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SUMMARY

Memory impairment has been associated with age-
related decline in adult hippocampal neurogenesis.
Although Notch, bone morphogenetic protein, and
Wnt signaling pathways are known to regulate
multiple aspects of adult neural stem cell function,
the molecular basis of declining neurogenesis in the
aging hippocampus remains unknown. Here, we
show that expression of the Wnt antagonist Dick-
kopf-1 (Dkk1) increases with age and that its loss
enhances neurogenesis in the hippocampus. Neural
progenitors with inducible loss of Dkk1 increase their
Wnt activity, which leads to enhanced self-renewal
and increased generation of immature neurons.
This Wnt-expanded progeny subsequently matures
into glutamatergic granule neurons with increased
dendritic complexity. As a result, mice deficient in
Dkk1 exhibit enhanced spatial working memory and
memory consolidation and also show improvements
in affective behavior. Taken together, our findings
show that upregulating Wnt signaling by reduc-
ing Dkk1 expression can counteract age-related
decrease in neurogenesis and its associated cogni-
tive decline.

INTRODUCTION

In the adult brain, neurogenesis takes place in two distinct

regions: the subventricular zone (SVZ) of the lateral ventricles

and the subgranular zone (SGZ) of the dentate gyrus (DG) of

the hippocampus (Ming and Song, 2011). Neurogenesis

encompasses several processes, including cell birth, fate deter-

mination, survival, network integration, and the acquisition of

functional properties. In the DG, new neurons arise from a pop-

ulation of neural progenitor cells (NPCs) residing in the SGZ

(Ming and Song, 2011). The more quiescent neural progenitors

(QNPs) are characterized by their potential to self-renew and to

differentiate into either neuronal lineage-restricted progenitors

or astrocytes, which are characterized by the expression of the
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astrocytic marker S100b (Encinas et al., 2011). QNPs can

be identified by their expression of the intermediate filament

protein Nestin or the glial fibrillary acidic protein, as well as the

transcription factor Sox2 (Encinas et al., 2011). They give rise

to committed amplifying neuronal progenitors (ANPs), which

express the transcription factor Tbr2 (a T box transcription

factor). Finally, ANPs transform into doublecortin (DCX)-positive

neuroblasts (NBs) that lose expression of Tbr2 and migrate into

the adjacent granule cell layer (GCL), where they mature into glu-

tamatergic granule neurons that become positive for the

neuronal nuclear antigen (NeuN) and project to the CA3 and hilar

regions (Ming and Song, 2011).

The unique microenvironment of the SGZ regulates mainte-

nance, activation, and fate choice of adult NPCs through

a number of morphogens, including the Notch, Sonic hedgehog

homolog, bone morphogenetic protein, and Wnt signaling path-

ways (Ming and Song, 2011). Astrocytes within the neurogenic

niche of the DG produce the Wnt3 ligand, which acts in a para-

crine manner on neuronal progenitors to induce expansion of

NBs (Lie et al., 2005; Song et al., 2002). Also, Wnt7 has recently

been shown to be expressed in adult NPCs in the DG under the

control of the orphan nuclear receptor tailless (TLX) to induce

their self-renewal (Qu et al., 2010). Binding of Wnt ligands to

the frizzled receptors and LRP5 and LRP6 coreceptors induces

phosphorylation of LRP5/LRP6, leading to the translocation of

Dishevelled and Axin from the b-catenin degradation complex

to the plasma membrane (Niehrs, 2006). Consequently, b-cate-

nin is no longer degraded and may shuttle to the nucleus to

form transcription activator complexes with the T cell transcrip-

tion factor (TCF) and lymphoid enhancer binding factor (LEF)

family of transcription factors (Niehrs, 2006). The promoter

region of the basic helix-loop-helix proneural transcription factor

NeuroD1 contains regulatory elements that are repressed by

Sox2 and activated by the b-catenin/TCF/LEF activator complex

following Wnt activation in adult NPCs (Kuwabara et al., 2009).

These Sox2 and LEF binding sites were also found in LINE-1

elements, suggesting the further involvement of Wnt signaling

in the generation of neuronal diversity (Kuwabara et al., 2009).

However, detailed knowledge of how Wnt activity regulates

survival, proliferation, and differentiation in adult neurogenesis

is still missing.

Wnt signaling is not only modulated by the presence or

absence of Wnt ligands but also by antagonists such as the
.
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Dickkopf family of secreted glycoproteins. Dkk1, Dkk2, and

Dkk4 bind to LRP5/LRP6, thereby preventing its interaction

with Wnt ligands (Niehrs, 2006). Forced expression of Dkk1

severely reduces neurogenesis in the developing hippocampus

(Solberg et al., 2008). Yet, the function of Dkk1 in adult neurogen-

esis has not been addressed.

In this study, we show that Dkk1 loss in NPCs increases neuro-

genesis in the SGZ of young and old animals. In addition, we

provide evidence that loss of Dkk1 increases Wnt activity in

NPCs, leading to enhanced self-renewal and/or survival of the

more quiescent neural progenitors and increased numbers of

ANPs and NBs. These NBs, as well as the newborn mature

neurons, exhibit a more elaborated dendritic morphology and

positively impact neuronal activity in the DG. Altogether, these

features lead to positive effects on affective behavior, working

memory, and memory consolidation.

RESULTS

Loss of Dkk1 Increases Wnt Activity in NPCs
and Maintains Neurogenesis in Old Age
To investigate the function of Dkk1 in adult neural stem cells, we

generated mutant mice lacking expression of Dkk1 in the brain.

