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from a limited set of experimental measurements. Two techniques for carrying out this reconstruction
using finite element analysis are compared and it is shown that for exact reconstruction of the stress field
via this method, the stress field must be measured over all eigenstrain-containing regions of the object.
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ysis are investigated in a series of numerical experiments using synthetic measurement data based on the
NeT TG1 round-robin weld specimen. It is hence shown that accurate residual stress field reconstruction
is possible using measurement data of a quality achievable using current experimental techniques.
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1. Introduction

Residual stresses can significantly affect the mechanical perfor-
mance of engineering components and structures, so for the pur-
poses of design and structural integrity assessment it is desirable
to know as much about the residual stress distribution in an object
as possible (Withers, 2007; Withers et al., 2008). However, com-
plete measurement of complex three-dimensional residual stress
fields in most structural materials is currently difficult and prohib-
itively time-consuming (Krawitz, 2011). Consequently, most mea-
surements are restricted to line or area scans, and fracture
mechanics analyses are normally based on relatively incomplete
experimental information. As a result, there is great practical value
in inferring the complete residual stress field in an object from a
limited number of measurements.

To date, the most successful approaches to obtaining the com-
plete residual stress field have focussed on finding distributions
of residual stress which are consistent with any measured stress/
strain data and with elasticity theory. One such method is known
as the inverse eigenstrain technique, and is described in detail by
Jun and Korsunsky (2010). This method is based on first using
the available experimental residual stress data to estimate the dis-
tribution of incompatibility, known generally as the eigenstrain
tensor & (Mura, 1987) in the residually-stressed body. Once the
eigenstrain field has been calculated from the incomplete stress
distribution (the inverse eigenstrain problem), the complete stress
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field can be calculated from the eigenstrain field (the ‘forward’
problem). To solve the inverse problem, the eigenstrain distribu-
tion must be represented using a set of basis functions. Typically,
assumptions regarding the form and components of the eigen-
strain distribution must be made to allow it to be represented in
this way. The influence of each of these eigenstrain basis distribu-
tions on the residual stress distribution is determined using finite
element analysis. The basis parameters necessary to approximate
the complete eigenstrain distribution are then found by minimisa-
tion of error with respect to the experimentally-measured stress
data (Korsunsky, 2009).

An alternative approach, which does not require solution of the
inverse eigenstrain problem, is to approximate the residual stress
distribution using a series of stress functions which automatically
satisfy the equilibrium and boundary conditions (Farrahi et al.,
2009). Coefficients for the series are then found such that the error
between the experimental observations and the series solution is
minimised (Faghidian et al., 2012; Farrahi et al., 2010).

The inverse eigenstrain and stress function approaches are most
useful when the residual stress or eigenstrain distribution can be
parameterised efficiently. For example, when the eigenstrain can
be considered to be pointwise isotropic, or to vary in only one
dimension (Achintha et al, 2013; DeWald and Hill, 2006;
Korsunsky and Regino, 2007). However these approaches are more
difficult to apply for a general three-dimensional stress distribu-
tion, since the number of basis functions required rapidly becomes
large. Furthermore, some a priori knowledge of the eigenstrain
distribution is often required so that basis functions can be chosen
which minimise the required number of experimental data. Both of
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these issues are of practical significance, because residual stress
analysis must often be carried out on complex engineering compo-
nents containing states of residual stress which cannot be simply
represented.

In this work, we propose an alternative method of residual
stress field reconstruction which can be used when incompatibility
is localised to some portion B; of the object (Fig. 1a). In this case
the complete stress field can be reconstructed from measurements
taken in the incompatible region without determination of the
eigenstrain distribution, thus making measurement of residual
stresses in the rest of the object (i.e. region B;) unnecessary. This
method is implemented using Finite Element (FE) analysis, and a
numerical study is presented here in which the residual stresses
in a benchmark weld specimen, shown in Fig. 2, are reconstructed.
It is shown that the new method enables measurement strategies
that focus on the incompatible region of interest rather than
measuring residual elastic strains everywhere. The principles of
the method are described, followed by the implementation in finite
element analysis using two approaches. The method is then
applied to the benchmark weld specimen shown in Fig. 2, and
the results are discussed with reference to the inverse eigenstrain
and stress function methods.

