
Realizing XML Driven Algorithm
Visualization

Thomas Naps1

Department of Computer Science
University of Wisconsin: Oshkosh

Oshkosh, WI, USA

Myles McNally2

Department of Mathematics and Computer Science
Alma College

Alma, MI, USA

Scott Grissom3

Department of Computer Science
Grand Valley State University

Allendale, MI, USA

Abstract

In this paper we describe work in progress on JHAVÉ-II, a new generation of the client-server based

algorithm visualization system JHAVÉ. We believe this to be the first algorithm visualization system to be

totally XML driven. We describe the XML scripting language visualization authors can use with JHAVÉ-II
to define the sequence of graphical snapshots, integrated pop-up questions, synchronized pseudocode, and

supplemental information that comprise a particular algorithm visualization. JHAVÉ-II then uses these
scripts to render visualizations and support student exploration of algorithms.

Keywords: algorithm, visualization, xml

1 Introduction

Criteria for engaging students with an algorithm visualization (AV) have been pre-
viously detailed in [2]. These criteria are structured into a engagement taxonomy

1 Email: naps@uwosh.edu
2 Email: mcnally@alma.edu
3 Email: grissom@gvsu.edu

Electronic Notes in Theoretical Computer Science 178 (2007) 129–135

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.042
Open access under CC BY-NC-ND license.

mailto:naps@uwosh.edu
mailto:mcnally@alma.edu
mailto:grissom@gvsu.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

that includes responding (to questions about the visualization), changing (the vi-
sualization by providing new data to the algorithm being visualized), constructing
(being responsible for the appearance of the graphical rendering done by the visual-
ization), and presenting (using the visualization as a component of a written, oral,
or hypertextual explanation of the algorithm). An effective instructional algorithm
visualization must be much more than a sequence of pretty pictures. The complete
instructional package in which AV is used must allow the visualization designer to
ask questions of the learner, to strategically allow the learner to provide input to
the algorithm, and to supplement the visualization with appropriate text such as
synchronized pseudocode and other descriptions of the algorithm.

There is a tremendous amount of data that underlies effective AV – program
state data, data set input generation, pseudocode, hypertextual explanations, and
generation of non-trivial questions about the algorithm being viewed by the learner.
Last year’s ITiCSE working group on the “Development of XML-based Tools to
Support User Interaction with Algorithm Visualization” recognized this fact. Its
report [4] established a framework that defines a direction for future research and
development, and raises a number of interesting issues in visualization system de-
sign. In this paper we describe a significant first step in addressing some of these
issues by describing work in progress on what we believe to be the first instruc-
tional AV system based entirely on XML descriptions of underlying data. Although
a first step, this system is much more than a prototype. Within the environment
we have developed a substantial number of instructional visualizations, including a
full collection of sorting, search-tree, and graph algorithms appropriate for a typical
data algorithms and data structures course. By using XML as the underlying rep-
resentation for the data manipulated by these visualizations, we have considerably
reduced the amount of developer time required to produce a visualization. We have
also better prepared ourselves for the inevitable extensions to the system that we
will want to implement in the future.

2 JHAVÉ-II Architecture

The JHAVÉ-II architecture for delivering AV extends the original JHAVÉ AV en-
vironment described in [3]. As with the original JHAVÉ, JHAVÉ-II is still an
Internet-based system that generates visualizations by executing algorithms on a
server, generating a visualization script, and delivering that script to the JHAVÉ
client for presentation to the learner. However, unlike the original JHAVÉ, JHAVÉ-
II will rely upon XML as the language for defining these scripts.

In this architecture, the server application manages the available algorithms and
generates the visualization scripts that the client displays. In a standard session,
the learner first launches an instance of the client application, which displays a
listing of available algorithms. When the user selects an algorithm from that list,
the client sends a request to the server. The server knows what kind of input
data the learner must provide for this algorithm and sends an description of an
appropriate input generator object to the client. The client uses this to generate

T. Naps et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 129–135130

Fig. 1. JHAVÉ-II Screenshot

a frame with appropriate input areas for the learner. Once the learner fills out
these areas, the client returns the input to the server as a data set to use when
running the algorithm. The server then runs a program that generates the script
for that algorithm and sends a URL back to the client from which the script can
be read. The JHAVÉ-II client instantiates the appropriate visualizer plug-in to
parse, render, and present the script to the learner – complete with a standard set
VCR-like viewing controls, stop-and-think questions, and information/pseudocode
windows. Figure 1 illustrates this for a visualization of the Quicksort algorithm
with accompanying pseudocode window and a stop-and-think question.