To this end, mice with one deleted and one loxP-flanked allele

(Dkk1�/f) were bred withmice that express the Cre Recombinase

under the control of the Nestin promoter, resulting in mice

deficient in Dkk1 in neurons, glia, and NPCs (Nestin-Dkk1

mice) (Pietilä et al., 2011). Dkk1 protein and mRNA was ex-

pressed in neurospheres derived from the SVZ and SGZ of

control—but not of Nestin-Dkk1—mice (Figures 1A and 1B). To

assess the effect of Dkk1 loss on Wnt activity, we used a Wnt-

reporter plasmid (7TGC) carrying a SV40-mCherry cassette

and a 73Tcf-eGFP Wnt reporter cassette (Fuerer and Nusse,

2010). In the absence of Wnt signals, cells display only red fluo-

rescence, whereas activated Wnt signaling leads to additional

expression of eGFP. Loss of Dkk1 resulted in a 4-fold increase

in the number of eGFP-expressing NPCs as compared to

controls (Figure 1C). Thus, Dkk1 counteracts Wnt transcriptional

activity in NPC cultures.

Wnt ligands are reported to be producedwithin the neurogenic

niche and to act on neighboring NPCs (Song et al., 2002). We

have shown that Dkk1 is produced by NPCs, but additional

secretion by other cells within the niche has not been explored.

To selectively address the function of NPC-secreted Dkk1, we

bred mice with two loxP-flanked Dkk1 alleles (Dkk1f/f) with

mice expressing a tamoxifen (TAM)-inducible Recombinase

CreERT2 under the control of the Nestin promoter. In the resulting

iNestin-Dkk1 mice, TAM administration at adult age induced

Dkk1 deletion in adult NPCs in the DG (Figure 1D). Accordingly,

Dkk1 was not expressed in neurospheres derived from these

mice (Figure 1E). In addition, transfection of the Wnt-reporter

plasmid into NPCs isolated from TAM-treated iNestin-Dkk1

mice revealed that TAM-induced loss of Dkk1 leads to increased

Wnt activity in neurosphere cultures (Figure S1 available online).

Next, we examined Dkk1 expression and Wnt activity in the DG

of control and iNestin-Dkk1 mice 7 months after TAM adminis-

tration. To this end, we performed in situ hybridization (ISH) of

Dkk1 as well as Axin2, a universal reporter gene for canonical

Wnt signaling. Expression of Dkk1 as well as Axin2 was detected
Ce
in theGCLof theDGof control and iNestin-Dkk1mice (Figure 1F).

Notably, whereas iNestin-Dkk1 mice showed many hot spots of

Axin2 expression in the SGZ of the DG, these were rare in control

mice (Figures 1F and 1F0). Accordingly, expression of Dkk1

mRNA was missing in the SGZ of iNestin-Dkk1 mice and de-

tected as rare hot spots in the SGZ of control mice (Figures 1F

and 1F0). Interestingly, some of those Dkk1-empty SGZ regions

spread like indentations into the GCL of the DG (Figures 1F

and 1F0). Altogether, these data suggest that QNPs and their

progeny, once activated, express Dkk1 as a feedback signal

onto neighboring clones.

Next, we examined the impact of the observed increase in

Wnt activity on the self-renewal of NPCs in vitro with the help

of a neurosphere assay. NPCs directly isolated from Nestin-

Dkk1 mice generated a higher number of secondary neuro-

spheres than NPCs derived from control mice (Figure 1G).

The size of the neurospheres was similar in both groups (Fig-

ure 1H). These data suggest that loss of Dkk1 enhances self-

renewal of NPCs.

Dkk1 mRNA and protein expression was higher in the DG of

old animals than in that of young adult animals (Figures 1I and

S1). The observed increase in Dkk1 expression could be one

reason underlying the age-related decay of NPCs’ self-renewal.

Thus, if loss of Dkk1 increases the self-renewal of NPCs in vivo,

then loss of Dkk1 would lead to maintenance of neurogenesis in

old age. To test this hypothesis, we examined neurogenesis in

very old Nestin-Dkk1 mice. Notably, in 2-year-old Nestin-Dkk1

mice, the number of newborn neurons was 80% higher than

in age-matched counterparts (Figures 1J, 1K, and S1). Alto-

gether, these data demonstrate that Dkk1 is expressed in

NPCs, where it counteracts Wnt activity and the self-renewal

of NPCs. Consequently, loss of Dkk1 leads to restoration of

neurogenesis in old age.

Deletion of Dkk1 in Adult NPCs Increases NPCs’ Self-
Renewal and the Number of Neuronal Progenitors
Thereafter, we examined neurogenesis 5 weeks after TAM

administration to adult iNestin-Dkk1 mice. These mice exhibited

a 2.7-fold increase of proliferating QNPs (here identified as 24hr-

BrdU+/Tbr2�/DCX� cells; Figures 2A and 2B) and a 1.7-fold

increase in 4 week label-retaining QNPs (identified as 4 week-

BrdU+/Sox2+/S100b� cells; Figures 2C and 2D), suggesting

increased self-renewal of QNPs. In addition, those animals

showed a 1.3-fold increase in ANPs (identified as 24hr-BrdU+/

Tbr2+/DCX� cells; Figures 2E and 2F) as well as a 1.3-fold higher

number of NBs (here identified as 24hr-BrdU+/Tbr2+/DCX+ cells;

Figures 2G, 2H, and S1) than in control counterparts. The high

increase in proliferating and label-retaining QNP numbers in

adult iNestin-Dkk1 mice suggests that increased Wnt activity in

NPCs increases the number of symmetric divisions and/or the

survival of QNPs. Along this line, Wnt signals are reported to

increase radial glia self-renewal in the embryonic cortex (Munji

et al., 2011).

Notably, quantification of newly generated granule cells

(4 week-BrdU+/NeuN+ cells) or the volume of the granule cell

layer in the DG revealed no significant differences between the

two groups (Figures 2I and 2J, and S1). These data suggest

that a higher proportion of NBs undergo apoptosis in Dkk1-defi-

cient mice than in respective control mice. Indeed, staining of
ll Stem Cell 12, 204–214, February 7, 2013 ª2013 Elsevier Inc. 205
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Figure 1. Deletion of Dkk1 Increases Neurogenesis and TCF/LEF Activity

(A) Western blot showing Dkk1 expression in isolated NPCs from the SVZ and HC of WT mice.

