ∗ , B ∈ Aτ , ε(B) = 0, (7.18)

cf. Appendix E. The star exponential satisfies

e−B∗ ∗ eB∗ = 1, e−B∗ ∗ (
�τ∗eB∗

) = (�τ∗B) + 1

2
(B, B)τ∗, δeB∗ = eB∗ ∗ δB, (7.19)

eB+B ′
∗ = eB∗ ∗ eB ′

∗ , B, B ′ ∈ Aτ , ε(B) = 0 = ε
(

B ′). (7.20)

If we want to stress the deformation parameter κ , we write a subindex “(κ)”, i.e.,

T ≡ T(κ), �τ∗ ≡ �τ∗(κ), (·,·)τ∗ ≡ (·,·)τ∗(κ), F ∗ G ≡ F ∗(κ) G, eB∗ ≡ eB
∗(κ). (7.21)

8. Deformed quantum master equations

We will here for simplicity use the strong first-level5 W –X-formalism, which consists of gauge-generating and gauge-fixing actions,
W and X [24–28,8,29,30]. In the τ -extended case, we adorn the two actions with tildes. The two quantum master equations are

�τ∗(κ)e
i
h̄ W̃
∗(κ) = 0, �τ∗(−κ)e

i
h̄ X̃
∗(−κ) = 0, W̃ , X̃ ∈ Aτ , ε(W̃ ) = 0 = ε( X̃), (8.1)

or equivalently,

1

2
(W̃ , W̃ )τ∗(κ) = ih̄�τ∗(κ)W̃ ,

1

2
( X̃, X̃)τ∗(−κ) = ih̄�τ∗(−κ) X̃ . (8.2)

From now on, it is implicitly assumed that the star deformations in the W̃ - and X̃-sector refer to the deformation parameter κ and −κ ,
respectively, to avoid clutter. Consider first the W̃ action. Let us mention that W̃ satisfies the κ-deformed quantum master equation if
and only if T W̃ satisfies the undeformed quantum master equation. If one expands the quantum master equation for W̃ = ∑∞

k=−∞ W̃ (k)tk

with respect to the t variable, one gets

1

2

∞∑
�=−∞

(
W̃ (�), W̃ (k−�)

)(�,k−�)

∗ +
∞∑

�=−∞
N(�)W̃ (�) · 1

1 − K (k−�+2)
W̃ (k−�+2|1) = ih̄�(k)∗ W̃ (k) + ih̄N(k+2)∗ W̃ (k+2|1). (8.3)

We next identify the component W̃ (−2|0) = S with the proper6 classical action S from Eq. (1.2). To have the classical master equation (1.2)
within the t-hierarchy (8.3), the Laurent series W̃ must truncate from below as

5 The strong first-level gauge-fixing action X̃ also depends on first-level Lagrange multipliers {λα̃} = {λα;λθ }, and is capable of incorporating all Abelian gauge-
fixing constraints (Gα̃ , G β̃ )τ = 0. For non-Abelian gauge-fixing constraints, it is necessary to add weak terms in the quantum master equation [27], or still better, to

go to the second-level formalism, which introduces antifields λ∗̃
α for the first-level Lagrange multipliers; second-level Lagrange multipliers λα̃

(2); odd Laplacian �[1]τ∗ =
�τ∗ + (−1)εα̃ ∂/∂λα̃∂/∂λ∗̃

α ; and action W̃ [2] = λ∗̃
αλα̃

(2) + W̃ .
6 An action is called proper (with respect to a set of antisymplectic variables) if its corresponding Hessian has rank equal to half the number of variables at the stationary

surface, see e.g., Ref. [31].
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W̃ =
∞∑

k=−2

W̃ (k|0)t
k + θ

∞∑
k=1

W̃ (k|1)t
k. (8.4)

The minimal Ansatz for the gauge-generating and gauge-fixing actions, W̃ and X̃ , reads7

W̃ = 1

t2
W

(
z; h̄t2;κ) = �S	 + h̄M1 + O

(
h̄2t2), ∂W̃

∂θ
= 0, (8.5)

X̃ = X

(
z

t
;λ; h̄

)
+ ih̄θλθ = X(z0;λ; h̄) + ih̄t∗

0λ0, Nτ X̃ = 0, (8.6)

where λθ ≡ λ0 is a Fermionic first-level Lagrange multiplier to gauge-fix the θ variable, and where