2. Principles of the proposed method

A residual stress field in a solid body is not uniquely defined by
the object’s geometry, material properties and boundary condi-
tions as is the case for stress fields which arise solely from external
loading (Timoshenko and Goodier, 1970). Instead, residual stresses
also depend on the internal incompatibility within the body. The
distribution of incompatible strain in such a body is known as
the eigenstrain distribution, and the total strain (&) is expressed
as the sum of elastic (e) and eigenstrain (&*) terms (Mura, 1987):

g=e+ & (1)

For a continuous distribution of deformations to occur, the total
strain must be compatible. Hence, the small-strain compatibility
equations for a three-dimensional body in the presence of eigen-
strain are (Mura, 1987; Korsunsky, 2009):
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where E(x,y,z) = [E; ... Z¢]" is the forcing term which results
from the incompatibility in eigenstrain on the right hand side of
the equations. In a fully compatible body (i.e. & = 0), the forcing
term E is equal to zero throughout. Any distribution of eigenstrain
which produces finite forcing terms causes a finite and incompati-
ble distribution of elastic strain.

Finding the distribution of residual stress which results from a
known eigenstrain field is known as the ‘forward’ or ‘direct’ problem
of eigenstrain. The stress distribution is found by solving the com-
patibility equations simultaneously with the equations of stress
equilibrium and any boundary conditions (Korsunsky, 2009). For a

body containing only residual stresses, the boundary conditions
are that the body must be traction-free at all boundaries. In the ab-
sence of body forces, equilibrium is described by:

dive =0 3)

where & is the stress tensor, which for a linearly-elastic material is
related via Hooke’s law to the elastic strain:

c=C:e 4)

where C is the stiffness tensor. Therefore, if the eigenstrain distribu-
tion and elastic properties of a solid body are known, the residual
stress distribution can be calculated. Solution of the forward eigen-
strain problem in this way has widespread application in engineer-
ing and micromechanics (Mura, 1987), and is the subject of several
classic papers including Eshelby’s well-known solution for the case
of an ellipsoidal inclusion (Eshelby, 1957).

Combining the compatibility equations (Eq. (2)) with Hooke’s
law (Eq. (4)) allows the forcing term = to be found from a known
stress field. For example, for an isotropic and linearly elastic mate-
rial the first compatibility equation yields:
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where E is the material’s elastic modulus, and v is Poisson’s ratio.
For a body B which contains finite eigenstrain over only part of
its volume (Fig. 1a), knowledge of the stress field in the
eigenstrain-containing (i.e. incompatible) region B; is sufficient to
characterise the forcing term Z(x), X € B;. In region B, there is no
eigenstrain, so: E(X) = 0, X € B,. With the forcing term known for
the whole body, it is possible to calculate the complete residual
stress field.

3. Implementation
3.1. Finite element implementation

Eq. (5) suggests that if the stress field in the incompatible region
B, is known, it can be used (in lieu of the eigenstrain distribution)
to infer the stress field in the rest of the body: stresses elsewhere in
the body B can be inferred by imposing the known/measured
stress distribution over B; and finding the compatible distribution
of elastic strain in B, that is in equilibrium with it. Two methods of
inferring the complete stress field from using finite element anal-
ysis are used in this study (Fig. 3). These are referred to as the ‘di-
rect’ and ‘iterative’ methods.

In the direct method, B; is considered alone (see Fig. 1b) and
zero-displacement conditions are imposed at the interface
9(B1/B,). The nodal forces which represent the tractions on this
interface are then found from the stress distribution. Finally, by
considering B, alone and applying the tractions found in the previ-
ous step to the 9(B;/B,) interface, the stress distribution in region
B, is calculated from the resulting boundary-value problem.