(B) Deletion of Dkk1 in neurospheres derived from Nestin-Dkk1 mice used in (C), (G), and (H).

(C) Nestin-Dkk1 NPCs show increased Wnt activity compared to control NPCs, indicated by higher eGFP expression of NPCs transfected with the 7TGC Wnt

reporter plasmid (control versus Nestin-Dkk1: 14% versus 59%).

(D) Three-primer Dkk1 PCR on DNA isolated from DG of WT, control, and iNestin-Dkk1 mice to show Dkk1WT sequence (white arrowhead), Dkk1 exon 1- and

exon 2-floxed sequence (black arrowhead), and TAM-induced deletion of Dkk1 exon 1 and exon 2 in NPCs (gray arrowhead).

(E) Relative Dkk1 mRNA expression of NPCs isolated from iNestin-Dkk1 and control mice.
(legend continued on next page)
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cleaved Caspase-3 revealed a dramatic and selective increase

of apoptotic DCX+ cells in iNestin-Dkk1 mice when compared

to controls (Figures 2K–2N). Altogether, these data indicate

that other signals from the niche are required for long-term inte-

gration of newly generated neurons.

Adult NPCs give rise not only to neurons but also to astrocytes.

NPCs are reported to give rise to astrocytes either through direct

transformation after they lose quiescence or after a serial round

of asymmetric neurogenic divisions (Bonaguidi et al., 2011; Enci-

nas et al., 2011). Thus, the maintenance of neurogenesis could

be a result of inhibition of gliogenesis by increased Wnt activity.

To test this hypothesis, we examined the generation of newborn

astrocytes in the DG of control and Dkk1 mutant animals. iNes-

tin-Dkk1 mice and their control counterparts exhibited compa-

rable numbers of astrocytes (4 week label-retaining BrdU+/

Sox2+/S100b+; Figures 2O and 2P). Thus, increased Wnt

signaling in the NPC pool increased their self-renewal and the

number of neuronal progenitors without a parallel increase of

astrocytes.

Loss of Dkk1 Increases Neuronal Dendritic Complexity
The process of aging selectively decreases dendritic integrity in

the DG (Yassa et al., 2011). Accordingly, in 2-year-old control

mice, we observed that NBs exhibit atrophic dendrites (Fig-

ure 1J). By contrast, age-matched Nestin-Dkk1 mice exhibited

highly branched NBs. Wnt activity is a major player in dendrite

morphogenesis (Ciani and Salinas, 2005). To determine whether

loss of Dkk1 additionally influences the dendritic complexity

of NBs, we assessed the dendritic length and branching points

of DCX+ cells from Dkk1-deficient and control mice. A gain of

Wnt activity significantly increased dendritic complexity of

DCX+ cells in 2-year-old Nestin-Dkk1 and 4-month-old iNestin-

Dkk1 mice as compared to age-matched control counterparts

(Figures 3A–3C). We further investigated whether this increased

complexity is maintained in 6-week-old neurons, which are

reported to modulate DG function (Denny et al., 2012; Ge

et al., 2007). To this end, we used iNestin-YFP-Dkk1 mice and

respective controls (iNestin-YFP) and traced the dendrites of

6-week-old eYFP+, NeuN+, and DCX� neurons 6 weeks after

TAM administration. These neurons showed more elaborated

dendrites than the mature neurons of control animals (Figures

3D–3F). To assess whether the observed higher complexity

had an effect on DG neuronal activity, we examined expression

of the neuronal-activity marker Arc (Korb and Finkbeiner, 2011).

iNestin-Dkk1 mice had significantly more Arc+-, NeuN+-, and
(F) Tissue from 11-month-old animals was processed 7 months after TAM treatm

panels) and Dkk1 (lower panels) in the DG of control and iNestin-Dkk1 mice are sh

and dotted lines outline the nonimmunoreactive areas.

(F0) The scheme of ISH results shown in (F), blue circles denote mRNA-expressin

(G and H) NPCs fromNestin-Dkk1mice generate a higher number of secondary sp

[G]) that are of comparable sphere size (control versus Nestin-Dkk1: 69.3 ± 0.9 m

(I) Dkk1mRNA expression in the DG ofWTmice increases with age (3-month-old [

WT mice [1.85 ± 0.28]; n = 3). Placenta mRNA served as positive control.

(J) Representative images of neuroblasts in 2-year-old control and Nestin-Dkk1

(K) Two-year-old Nestin-Dkk1 mice show increased numbers of DCX+ NBs comp

0.042; n = 5–7).

(C) and (G–H) are representative for at least two independent experiments. Scale

Student’s t test was used for statistical analysis (*, p < 0.05; ***, p < 0.001). Resu

See also Figure S1 and Tables S1, S2, and S3.

Ce
DCX�-active neurons at baseline levels per DG than control

mice (Figures 3G and 3H). To further assess whether Dkk1’s

effect on dendrite morphology is specific to newborn neurons,

we examined dendritic morphology of granule cells in the neigh-

boring CA3 region of the hippocampus. The number of branch-

ing points and the dendrite length of adult CA3 neurons, as

revealed by Golgi staining, did not differ between iNestin-Dkk1

mice and their respective controls (Figures 3I–3K). Together,

these data indicate that loss of Dkk1 in the NPC compartment

increases the dendritic complexity of newborn NBs and mature

neurons, leading to higher neuronal activity in the DG.