W = W
(
z; h̄t2;κ) = S +

∞∑
k=1

(
t2h̄

)k
Mk, S = S(z;κ), Mk = Mk(z;κ) for k � 1. (8.7)

In t-components, the minimal Ansatz (8.5) for W̃ reads

W̃ (−2) = S, W̃ (2k−2) = h̄k Mk for k � 1, W̃ (−2k) = 0 for k � 2, W̃ (2k+1) = 0. (8.8)

The quantum hierarchy (8.3) for W̃ becomes

(S, S)∗ = 0, (M1, S)(0,−2)∗ = i�∗ S, (8.9)

(Mk, S)(2k−2,−2)∗ = i�(2k−4)∗ Mk−1 − 1

2

k−1∑
�=1

(M�, Mk−�)
(2�−2,2k−2�−2)∗ for k � 2. (8.10)

The hierarchy (8.9)–(8.10) successively determines S and Mk for k � 1. The untilded gauge-fixing action X satisfies an ordinary quantum
master equation

�e
i
h̄ X = 0 ⇔ 1

2
(X, X) = ih̄�X, (8.11)

which is undeformed in the deformation parameter −κ .

9. Deformed path integral

The first-level path integral measure is

dμ = ρτ dt dθ dλθ [dz][dλ] = ρ0 dt0 dt∗
0 dλ0 [dz0][dλ], (9.1)

cf. Eq. (6.3). The transposed operator AT of an operator A is defined via [8]∫
dμ

(
AT F

) · G = (−1)εAεF

∫
dμ F · (AG), (9.2)

where F , G are two arbitrary functions. The transposed odd Laplacians and transposed Euler vector fields are

�T = �, N T = −N, �T
τ = �τ , N T

τ = −Nτ , �T
τ∗(κ) = �τ∗(−κ). (9.3)

The first-level path integral Z̃ in the τ -extended antisymplectic phase space is defined as

Z̃ =
∫

dμ e
i
h̄ W̃
∗(κ) · e

i
h̄ X̃
∗(−κ) =

∫
dμ e

i
h̄ Ã, (9.4)

where the total first-level action Ã is

Ã = W̃ − iκθ

2h̄
(W̃ , W̃ )τ∗(κ) + X̃ + iκθ

2h̄
( X̃, X̃)τ∗(−κ) = W̃ + κθ�τ∗(κ)W̃ + X̃ − κθ�τ∗(−κ) X̃ = T(κ)W̃ + T(−κ) X̃ . (9.5)

Note that the total action Ã does not contain inverse powers of h̄ due to the quantum master equations (8.2) for W̃ and X̃ .

7 Note that while the leading term �S	 in the W̃ action is proper in the original antisymplectic phase space {zA}, it is in general not proper in the τ -extended antisym-
plectic phase space {zA; t; θ}. Thus if one would like to treat the t variable perturbatively, it is necessary to include t-dependent classical (= h̄-independent) terms in the
W̃ action, which necessarily must violate the minimal Ansatz (8.5). We analyze here the minimal Ansatz (8.5) for simplicity, as the Ansatz is consistent with the quantum
master equation (8.2), but with the caveat that t may acquire a non-perturbative status.
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10. Independence of gauge-fixing ˜X

The quantum BRST operator for X̃ is defined as

(σ X̃∗ F ) := h̄

i
e
− i

h̄ X̃
∗ ∗ �τ∗

(
e

i
h̄ X̃
∗ ∗ F

) − h̄

i
e
− i

h̄ X̃
∗ ∗ (

�τ∗e
i
h̄ X̃
∗

) ∗ F = h̄

i
(�τ∗ F ) + ( X̃, F )τ∗, F ∈ Aτ , σ 2

X̃∗ = 0. (10.1)

Since the σ X̃∗ operator is nilpotent, one may argue on general grounds that an arbitrary infinitesimal variation δ X̃ of the action X̃ should
be BRST exact,

(σ X̃∗δ X̃) = 0, δ X̃ = (σ X̃∗δΨ ), (10.2)

for some infinitesimal Fermion δΨ , or equivalently,

i

h̄
e

i
h̄ X̃
∗ ∗ δ X̃ = δe

i
h̄ X̃
∗ = �τ∗

(
e

i
h̄ X̃
∗ ∗ δΨ

) − (
�τ∗e

i
h̄ X̃
∗

) ∗ δΨ. (10.3)

By using properties (9.3) of transposed operators, and the quantum master equations (8.1), one may deduce that the Z̃ partition func-
tion (9.4) is independent of the gauge-fixing X̃ .