The second technique is an iterative method. The FE solver used
in this study includes a procedure by which local equilibrium of
the stress field can established after a predefined stress field which
does not satisfy equilibrium has been imposed (Abaqus Analysis
User’s Manual v6.12, 2012). In this method, an equal and opposite
stress state is applied to the whole body resulting in zero stress
throughout. This opposite stress state is then gradually reduced,
and the resulting (self-equilibrating) stress field is calculated elasti-
cally. This process allows the predefined part of the stress field to
change, so it is necessary to run the process iteratively: taking the
stress distribution for the whole body from the previous iteration,
re-applying the known stresses in B;, and finding the new
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Fig. 1. (a) Residually-stressed body B with eigenstrain-containing region B; and compatible region B,. (b) The boundary 9(B:/B,) separates regions B; and B,. (c) The
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Fig. 2. The Net TG1 benchmark weld specimen: (a) photograph of the TG1 specimen A11 (Bouchard, 2009), (b) weld geometry, showing the finite element mesh used for all
models described in this paper. The A-A and B-B lines, both of which lie at the mid-thickness of the plate (z = 8.5 mm), are referred to in the results. Fig. 2a reprinted from

Bouchard, 2009 with permission from Elsevier.

equilibrium state. This is illustrated in Fig. 3. The stress field
gradually converges to a solution which satisfies the equilibrium
equations, while having the correct known stress distribution in
region B;. This method has been previously been used in other
studies to infer longer-range residual stresses from deep-hole
drilling measurements (Do et al., 2013; Ficquet, 2007).

Direct method
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Fig. 3. Two schemes for finding the complete residual stress field from stresses in
the incompatible region B;. The direct method uses the tractions at the B;
boundary, which are imposed on a model of the rest of the object. In the iterative
method, the B; stress field is repeatedly imposed on a model of the complete object.

3.2. Measurement considerations

The reconstruction methods described above are applicable
when material incompatibility is limited to some region 5; of an
object. To apply such methods, it is necessary to measure or as-
sume the dimensions of this incompatible region. Since incompat-
ibility results from inelastic deformation, the size of the
incompatible region can be estimated from measurements of
material plasticity. In most metals, plastic deformation results in
strain-hardening and so large-scale plasticity can often be identi-
fied using hardness measurements (Bouras et al., 2012). Also, it is
often possible to quantify (or at least identify) prior plastic defor-
mation in metals using synchrotron or neutron diffraction data
via analysis of diffraction peak broadening or anisotropy of the lat-
tice strain response (Daymond et al., 1997; Hutchings, 1992). This
method has previously been used to define the eigenstrain-
containing region for inverse eigenstrain analysis (Achintha et al.,
2013; Jun et al, 2012). If the size of the eigenstrain-containing
region is overestimated, as illustrated in Fig. 1c, and measurements
are obtained from the larger region B; where B; € B, this will
cause no error in the stress field calculated for 5,. In the part of
B} which is compatible, the forcing terms in Eq. (2) will be equal
to zero and therefore will have no effect on the reconstructed
stress distribution. If, on the other hand, the size of the incompat-
ible region is underestimated and residual stress measurements
are only taken over a smaller region, part of the eigenstrain distri-
bution is omitted. This causes errors in the reconstructed stress
field (see Ficquet, 2007; Lei et al., 2000).

For a complete definition of the residual stress field inside region
B1, all independent components of the stress tensor would have to
be measured. However, most methods of residual elastic strain
measurement cannot determine all (six) components in the general
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three-dimensional case. In principal, neutron and synchrotron
X-ray diffraction are capable of measuring all six components. How-
ever, even with these methods it is uncommon to attempt to
measure shear stresses (Krawitz, 2011). This makes it necessary
either to assume that the measured directions are principal, or ac-
cept that unknown shear stresses may be present (Winholtz and
Krawitz, 1996). Finally, practical residual stress measurements have
finite spatial resolution, so the representation of the stress distribu-
tion in B; from measured data would be discretised. The effects of
these measurement limitations on the accuracy of the recon-
structed stress fields are investigated later in this article.

4. Numerical example

In this section, results from a finite element simulation of the
welding of a benchmark weld specimen (shown in Fig. 2) are used
to explore the application of the methods of stress field reconstruc-
tion outlined above. It is first shown that the two methods (direct
and iterative) are able to reconstruct the weld residual stress field
when provided with ‘ideal’ input data. Later, a series of parametric
experiments are used to investigate the suitability of these meth-
ods when applied to practical experimental data.