Deletion ofDkk1 inNPCsHasBeneficial Effects onMood
Adult-born neurons are required for the efficacy of antidepres-

sants (Santarelli et al., 2003), and mice lacking neurogenesis

show increased susceptibility to stress-induced-depression-

like behavior (Snyder et al., 2011). We therefore assessed affec-

tive behavior in Dkk1mutantmice. As previously reported (Sahay

et al., 2011a), increased neurogenesis did not influence anxiety-

like behavior in the open field (OF; Figures 4A, 4B, and S2). The

tail suspension test (TST) is a means of assessing affective

behavior that can be improved by antidepressants (Cryan

et al., 2005). Importantly, old Dkk1-deficient mutant mice ex-

hibited a lower percentage of immobility in the TST (Figures

4C–4D). Thus, increased neuronal activity in the DG produces

behavioral responses similar to those elicited by current antide-

pressant drugs (Nestler and Hyman, 2010). Affective behavior

can also be tested by an animal’s decreased interest in

pleasurable activities, as a measure of anhedonia (Nestler and

Hyman, 2010). This approach is based on symptoms of depres-

sion rather than on properties of available antidepressants. To

assess whether increased neurogenesis counteracts anhedonic

behavior, we tested mice’s preference for a sucrose-containing

solution over water (Nestler and Hyman, 2010; Snyder et al.,

2011). Mice were given free access to a 3% sucrose solution

and water for 3 days. The animals’ preference for sucrose was

tested for 70 min after a 6 hr period of water and sucrose depri-

vation. Notably, this stress-induced sucrose preference was

higher in Nestin-Dkk1 mice than in control counterparts (Fig-

ure 4E). The animals’ motivation across the different groups

was similar, as assessed by the amount of water consumption

(Figure 4F). Interestingly, 18-month-old animals were found to

have decreased anxiety-like behavior in the OF, a lower

percentage of immobility in the TST, as well as a higher sucrose

preference than their 3-month-old counterparts (Figure S2),
ent for ISH of Axin2 and Dkk1 mRNA. Representative pictures of Axin2 (upper

own. Insets show a higher magnification of the SGZ andGCL of the DG; dashed

g cells.

heres (control versus Nestin-Dkk1: 65.44 ± 1.66 versus 81.88 ± 1.47, p < 0.001,

m versus 68.3 ± 0.8 mm, [H]).

1.00 ± 0.16] versus 16-month-old [1.77 ± 0.14]WTmice; p = 0.024; 7-month-old

mice.

ared to controls (Nestin-Dkk1 versus control; 923 ± 153 versus 580 ± 63; p =

bars represent 100 mm (F), 10 mm (insets), or 20 mm (J). An unpaired two-tailed

lts are presented as mean ± SEM.
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Figure 2. Loss of Dkk1 Increases NPC Self-Renewal and Neuronal Differentiation

(A and B) iNestin-Dkk1 mice show increased numbers of BrdU+/Tbr2�/DCX� QNPs 24 hr after BrdU labeling compared to controls (424 ± 67 versus 153 ± 45;

p = 0.007; n = 6).

(C and D) Increased number of 4 week label-retaining BrdU+/Sox2+/S100b� QNPs per DG in iNestin-Dkk1 mice compared to controls (261 ± 18 versus 155 ± 26;

p = 0.004; n = 7–8).

(E and F) Quantification of 24hr-BrdU+/Tbr2+/DCX� cells indicates an increase in ANPs per DG in iNestin-Dkk1 mice compared to controls (770 ± 65 versus

573 ± 58; p = 0.047; n = 6).

(G andH) iNestin-Dkk1mice show increasednumbers of newbornNBs (24hr-BrdU+/Tbr2+/DCX+) compared to controls (915±71 versus 705±57; p= 0.043; n = 6).

(I and J) Quantification of 4 week labeled BrdU+/NeuN+ neurons per DG of control and iNestin-Dkk1 mice (714 ± 115 versus 806 ± 137; n = 9–10).

(K and L) Quantification of Casp-3+/DCX� cells in control and iNestin-Dkk1 mice (65 ± 17 versus 68 ± 10; n = 7–9).

(M and N) iNestin-Dkk1 mice show increased death of immature neurons (Casp-3+/DCX+) compared to control (107 ± 16 versus 45 ± 10; p = 0.009; n = 7–9).

(O and P) Quantification of BrdU+/Sox2+/S100b+ astrocytes four weeks after BrdU administration (control versus iNestin-Dkk1; 56 ± 14 versus 76 ± 14; n = 7–8).

Scale bars represent 20 mm.

Statistical analysis was performed with an unpaired Student’s t test (B-J and N-P) or two-tailed Mann-Whitney rank sum test (L). *, p < 0.05; **, p < 0.01. Results

are presented as mean ± SEM.

See also Figure S1 and Tables S1, S2, and S3.
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indicating that age-related features other than neurogenesis

have additional positive effects on affective behavior. Neverthe-

less, the basal preference for sucrose, as assessed by the

sucrose consumption within the first 24 hr, was higher in 11-
208 Cell Stem Cell 12, 204–214, February 7, 2013 ª2013 Elsevier Inc
month-old iNestin-Dkk1 mice than age-matched control mice

(Figure S2). Together these data indicate that increased Wnt

activity by loss of Dkk1 has an effect on affective behavior in

tests that have predictive validity for antidepressive drugs.
.
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Figure 3. Dkk1 Deletion Increases Dendritic Complexity and Neuronal Activity in the DG

(A) Representative images of maximum projection (left) and 2D projection of 3D reconstruction (right) of DCX-positive immature neurons used for dendritic

quantification in 2-year-old Nestin-Dkk1 (upper panels, n = 4–7 animals) or 5-month-old iNestin-Dkk1 mice (lower panels, n = 5 animals) and age-matched

controls.

(B) DCX+ cells of Dkk1 mutant mice have significantly more branching points compared to control mice (control versus Nestin-Dkk1; 1.4 ± 0.2 versus 2.4 ± 0.3;

p = 0.049; control versus iNestin-Dkk1; 1.3 ± 0.1 versus 1.7 ± 0.1; p = 0.006).

(C) Dkk1mutant mice show significantly increased dendritic length of DCX+ cells (control versus Nestin-Dkk1; 115 ± 16 mmversus 183 ± 15 mm; p = 0.017; control

versus iNestin-Dkk1; 113 ± 9 mm versus 159 ± 11 mm; p = 0.016).