δZ̃ =
∫

dμ e
i
h̄ W̃
∗(κ) · δe

i
h̄ X̃
∗(−κ) =

∫
dμ e

i
h̄ W̃
∗(κ) · �τ∗(−κ)

(
e

i
h̄ X̃
∗(−κ) ∗(−κ) δΨ

) =
∫

dμ
(
�τ∗(κ)e

i
h̄ W̃
∗(κ)

) · (e
i
h̄ X̃
∗(−κ) ∗(−κ) δΨ

) = 0. (10.4)

11. Integrating out the τ -extended sector

One can always integrate out the new variable θ ≡ t∗
0. The boundary condition (8.6) creates a delta-function∫

dλθ e
i
h̄ ·ih̄θλθ =

∫
dλθ eλθ θ = δ(θ), (11.1)

and therefore one implements the condition θ = 0. The other new variable t0 ≡ ln(t) is a Schwinger proper time variable in a world-
line formalism [32]. Let us for simplicity use Darboux coordinates {zA

0 ; t0; t∗
0} = {φα

0 ;φ∗
0α; t0; t∗

0}, and integrate out the first-level Lagrange
multipliers {λα̃} = {λα;λ0}, such that the resulting zero-level total action A is a lower truncated Laurent series in the t ≡ et0 variable

A = Ã

(
φ0;φ∗

0 = ∂ψ

∂φ0
; t0; t∗

0 = ∂ψ

∂t0
;λ = 0;λ0 = 0; h̄;κ

)
=

∞∑
k=−M

A(k)e
kt0 , A(k) = A(k)(φ0; h̄;κ). (11.2)

For a theory that is perturbative in the original z-variables, (minus) the lower limit is M � 2. If we furthermore integrate out the Schwinger
proper time variable t0, then the Z̃ partition function (9.4) becomes

Z̃ =
0∫

−∞
dt0

∫
[dφ0] e

i
h̄ A

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
M

∑∞
m=0

1
m!

∑
k1,...,km�1−M

∫ [dφ0]
(− i

h̄ A(−M)

)Σk
M Γ

(−Σk
M ;− i

h̄ A(−M)

)∏m
i=1

i
h̄ A(ki) for M > 0,∑∞

m=0
1

m!
∑

k1,...,km�1
1

Σk

∫ [dφ0] e
i
h̄ A(0)

∏m
i=1

i
h̄ A(ki) for M = 0,∑∞

m=0
1

m!
∑

k1,...,km�−M
1

Σk

∫ [dφ0]∏m
i=1

i
h̄ A(ki) for M < 0,

(11.3)

where Σk := ∑m
i=1 ki ; where Γ (s;ε) := ∫ ∞

ε
du
u use−u is the incomplete Gamma function; and in the case M > 0, it has been assumed that

Im(A(−M)) > 0. The case M < 0 can be viewed as the case M = 0 with A(0) = 0. The formula (11.3) is an expansion in Planck’s constant h̄
if all the subleading terms A(k>−M) = O(h̄) are quantum corrections. We stress that the world-line path integral Z̃ does not reproduce the
standard field–antifield path integral [1] in the undeformed limit κ → 0, as only the former contains a Schwinger proper time integration.8
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(ii) the truncated case W̃ = W
t2 = �S	 with �∗ S = 0. In these two cases, shift the W̃ action with a one-loop contribution W̃ = W

t2 → W̃ = W
t2 + ih̄ ln(1−t2) = W

t2 + h̄
i

∑∞
k=1

t2k

k .

One may check that the shifted W̃ action also satisfies the quantum master equation (8.2). Now choose the t integration contour as a small circle around t = 1. The one-loop

correction
∮

1
dt
t e

i
h̄ ·ih̄ ln(1−t2) = − ∮

1
dt
t

1
t+1

1
t−1 creates a simple pole at t = 1, and thereby one implements the condition t = 1. Therefore the Z̃ path integral (9.4) reduces (up

to a constant multiplicative factor) to the standard W –X-form Z̃ = ∫ [dz][dλ] e
i
h̄ (W +X) = Z . In the undeformed case κ = 0, the W action (8.7) at t = 1 becomes the standard

loop expansion, which satisfies the standard quantum master equation �e
i
h̄ W = 0.
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Appendix A. Proof of Eq. (7.1)