The data flows during a JHAVÉ-II visualization session are depicted in Figure
2. Of these, the Vis Script flow is currently implemented in XML. This is the most
complex of the flows and is partially described in the next section. The remaining
flows (Choice, Input Generator, Input) remain work in progress and are not reported
on here.

The original JHAVÉ client and the plug-ins it supported worked extremely hard
at parsing the Vis Script received from the server. That was because, regardless
of the plug-in used, the data came to the client in a relatively cryptic format that
made sense only to someone familiar with the intricacies of the internals of JHAVÉ
and the plug-in. In JHAVÉ-II, the XML data the client receives bears meaningful
tags that clearly identify the various components of the script. Moreover, because
of the broad range of the XML-parsing tools that are widely available, the client’s
paring of the data is a non-issue. The JHAVÉ-II client simply uses the JDOM

T. Naps et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 129–135 131

Fig. 2. JHAVÉ-II Data Flows

parser classes (available at http://www.jdom.org) to verify that it is receiving a
syntactically valid script and then build an internal tree representation of the script.
This internal tree is then recursively walked to render and present the visualization
to the learner. Of the various visualizer plug-ins that were available for JHAVÉ
(Animal[6], GAIGS[5], and Samba[7]), only GAIGS is currently supported for use
with XML Vis Scripts. Animal support is in development.

3 XML Scripting for Visualization

In this section we provide brief descriptions of portions of the XML Vis Script lan-
guage for JHAVÉ-II. It is essentially a scripting language that captures representa-
tions of data structures at the interesting events during an algorithm’s execution.
These snapshots of the data structures can then be augmented by the various sup-
porting tools of the JHAVÉ-II environment. For each data structure capable of
being described by the XML – stacks, queues, arrays, linked lists, trees, and graphs
– we have also developed a class that implements the data structure along with
a toXML method that can be used by the visualization designer to annotate an
algorithm at an interesting event, thereby producing the XML necessary for the vi-
sualization script. The process of writing a visualization script-producing program
is then to first implement the algorithm you wish to visualize and then annotate
the program at its interesting events in a fashion similar to what one does when in-
serting tracer output to debug a program. The existence of the toXML methods for
each data structure make it very painless to produce plain vanilla visualizations, to
which can be added stop-and-think questions, synchronized pseudocode and doc-
umentation. Although production of such higher quality visualizations certainly
requires more programming, we feel that the descriptive nature of the XML tags
we use in our scripting language still make it a relatively painless process.

T. Naps et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 129–135132

http://www.jdom.org

3.1 Overall Script Organization

The current plug-in for JHAVÉ-II specifies the XML for its scripts using XML
DTD’s (Data Type Definitions). For those not familiar with DTD’s, an excellent
description is given in [1]. In brief such a DTD resembles an Extended Backus-Naur
Form (EBNF) description of a language. The DTD for JHAVÉ-II defined in Figure
3 specifies that a visualization is defined by a tagged entity called a show. Each
such show consists of one or more snaps (that is, snapshots) followed by zero or
more questions. A snap consists of a title, optional documentation and pseudocode
URLs, zero or more data structures (stacks, queues, arrays, linked lists, trees, or
graphs), and an optional question-reference for the snapshot.

< !ELEMENT show (snap+, questions?) >
< !ELEMENT snap (title,

doc url?
pseudocode url?,
(tree | array | graph | stack | queue |

linkedlist | bargraph | node)*,
question ref?) >

Fig. 3. High Level Script DTD

3.2 Data Structures

Each of the six data structures that can be rendered by the current JHAVÉ-II
plug-in has its own DTD definition. As an example, consider the stack definition
in Figure 4. The data in a stack consists of a sequence of zero or more list items.
The optional bounds tag may be used to specify the position and size of the stack
picture that is rendered by the plug-in. The color attribute for a list item is used
to specify the color of each data item in the stack.