(D) Representative images of tracing of 6-week-old neurons of iNestin-YFP and iNestin-YFP-Dkk1mice. Images of maximum projection (left) and 2D projection of

3D reconstruction (right) are also shown.

(E and F) Newborn neurons, identified as eYFP+/NeuN+/DCX� cells of iNestin-YFP-Dkk1 mice, have significantly more branching points (3.85 ± 0.24 versus

2.05 ± 0.15; p < 0.001; [E]) as well as a significantly increased total dendritic length (643 ± 44 mm versus 380 ± 19 mm; p < 0.001; [F]) compared to neurons from

iNestin-YFP mice (n = 2 animals, 10 cells from each animal).
(legend continued on next page)
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Loss of Dkk1 Restores Working Memory and Memory
Consolidation in Old Age
We have previously shown that animals with reduced neurogen-

esis exhibit deficits in hippocampus-dependent spatial working

memory on the T-maze spontaneous alternation paradigm (Cor-

sini et al., 2009). We therefore hypothesized that the observed

increase in the number of neurons with highly complex dendritic

arbors in Dkk1 mutant mice would positively impact spatial

working memory. Accordingly, increased neurogenesis in iNes-

tin-Dkk1 and Nestin-Dkk1 mice improved working memory in

the very same task (Figure 5A). Given that aging decreases neu-

rogenesis as well as some aspects of cognition, we wondered

whether spatial working memory is impaired in old mice and, if

so, whether it could be restored to levels observed in young

animals by the loss of Dkk1. Spontaneous alternation in the

T-maze was significantly reduced in 18-month-old animals as

compared to 3-month-old animals (Figure 5A). It is noteworthy

that the success rate in old Dkk1 mutant animals was similar to

the success rate in 3-month-old animals (Figure 5A). Next, we

examined learning in the rewarded T-maze and eight-arm radial

maze paradigms. Learning of these hippocampus-dependent

tasks was comparable in Nestin-Dkk1, iNestin-Dkk1, and control

mice (Figure S3). Furthermore, we tested spatial learning in the

hippocampus-dependent active place avoidance paradigm, in

which the animal is placed on a slowly rotating platform that is

open to the room environment and contains spatial cues with

a nonrotating 60� shock zone (Figure 5B) (Cimadevilla et al.,

2001; Pastalkova et al., 2006). Similarly, spatial learning in this

paradigm did not significantly differ between both animal groups

(Figure 5C). Importantly, the 24 hr recall of active place avoid-

ance, as measured by the time passed before initial entry into

the shock zone, was significantly higher in the iNestin-Dkk1

mice (Figures 5D and S3). The 24 hr recall of place avoidance

was significantly lower in 18-month-old animals as compared

to 3-month-old animals, whereas learning in the active place

avoidance paradigm was similar in both groups (Figures 5E

and 5F). Once again, the 24 hr recall was similar in 10-month-

old iNestin-Dkk1 mice and 3-month-old wild-type (WT) animals

(Figures 5D and 5F). Importantly, to ensure that the observed

deficits in the aged group were not related to visual deficits,

we performed a novel object recognition task (NOR). Perfor-

mance in the NOR task was comparable between young and

old WT animals, as well as between control and Dkk1 mutant

animals (Figure S3). Thus, the observed increase in neuronal

activity in the DG positively modulated working memory and

long-term retention of stored spatial memory; i.e. memory

consolidation. Most importantly, loss of Dkk1 restored working

memory and memory consolidation back to levels observed in

young animals.
(G) Representative images of Arc+ cells in the DG GCL of Control and iNestin-Dk

(H) iNestin-Dkk1 mice show an increased number of Arc+-, NeuN+-, and DCX�-ac
versus 4,266 ± 302; p = 0.041; n = 6).

(I) Representative image of Golgi staining of CA3 neurons used for dendritic qua

(J and K) Quantification of branching points (control versus iNestin-Dkk1; 7.0 ± 0.

884 ± 107 versus 884 ± 88; n = 3; [K]) of CA3 neurons.

Scale bars represent 20 mm (A) or 100 mm (D–I). Statistical analysis was perform

Mann-Whitney rank sum test (E and F). *, p < 0.05; **, p < 0.01; ***, p < 0.001. Re

See also Tables S1, S2 and S3.
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DISCUSSION

In the embryonic brain, Wnt signaling induces self-renewal of

radial glia progenitors and differentiation, but not proliferation,

of intermediate progenitors (Munji et al., 2011). In adult neuro-

genesis, the function and site of action of Wnt signals remain

controversial. Our study shows that the deletion of Dkk1 in

Nestin NPCs results in missing expression of Dkk1 mRNA in

the SGZ and also in regions spreading into the GCL. This feature

suggests that Dkk1 expression is activated in newly generated

clones as a negative feedback signal onto neighboring NPCs.

Accordingly, a higher Wnt activity was detected in NPCs but

not in cells in the GCL of iNestin-Dkk1 mice. Nevertheless,

whether or not the Dkk1-producing NPC is the Axin2-express-

ing-NPC needs to be addressed by future studies.