T −1�τ T = �τ T = �τ (1 + κθ�τ∗) = �τ + κ[�τ , θ]�τ∗ = �τ + Kτ �τ
1

1 − Kτ
= �τ

1

1 − Kτ
= �τ∗. (A.1)

Appendix B. Proof of Eq. (7.3)

T −1T := (1 − κθ�τ )(1 + κθ�τ∗) = 1 − κθ�τ + κθ�τ∗ − κ2θ[�τ , θ]�τ∗

= 1 − κθ�τ + κθ�τ
1

1 − Kτ
− κθ Kτ �τ

1

1 − Kτ
= 1, (B.1)

T T −1 := (1 + κθ�τ∗)(1 − κθ�τ ) = 1 − κθ�τ + κθ�τ∗ − κ2θ

[
�τ

1

1 − Kτ
, θ

]
�τ

= 1 − κθ�τ + κθ�τ
1

1 − Kτ
− κθ Kτ

1

1 − Kτ
�τ = 1. (B.2)

Appendix C. Proof of Eq. (7.7)

(B, B)τ∗ := T −1(T B, T B)τ = (1 − κθ�τ )(T B, T B)τ = I − II = (B, B)τ + 2(�τ∗B) · (Kτ B), B ∈ Aτ , ε(B) = 0, (C.1)

where

I := (T B, T B)τ = (B + κθ�τ∗B, B + κθ�τ∗B)τ

= (B, B)τ − 2κ(�τ∗B) · (θ, B)τ + 2κθ(�τ∗B, B)τ + 2κ2θ(�τ∗B, θ)τ · �τ∗B, (C.2)

II := κθ�τ (T B, T B)τ = 2κθ(�τ T B, T B)τ = 2κθ
(
�τ B + κ[�τ , θ]�τ∗B, T B

)
τ

= 2κθ

(
�τ B + Kτ�τ

1

1 − Kτ
B, T B

)
τ

= 2κθ(�τ∗B, B + κθ�τ∗B)τ

= 2κθ(�τ∗B, B)τ + 2κ2θ(�τ∗B, θ)τ · �τ∗B. (C.3)

Now use polarization of Eq. (C.1) to prove Eq. (7.7), cf. e.g., Ref. [23].

Appendix D. Proof of Eq. (7.13)

B ∗ B = T −1(T B)2 = T −1(B + κθ(�τ∗B)
)2 = (1 − κθ�τ )

(
B2 + 2κθ B�τ∗B

)
= I − II − III = B2 − κθ(B, B)τ − 2κθ(Kτ B) · �τ∗B

= B2 − κθ(B, B)τ∗, B ∈ Aτ , ε(B) = 0, (D.1)

where

I := B2 + 2κθ B�τ∗B = B2 + 2κθ B�τ
1

1 − Kτ
B, (D.2)

II := κθ�τ

(
B2) = 2κθ B�τ B + κθ(B, B)τ , (D.3)

III := 2κ2θ�τ θ B�τ∗B = 2κ2θ[�τ , θ]B�τ∗B = 2κθ Kτ B�τ∗B = 2κθ(Kτ B) · �τ∗B + 2κθ B Kτ �τ
1

1 − Kτ
B. (D.4)

Now use polarization of Eq. (D.1) to prove Eq. (7.13).

Appendix E. Proof of Eq. (7.18)

eB∗ = T −1e(T B) = T −1eB+κθ(�τ∗ B) = (1 − κθ�τ )eB(1 + κθ�τ∗B)

= I − II − III = eB
(

1 − 1

2
κθ(B, B)τ − κθ(Kτ B) · �τ∗B

)

= eB
(

1 − 1

2
κθ(B, B)τ∗

)
, B ∈ Aτ , ε(B) = 0, (E.1)

where

I := eB(1 + κθ�τ∗B) = eB
(

1 + κθ�τ
1

1 − Kτ
B

)
, (E.2)

II := κθ
(
�τ eB) = κθeB

(
�τ B + 1

2
(B, B)τ

)
, (E.3)

III := κ2θ�τ θeB�τ∗B = κ2θ[�τ , θ]eB�τ∗B = κθ Kτ eB�τ∗B = κθeB(Kτ B) · �τ∗B + κθeB Kτ�τ
1

1 − Kτ
B. (E.4)
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