< !ELEMENT stack (name?, bounds?, list item*) >
< !ELEMENT bounds (EMPTY) >
< !ATTLIST bounds x1 CDATA #REQUIRED

y1 CDATA #REQUIRED
x2 CDATA #REQUIRED
y2 CDATA #REQUIRED

fontsize CDATA ”0.03“ >
< !ELEMENT list item (label)>
< !ATTLIST list item color CDATA “#FFFFFF” >
< !ELEMENT label (#PCDATA) >

Fig. 4. Stack Data Structure DTD

Of course, non-linear data structures such as trees and graphs have more com-
plicated DTD definitions. Nonetheless the bounds tag and color attribute are used
in a consistent fashion throughout all of the data structure definitions.

T. Naps et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 129–135 133

3.3 Documentation, Pseudocode, and Interactive Questions

The support offered by JHAVÉ-II for its plug-ins includes documentation and pseu-
docode windows. The DTD for documentation window content is merely a reference
to a URL that specifies an HTML document. Pseudocode windows are more com-
plicated as they must be synchronized with the state of the data structure that is
being viewed by the learner. For example, Figure 1 shows a pseudocode window for
a visualization of the quicksort algorithm. In addition to the program listing, note
the call stack and the current values of individual variables. The DTD for such a
pseudocode window appears in Figure 5.

< !ELEMENT doc url (#PCDATA) >
< !ELEMENT pseudocode (call stack?,

program listing?,
variables?) >

< !ELEMENT call stack (#PCDATA) >
< !ELEMENT program listing (signature?, line*) >
< !ELEMENT signature (#PCDATA) >
< !ELEMENT line ((#PCDATA | replace) +) >
< !ATTLIST line line number CDATA #IMPLIED>
< !ELEMENT variables (variable*) >
< !ELEMENT variable (#PCDATA, replace) >
< !ELEMENT replace (EMPTY) >
< !ATTLIST replace var NMTOKEN #REQUIRED >

Fig. 5. Pseudocode DTD

A DTD for interactive stop-and-think questions has also been defined. Presently
four types of questions are supported – true-false, fill in the blank, multiple choice,
and multiple selection (multiple choice with more than one right answer).

4 Conclusions

In this paper we have described work in progress on JHAVÉ-II, the next generation
of the client-server based JHAVÉ AV environment. While this new release will
have a number of enhancements, we focused here on the conversion of all JHAVÉ
data flows to the XML format. Positive outcomes of this conversion will include
enhanced extensibility and ease of visualization development.

5 Acknowledgement

This work was supported by a United States National Science Foundation CSLI
Grant, DUE-0126494.

References

[1] Harold, E. and S. Means, “XML in a Nutshell,” O’Reilly, 2004.

[2] Naps, T., S. Cooper, B. Koldehofe, C. Leska, G. Rößling, W. Dann, A. Korhonen, L. Malmi, M. McNally,
J. Rantakokko and R. Ross, Evaluating the educational impact of visualization, ACM SIGCSE Bulletin
35 (2003), pp. 124–136.

T. Naps et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 129–135134

[3] Naps, T., J. Eagan and L. Norton, Jhavé – an environment to actively engage students in web-based
algorithm visualizations, ACM SIGCSE Bulletin 32 (2000), pp. 109–113.

[4] Naps, T., G. Robling, P. Brusilovsky, J. English, D. Jarc, V. Karavirta, C. Leska, M.McNally, A. Moreno,
R. Ross and J. Urquiza-Fuentes, Development of xml-based tools to support user interaction with
algorithm visualization, ACM SIGCSE Bulletin 37 (2005), pp. 123–138.

[5] Naps, T. and B. Swander, An object-oriented approach to algorithm visualization - easy, extensible, and
dynamic, ACM SIGCSE Bulletin 26 (1994), pp. 46–50.

[6] Rößling, G. and B. Freisleben, Animalscript: An extensible scripting language for algorithm animation,
ACM SIGCSE Bulletin 33 (2001), pp. 70–74.

[7] Stasko, J., Using student-built algorithm animations as learning aids, ACM SIGCSE Bulletin 29 (1997),
pp. 25–29.

T. Naps et al. / Electronic Notes in Theoretical Computer Science 178 (2007) 129–135 135

	Introduction
	JHAVÉ-II Architecture
	XML Scripting for Visualization
	Overall Script Organization
	Data Structures
	Documentation, Pseudocode, and Interactive Questions

	Conclusions
	Acknowledgement
	References