Wnt ligands are reported to increase proliferation of adult

neural progenitors in vitro and in vivo (Gao et al., 2007; Michae-

lidis and Lie, 2008; Lie et al., 2005; Qu et al., 2010). However,

conditional deletion of b-catenin in Sox2-positive NPCs by retro-

viral vectors increased the number of neuronal-committed pro-

genitors without influencing the pool of these NPCs (Kuwabara

et al., 2009). In contrast, the decreased numbers of NPCs in

Wnt7-deficient mice could be rescued by infection with active-

b-catenin lentiviral vectors (Qu et al., 2010). Unfortunately, the

number of Sox2-positive NPCs in the DG of Wnt7-deficient

mice was not examined. The apparent contradiction of in vivo

studies on Wnt function in the adult DG is probably due to the

use of different viral constructs, whichmay be biased to infection

of specific subsets of NPCs. Conditional deletion of Dkk1 in

Nestin-positive NPCs leads to increased self-renewal and/or

survival of QNPs and a corresponding increased number of the

neurogenic ANPs and NBs. However, there is no corresponding

increase of new astrocytes. Interestingly, conditional PTEN

deletion in NPCs equally induces increased self-renewal but,

as opposed to enhancedWnt-activity, it also activates astrocytic

terminal differentiation (Bonaguidi et al., 2011). This rate of astro-

cytic differentiation is greater than that of self-renewal, which

leads to a net reduction of NPCs (Bonaguidi et al., 2011). Simi-

larly, deletion of the g2 GABAA receptor in NPCs increases

self-renewal of NPCsbut also the number of newborn astrocytes,

resulting in long-term NPC depletion (Song et al., 2012). In

contrast, loss of Dkk1 does not lead to exhaustion of NPCs, as

shown by the enhanced neurogenesis in old Dkk1 mutant mice.

The decrease in adult neurogenesis influences cognitive

performance and mood regulation. Increasing adult neurogene-

sis in young as well as in old animals, as accomplished by

voluntary running, has been shown to improve cognitive abilities

such as pattern separation (Aimone et al., 2011; Sahay et al.,

2011a; Sahay et al., 2011b). Yet, the specific contribution to
k1 animals.

tive neurons per DG compared to control mice at baseline levels (5,396 ± 376

ntification in 10-month-old iNestin-Dkk1 mice.

9 versus 7.4 ± 1.0; n = 3; [J]) and dendritic length (control versus iNestin-Dkk1;

ed with an unpaired two-tailed Student’s t test (B, C, and H–K) or a two-tailed

sults are presented as mean ± SEM.
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Figure 4. Loss of Dkk1 Has a Beneficial Effect on Affective Behavior

(A and B) Deletion of Dkk1 has no effect on locomotor activity and anxiety-

like behavior in the OF in 8-month-old Nestin-Dkk1 and 10-month-old iN-

estin-Dkk1 mice (‘‘% path length center’’ displays the proportion of distance

traveled in the center to the total distance traveled) (control versus

Nestin-Dkk1; 19.4% ± 2.4% versus 24.0% ± 3.1%; n = 5-6 [A]; control versus

iNestin-Dkk1; 25.4% ± 2.8% versus 27.8% ± 2.9%; two-tailed Student’s

t test; n = 9 [B]).

(C and D) Nestin-Dkk1 (C) and iNestin-Dkk1 (D) mice show significantly

decreased immobility in the TST compared to control mice (control versus

Nestin-Dkk1; 43.9% ± 1.4% versus 32.4% ± 5.3%; p = 0.037; n = 5–7; control

versus iNestin-Dkk1; 28.0% ± 3.8% versus 9.4% ± 1.16%; p = 0.002; one-

tailed Student’s t test; n = 5–7).

(E and F) Nestin-Dkk1 mice show selective increased preference for drinking

sucrose-containing water in an acute test (control versus iNestin-Dkk1;

85.9% ± 6.4% versus 97.1% ± 1.1%; p = 0.030; n = 5–8; [E]; control versus

iNestin-Dkk1; 0.0016 ± 0.0004 ml/g versus 0.0012 ± 0.0002 ml/g; two-tailed

Student’s t test; n = 5–8; [F]).

Statistical analysis was performed with an unpaired Student’s t test (A, B, and

D, and F) or Mann-Whitney rank sum test (C and E). BW, body weight. *, p <

0.05; **, p < 0.01. Results are presented as mean ± SEM.

See also Figure S2.
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these functions of the young versus the mature newly generated

neurons remains a matter of debate. At 14 days of age, adult-

born neurons can already be considered as functionally relevant
Ce
to the network and, at up to 6 weeks of age, they exhibit distinct

electrophysiological properties such as hyperexcitability and

heightened synaptic plasticity of their glutamatergic inputs.

Together, these features predict a unique contribution to infor-

mation processing of these young neurons (Aimone et al.,

2010; Ge et al., 2007). Expansion of the population of newborn

neurons by genetic deletion of the apoptosis inducer Bax in adult

NPCs increases pattern separation in a contextual fear discrim-

ination paradigm (Sahay et al., 2011a). Furthermore, we previ-

ously showed that increased neurogenesis by voluntary running

enhances working memory (Corsini et al., 2009). However, in

those studies, increased neurogenesis was always accompa-

nied by a corresponding increase of mature newborn neurons.

The present study shows, on one hand, that loss of Dkk1

enlarges the pool of immature neurons, which could already

impact the activity of the neuronal network in the DG and affec-

tive behavioral responses, such as pattern separation, at the age

of 3 weeks (Nakashiba et al., 2012). On the other hand, we show

that increased complexity of the dendritic arbors of newborn

neurons, but not of their number, might be another way to posi-

tively impact neuronal activity in the DG and performance in

spatial memory tasks. In this issue of Cell Stem Cell, Jang

et al. (2013) show that neuronal activity regulates neurogenesis

via another Wnt antagonist, secreted frizzled-related protein 3

(sFRP3). DG neuronal activity induces expression of sFRP3 on

mature DG granule neurons, which in turn reduces the self-

renewal activity of NPCs and the speed of dendritic maturation

in newborn neurons without affecting NPCs’ fate choice. These

two papers illustrate two different negative feedback signals

to neurogenesis that are linked to DG neuronal activity with

apparently different sources but with some shared and distinct

actions in NPCs and their progeny.

Whereas the dorsal hippocampus is more involved in memory

and cognitive processing, the ventral part is rather involved in

complex behavior, such as stress or emotions, and as such is

strongly implicated in schizophrenia and depression (Fanselow

and Dong, 2010). Ablation of adult hippocampal neurogenesis

decreases the beneficial effects of some antidepressant drugs

(David et al., 2009; Santarelli et al., 2003). In addition, chronic

antidepressant treatment enhances neurogenesis in the DG

(Hanson et al., 2011). However, disruption of neurogenesis

does not produce depression-like behavior (Jayatissa et al.,

2009; Surget et al., 2008). Notably, disruption of neurogenesis

does increase stress-induced-depression-like behavior (Snyder

et al., 2011). Interestingly, chronic stress has been shown to

induce Dkk1 expression in the DG (Matrisciano et al., 2011).