4.1. Target residual stress field

The residual stress field shown in Fig. 4 is the result of a finite ele-
ment model of the benchmark weld specimen illustrated in Fig. 2.
The weld was a single-pass bead-on-plate TIG weld in AISI type
316L austenitic stainless steel known as the NeT TG1 specimen. This
was used in a previous round-robin study involving both residual
stress measurements and weld models (Bouchard, 2009; Smith
and Smith, 2009). The overall dimensions of the specimen are
180 x 120 x 17 mm> with a nominal weld length of 60 mm (see
Fig. 2a). The geometry and process parameters of the NeT TG1 spec-
imen were used in a sequentially-coupled thermo-mechanical finite
element analysis of the welding process, which generated a target
residual stress state for use in testing stress reconstruction methods.
The weld analysis was carried out using Abaqus/Standard 6.12, with
transient heat flux implemented via the DFLUX user subroutine. In
order to reduce the computation time only half of the specimen
was modelled, with symmetric boundary conditions applied at the
centre of the weld. The mesh consisted of 94,092 nodes and
66,728 ten-node quadratic tetrahedral elements (Abaqus type
C3D10), with the mesh density weighted heavily towards the weld
region, as shown in Fig. 2. In this initial process model, all material
properties were considered to be temperature-dependent. The
resulting residual stress distribution shown in Fig. 4 is typical for a
weld of this type, and agrees closely with experimental and mod-
elled results for the TG1 specimen presented during the NeT
round-robin study (Smith and Smith, 2009).

The results of the weld model (shown in Fig. 4) provide a target
“true” residual stress state for assessing the stress field reconstruc-
tion procedures. The target distribution is well-characterised, and
this permits direct comparison between the target and recon-
structed stress fields. To avoid interpolation of the target stress
field, the same FE mesh geometry was used in both the initial weld
model and all of the subsequent models used to reconstruct the
stress state. The materials’ ambient-temperature elastic properties,
required for the reconstruction procedures, were the same as those
used in the weld model.

4.2. Reconstruction details

The direct and iterative reconstruction methods were imple-
mented using a fully-elastic FE model of the NeT TG1 specimen

created using the same geometry and mechanical boundary condi-
tions as the initial weld model. The implicit solver used for all FE
calculations required for the reconstruction procedures was Aba-
qus/Standard 6.12 (Abaqus Analysis User’s Manual v6.12, 2012).
Routines written in MATLAB code (IMIATLAB, 2012) were used to
automatically write the solver input files necessary for the large
number of iterative analyses, to read and post-process the results,
and to link the different parts of each analysis method.

For the iterative method each individual analysis procedure,
representing a single iteration, consisted of two steps shown in
Fig. 3: an initial step in which the known stress components in
the ‘measurement’ region were applied, followed by an equilib-
rium step in which the stress field was allowed to equilibrate
throughout the object. For each iteration, a solver input file was
written. This contained the initial stress field data for the iteration:
any known stresses in the ‘measurement’ region, plus the remain-
der of the stress field taken from the previous iteration. After the
iteration had run, the stress field data was automatically extracted
from the output files for use in the next iteration.

The direct method used a different two-step analysis procedure.
In the first step, all elements except those in the ‘measurement’ re-
gion were de-activated, and additional boundary conditions were
added such that the newly-exposed edges of this region were pre-
vented from moving. The known stress field in the ‘measurement’
region was imposed at the start of the analysis step, and the resulting
forces on the fixed interface nodes were found. In the second step,
the measurement region (rather than the surrounding region) was
deactivated and the nodal forces found from the first step were im-
posed at the interface nodes. This allowed the resulting stress field in
the remaining (compatible) part of the object to be calculated.

4.3. Reconstruction using ideal ‘measurement’ data

In addition to the residual stress field, the initial weld model
provided information about plastic deformation created during
the weld simulation. At the start of the weld model the material
was taken to be completely compatible and to contain no residual
stress. Therefore, after welding the eigenstrain tensor was only
non-zero in regions that had undergone plastic deformation during
welding. It follows that the region of plastic deformation in the
weld model encompasses any eigenstrain-containing regions, and
will therefore be sufficient for calculating the remainder of the
stress field. The calculated von Mises equivalent plastic strain cre-
ated in the weld model is shown in Fig. 5a, and the residual stress
field (o, component) for the part of the object which undergoes a
finite plastic strain during welding is shown in Fig. 5b. This plastic
region accounts for approximately 17% of the total volume of the
welded plate.