Hence, Dkk1 might be a major player in stress-related depres-

sion. Here, we show that enhanced neurogenesis and neuronal

activity decrease immobility in the TST. Similarly, Kim et al.

(2012) recently showed that an increase of neuronal activity in

the hippocampal CA1 region by knockout of HCN1 produced

anxiolytic- and antidepressant-like effects. In contrast to our

data, increased neurogenesis by genetic deletion of Bax did

not influence immobility in the forced swimming test (FST). We

believe that discrepancies between the two studies are due to

the higher sensitivity of the TST versus the FST in mice (Duman,

2010). Nevertheless, the observed reduced behavioral despair in

the TST is further supported by the increased hedonic behavior

exhibited by Dkk1-deficient mice.
ll Stem Cell 12, 204–214, February 7, 2013 ª2013 Elsevier Inc. 211
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Figure 5. Loss of Dkk1 Restores Age-Related Memory Decline

(A) Here, 4- and 11-month-old Nestin-Dkk1 and 7-month-old iNestin-Dkk1

mice show significantly increased success rates in the spontaneous alterna-

tion in the T-maze compared to control mice (4-month-old control versus

Nestin-Dkk1: 60% ± 4% versus 78% ± 3%, p = 0.007, n = 10; 7-month-old

control versus iNestin-Dkk1:63% ± 4% versus 75%± 4%, p = 0.04996, n = 10;

11-month-old Nestin-Dkk1 versus control: 57% ± 6% versus 73% ± 4%,

p = 0.0496, n = 7). The 18-month-oldWT animals perform significantly worse in

this test compared to 3-month-old WT mice (65% ± 3% versus 75% ± 4%;

p = 0.035; n = 12). Loss of Dkk1 rescues age-related decrease in working

memory and restores it to levels observed in young animals (4-month-old

Nestin-Dkk1, 7-month-old iNestin-Dkk1, and 11-month-old Nestin-Dkk1

versus 3-month-old WT; p = 0.569, p = 0.924, and p = 0.755, respectively).

(B) Schematic outline of the active place avoidance paradigm, presenting the

shock zone on a rotating platform with surrounding spatial cues. One shock-

free habituation trial is followed by eight shock-containing learning trials. One

shock-free retention trial was performed after 24 hr.

(C) iNestin-Dkk1 mice show no difference in delay times in entering the shock

zone during learning trials compared to control mice (two-way repeated-

measures ANOVA of group and trial: F(1,33) = 2.17, p = 0.150 [group]; F(5,148) =

2.13, p = 0.072; n = 17–18 [group 3 trial]).

(D) iNestin-Dkk1 mice show significantly increased delay times compared

to controls in entering the shock zone in the retention trial (controls versus

iNestin-Dkk1; 95 ± 34 s versus 186 ± 45 s; p = 0.036; n = 17–18).

(E) Here, 3- and 18-month-old WT mice show comparable delay times in

entering the shock zone during learning trials (two-way repeated-measures
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The age-related decline of adult neurogenesis has been

strongly associated withmemory impairments in the elderly pop-

ulation. Functional MRI studies of aging human subjects, aging

rhesus monkeys, and aging mice show that aging itself preferen-

tially affects the DG, as opposed to Alzheimer’s disease, which

instead affects the entorhinal cortex (Small et al., 2011). In WT

mice, the number of proliferating cells and NBs in the SGZ of

the DG declines exponentially in the first 9 months of life, with

a 40% decline in the number of proliferating cells already

observed in 2-month-old animals as compared to 1-month-old

animals, until it is barely present in 18-month-old mice (Ben Ab-

dallah et al., 2010). The number of NPCs in old animals is slightly

lower than in younger counterparts. In particular, an 80%

decrease of the more proliferative population of NPC has been

observed in aged mice (Lugert et al., 2010). Along this line, acti-

vated progenitors disappear with time through terminal differen-

tiation into astrocytes (Lugert et al., 2010; Encinas et al., 2011).

Accordingly, neurogenesis decreases with age while gliogenesis

does not (Jinno, 2011). In addition, remaining NPCs are more

quiescent and endorsed with shorter telomeres due to reduced

telomerase activity (Jaskelioff et al., 2011). One recognized

cause of the DG differential vulnerability to the process of aging

is its high levels of mineralocorticoid receptors, which make the

DG especially sensitive to the high levels of circulating cortico-

steroids in old individuals (Cameron and McKay, 1999; Sloviter

et al., 1989). Other blood-borne factors that similarly increase

with age, such as CCL11, reduce neurogenesis (Villeda et al.,

2011). Besides an aging systemic milieu, the aged neurogenic

niche produces fewer neurotrophic factors, becoming less

conducive for neurogenesis (Lee et al., 2012). Adrenalectomy

and exercise are therefore interventions that restore neurogene-

sis in old age. Here, we report that Dkk1 is another factor that

increaseswith age and that loss of Dkk1 re-establishes the ability

of aged NPCs to self-renew and generate new neurons. Neutral-

izing antibodies to Dkk1 are in clinical trials for enhancement of

Wnt signaling in osteoporosis (Rey and Ellies, 2010). Our study

raises the possibility that neutralization of Dkk1 might be benefi-

cial in counteracting depression-like behavior and improving

cognitive decline in the aging population. Altogether, this study

defines Dkk1 as a major cause of age-related decline in neuro-

genesis. It also helps to clarify the role of Wnt activity in adult
ANOVA of group and trial; F(1,22) = 2.50, p = 0.128 [group]; F(5,99) = 1.55,

p = 0.188; n = 12 [group 3 trial]).

(F) Here, 3-month-old WT mice show significantly increased delay times in

entering the shock zone in the retention trial compared to 18-month-old WT

mice (3- versus 18-month-old mice: 223 ± 71 s versus 78 ± 48 s, p = 0.030,

n = 12). Deletion of Dkk1 in NPCs rescues age-related decreased memory

consolidation and restores young levels (10-month-old iNestin-Dkk1 versus

3-month-old WT: 186 ± 45 s versus 223 ± 71 s, p = 0.832). All four groups—

10-month-old Dkk1 mutants and respective controls as well as 3- and

18-month-old WT animals— show similar capacity to learn the active place

avoidance paradigm (two-way repeated-measures ANOVA of group and trial;

F(3,55) = 1.77, p = 0.163 [group]; F(14,261) = 1.48, p = 0.117 [group 3 trial]). H,

habituation; APA, active place avoidance.

Statistical analysis was performed with an unpaired two-tailed Student’s t test

(A), with two-way repeated-measures ANOVA (C and E), or with two-tailed

Mann-Whitney rank sum test (D and F). *, p < 0.05; **, p < 0.01. Results are

presented as mean ± SEM.

See also Figure S3.
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neurogenesis. The contribution of newly generated young

neurons to memory and affective behavior opens tantalizing

opportunities for the prevention of affective impairments and

age-related cognitive decline.

EXPERIMENTAL PROCEDURES

Animals

Dkk1-floxed (Dkk1f/f), Dkk1+/� (Pietilä et al., 2011), and eYFPf/f

mice [B6.129X1-Gt(ROSA)26Sor tm1(EYFP)Cos/J] were bred with Nestin-Cre

or Nestin-CreERT2 mice, both on a C57BL/6 background, to generate

Dkk1�/f Nestin-Cre (Nestin-Dkk1), Dkk1f/f Nestin-CreERT2 (iNestin-Dkk1),

and eYFP+/f Nestin-CreERT2 (iNestin-YFP) mice. Controls for Nestin-Dkk1

mice were Dkk1+/+, Dkk1+/f, Dkk1+/�, or Dkk1+/f Nestin-Cre mice. Next, 8- to

12-week-old Nestin-CreERT2 mice and respective controls (Dkk1f/f or

Dkk1+/+ Nestin-CreERT2) were intraperitoneally (i.p.) injected twice a day for

5 days with Tamoxifen (TAM; 2 mg/day). In vivo neurogenesis was examined

for 5 weeks and neuronal morphology analysis for 6 weeks after TAM

administration. For behavioral experiments, 3- and 18-month-old C57BL/6

mice (WT mice) were used.

Animals were housed in the animal facilities of the German Cancer Research

Center (DKFZ) at a 12 hr dark/light cycle and had free access to food and

water. For experiments, animals were age-matched. All animal experiments

were performed in accordance with the institutional guidelines of the

DKFZ and were approved by the Regierungspräsidium Karlsruhe (DKFZ206

and G-179/10), Germany.

In Vivo Neurogenesis

In vivo examination of neurogenesis was performed as previously described

(Corsini et al., 2009). In brief, for examination of ongoing adult hippocampal

neurogenesis, age-matched iNestin-Dkk1 and control mice were injected

with 300 mg/kg BrdU and perfused after 24 hr for analysis of BrdU-positive

cells. Alternatively, for the study of newborn cell survival, mice were injected

on three consecutive days with 300 mg/kg/day BrdU and perfused 4 weeks

later for the analysis of BrdU-positive cells. Nestin-Dkk1 and control mice

were perfused with 4%PFA. For each animal, confocal stacks of six vibratome

coronal brain slices (50 mm thick, 250 mm apart) were acquired on a Leica

TCS-SP5 or a Nikon C1S1 confocal microscope and cells were counted. For

Figures 1J, 1K, 3A–3C (Nestin-Dkk1), and S1D, sagittal brain sections were

used. Cell numbers were normalized to the volume of the DG granule cell layer

measured by ImageJ.

Neuronal Morphology Analysis

For analysis of neuronal morphology of DCX-positive or eYFP-positive cells in

the DG, the Amira Filament Editor (Visage Imaging) was used as described

previously (Corsini et al., 2009). In brief, for each mouse, three brain slices

(50 mm thick, 250 mm apart) were stained for DCX or eYFP, DCX, and NeuN

and high-resolution confocal stacks were acquired on a Leica TCS-SP5 or

Nikon C1S1. For analysis of neuronal morphology of mature CA3 neurons,

PFA-fixed brains were cut into two hemispheres and stained with the FDRapid

GolgiStain Kit (FD NeuroTechnologies). Brains were cut with a vibratome

into 100-mm-thick slices, mounted onto gelatine-coated glass slides, and

embedded with Eukitt. Stacks were recorded on a Leica TCS-SP5 micro-

scope. Branching points and total dendrite length were measured with the

use of the Amira Filament Editor.

Behavioral Tests

Detailed descriptions of behavioral experimental procedures are described in

the Supplemental Information.

Statistics

Statistical analyses were performed with the use of Sigma Plot, the program

package ADAM from the Biostatistics Unit of the DKFZ, and the car package

in the R Project for Statistical Computing (http://www.r-project.org/). An

unpaired two-tailed Student’s t test was used for normal distributed data.

For non-normal distributed data or data sets with different variances, the

Mann-Whitney rank sum test was used. For learning data sets, a two-way
Ce
repeated-measures ANOVA (analysis of variance) was used. Sphericity was

tested with Mauchly’s test. The Greenhouse-Geisser correction was used to

correct for departures from sphericity. The alpha level for all tests was 5%.

Results are presented as mean ± SEM. A summary of cell count with respec-

tive statistical analysis can be found in Table S3.
SUPPLEMENTAL INFORMATION

Supplemental Information contains Supplemental Experimental Procedures,

three figures, and three tables and can be found with the article online at

http://dx.doi.org/10.1016/j.stem.2012.11.010.
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