Reconstructions via the direct and iterative methods were car-
ried out using all components of the ‘measured’ stress tensor from
the plastic region; Fig. 6 shows the resulting complete stress fields.
The stress fields reconstructed using both the iterative (Fig. 6a—c)
and direct (Fig. 6d-f) methods are practically identical to the target
field (Fig. 4).

To compare the target and reconstructed residual stress fields,
the total elastic strain energy of each of the two fields was evalu-
ated. Although total elastic strain energy is a scalar and cannot un-
iquely describe the whole stress distribution, it is useful for
comparing similar stress fields. Fig. 7a shows convergence of the
iterative method towards the target stress distribution (Fig. 4) in
terms of the total strain energy. The total strain energy of the iter-
atively-reconstructed field rapidly approaches that of the target
field (5.82]). However, even after 100 iterations the difference in
total strain energy (5.73 ]) indicates that there remain minor differ-
ences in the reconstructed distribution, which can be attributed to
discretisation and numerical errors. The maximum longitudinal
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tensile stress at any point in the field is shown in Fig. 7b, and also
shows good convergence.

5. Parametric studies using non-ideal ‘measurement’ data

As discussed in Section 3.2, experimental measurements of
residual stress are generally limited in spatial resolution, in strain

resolution, and in terms of the number of stress/strain tensor com-
ponents measured. Furthermore, the eigenstrain distribution is not
generally known a priori. The effect of these factors on the accuracy
of the reconstructed stress field was studied using four parametric
series of reconstructions. First the size of the measurement region
was studied, followed by the available components of the stress
tensor, finite spatial resolution, and the effects of random errors
in strain measurement. Finally, all of these factors were used
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simultaneously to create a feasible data set of synthetic measure-
ment data, and a reconstruction was carried out using this to
examine their combined effect.

5.1. Size of measurement region

Reconstruction of the complete residual stress field was carried
out using data from ‘measurement’ regions of decreasing volume.
In the previous section, the stress field was reproduced almost per-
fectly from data covering the whole of the region which undergoes

plasticity during the initial weld model. Smaller measurement re-
gions were defined by taking the region of the weld which had
undergone increasing values of equivalent plastic strain. Thirteen
such synthetic ‘measurement’ regions were defined using plastic
strain limits logarithmically spaced between 1 and 10* pi. Recon-
structed stress fields are shown in Fig. 8, with longitudinal stresses
(ox) shown for three levels of plastic strain: 215, 1000 and
2154 pe. The errors between the reconstructed and target stress
fields (in terms of the total strain energy) for all thirteen measure-
ment region sizes are shown in Fig. 9. Greater errors occur as larger
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plastic strain limits defining the ‘measurement’ region are used
(i.e. as the region is reduced in size). The divergence from the tar-
get stress state is more rapid for the direct method than for the
iterative.

5.2. Available stress tensor components

A second parametric trial was used to investigate the effect on
the reconstructed stress field when only certain components of
the stress tensor are available in the ‘measurement’ data. Using
the same measurement region as shown in Fig. 5b, reconstructions
were attempted using:

e All six components of the stress tensor.

e The three normal components oy, 0, and o,, and the in-plane
shear t,.

e The three normal components 0y, 0y, and 6., only.

e Only the gy and o,, components.

e Only the oy, component.

For reconstruction using a limited set of stress tensor compo-
nents via the iterative method, all of the tensor components were
mapped from the result of each iteration to the initial state of
the subsequent one. However, only the components specified
above were then forced back to their ‘measured’ values in the mea-
surement region. For brevity, only the errors between the target
and reconstructed total elastic strain energy will be discussed for
the remaining parametric studies; these are shown in Fig. 10. As
shown in Fig. 10a, when only the 6,, component or only the 0,
and a,, components are used, neither the direct nor the iterative
method is able to reproduce the target distribution accurately,
leading to errors of >15% in the total strain energy. However, when
provided with all three of the normal components in the ‘measure-
ment’ region it is possible to reproduce the target stress distribu-
tion accurately via the iterative method. The shear components
of the residual stress distribution throughout the object are recon-
structed accurately, despite there being no information about the
shear stress given in the reconstruction’s input data. The spatial
variation in the three provided components of the stress tensor is
sufficient to calculate the other three components in the measure-
ment region, and consequently the remainder the stress field can
also be inferred with reasonable accuracy.

5.3. Finite spatial resolution

In this set of reconstructions, the same ‘measurement’ region
(Fig. 5b) was used, as were all components of the stress tensor in
this region. To simulate the effect of a finite measurement
resolution, the ‘measurement’ data were spatially averaged over

approximately cubic volumes (the sizes of which are given in
Table 1) before being used in the reconstruction procedure. The
volumes are aligned with the specimen coordinate axes and are
not intended to represent diffraction scattering volumes, but rather
to simulate the fine spatial resolution of an arbitrary strain mea-
surement method.

Although the ‘measurement’ data were spatially averaged, it is
important to note that the FE mesh was not modified: as in all
previous reconstructions the averaged data was simply applied
element-wise at the element integration points, preventing any
numerical effects of mesh coarsening from influencing the result.
The errors between the reconstructed and target strain energies
are shown in Fig. 10b. For both the direct and iterative reconstruc-
tion methods the accuracy of the reconstructed stress state de-
creases considerably when the spatial averaging resolution
exceeds a volume of 5 x 5 x 5 mm.

5.4. Random errors

In this final set of parametric reconstructions, normally-distrib-
uted random errors in residual strain determination were simu-
lated, and propagated through the Hooke’s law calculation of
stress in the measurement region (using the relations given by
Wimpory et al. (2009a,b)). Reconstruction of the complete stress
field was then carried out using this error-containing stress data.
The results (Fig. 10c) show that errors in strain determination with
a standard deviation of >100 pe can cause the error in the total
strain energy of the reconstructed field to exceed 5%.

5.5. Combined effect

In addition to the parametric studies described above, one recon-
struction was carried out to study the combined effect of several types
of incompleteness and error in the initial data. The synthetic mea-
surement data were designed to mimic current neutron or synchro-
tron diffraction capabilities. This synthetic residual stress data had a
limited spatial resolution of approximately 2.5 x 2.5 x 2.5 mm (grid
no. 5, giveninTable 1), contained only 0, gy, 0,;, and T,, stress com-
ponents, and was limited to regions which had undergone > 1000 pe
equivalent plastic strain during welding. Normally-distributed
random errors in strain measurement with a standard deviation of
50 pe were also included, and reconstruction was carried out using
the iterative method with 100 iterations.

Fig. 11 shows the results of the reconstruction. Irrespective of
the incompleteness, discretisation and noise in the synthetic mea-
surement data, the reconstructed part of the stress field shows
good agreement with the original target field (Fig. 4), with the
greatest inaccuracies occurring in the transition from the measure-
ment region to the reconstructed region.
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6. Discussion
6.1. Applicability to experimental measurements
The reconstructions using ideal ‘measurement’ data confirm

that when the stress field inside the incompatible region of a
residually-stressed body is known (along with any mechanical

boundary conditions and elastic properties) the residual stress field
throughout the rest of the body can be calculated. Most current
experimental methods could not provide such a complete charac-
terisation of the stress state in the incompatible region. However,
the parametric studies in Section 5 demonstrate that even with
an incomplete and error-prone synthetic measurement of the
incompatible region, the remainder of the stress distribution can
be inferred with good accuracy.

The spatial resolution and number of strain tensor components
used in the study of the combined effects (Section 5.5) can be ob-
tained using current experimental methods. A resolution of around
2.5mm is readily achieved using diffraction-based techniques
(Withers and Bhadeshia, 2001). For reconstruction of a three-
dimensional stress field it is necessary to first obtain a three-
dimensional map of part of it. However, current diffraction
measurements of residual elastic strain are restricted (largely by
time constraints) to line and area scans. Nevertheless, in recent
years improved instrumentation and new experimental techniques
(such as the spiral slit technique in synchrotron X-ray diffraction
(Martins et al., 2010) suggest that such three-dimensional measure-
ments are feasible, making it possible to apply the reconstruction
techniques described here to three-dimensional residual stress
fields.

Defining the extent of the measurement region required to
accurately infer the remaining residual stress field is more difficult.
The reconstruction results for the NeT TG1 specimen confirm that
reconstruction is possible if the measurement region includes all
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Table 1

Averaging volumes used to study the effect of measurement spatial resolution on
reconstruction of the complete residual stress field. Note the averaging resolutions in
z are integer fractions of thickness of the NeT TG1 specimen (17 mm).

Grid no. Resolution (mm) Averaging
volume (mm?)
X y z mean

1 15 15 17 15.7 3825

2 7.5 7.5 8.5 7.83 478

3 5 5 5.67 5.22 142

4 3.75 3.75 425 3.92 59.8

5 2.5 2.5 2.83 2.61 17.7

locations that contain a finite eigenstrain (see Section 4.3). Further-
more, it was possible to reconstruct the stress field to reasonable
accuracy even when a significant fraction of the plastic zone (i.e.
a significant fraction of the eigenstrain-containing region) was
excluded from the ‘measurement’ data. In collecting residual stress
data suitable for the use with this new technique, it would be nec-
essary to ensure that the majority of the eigenstrain-containing
region(s) was measured: either using some a priori knowledge or
assumption regarding its extent, or by inferring it from measure-
ments of related variables, such as hardness or dislocation density.

6.2. Comparison of the direct and iterative methods

The direct and iterative methods both give equivalently accu-
rate reconstructions of the residual stress state when ideal ‘mea-
surement’ data are provided. In terms of computation time, the
direct method is significantly faster: including all pre- and

post-processing, each of the direct method reconstructions shown
here took approximately 21 min on a PC with a 3.10 GHz Intel Core
i7 CPU and 8 GB of memory, compared with 690 min for 100 iter-
ations using the iterative method. However, it can be seen from
Figs. 9 and 10 that when non-ideal data are used, the results for
the different reconstruction processes diverge. The direct method
is significantly more sensitive than the iterative method to a re-
duced measurement region (Fig. 9). This was also the case in the
use of only three or four measured stress tensor components rather
than six (Fig. 10a). However the direct method was slightly less er-
ror-prone than the iterative method when provided with spatially-
averaged data (Fig. 10b). These differences are associated with the
FE implementation of the direct technique used here: for the first
step of the direct method, in which the measurement region’s
boundary tractions are determined (see Section 3), it is necessary
to ensure that all elements in the region onto which the ‘measure-
ment’ stresses are mapped have a sufficient number of connected
nodes. This was done by adding an initially stress-free interface
layer containing all elements outside of the measurement region
that contact the boundary. The presence of this layer causes small
errors in the calculated boundary tractions, which can cause addi-
tional errors in the reconstructed field when used with an incom-
plete eigenstrain distribution. Therefore, because the iterative
method has a greater tolerance to incomplete characterisation of
the stress field in the incompatible region, it is recommended in
preference to the direct method.

6.3. Comparison with inverse eigenstrain and stress function methods

The inverse eigenstrain method, stress function-based methods,
and the method presented here all work on the principle of
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implicitly representing the incompatible forcing term in the
compatibility equations (Eq. (2)). However, the method of account-
ing for this forcing term is different in each case: in the inverse
eigenstrain method it is done by back-calculation of an eigenstrain
distribution, in stress function methods it is done by selecting equi-
librium-satisfying stress functions which characterise this incom-
patibility. In the present method is it done by ensuring that this
incompatibility is represented within the measured stress data.
The assumptions required to implement the present technique
are similar to those needed for the inverse eigenstrain method.
Here, measurements must be made so that they include any re-
gions containing eigenstrain, which results in a need for planning
of any measurements so that they are appropriate for the recon-
struction procedure. Similarly, in the inverse eigenstrain method
it is necessary to use measurement locations which allow the
eigenstrain distribution to be accurately characterised (Luckhoo
et al., 2009). On the other hand, no assumptions regarding the
dimensionality of the eigenstrain distribution and its tensor com-
ponents are necessary for the present technique, whereas with
the inverse eigenstrain method they would normally be required
(Jun and Korsunsky, 2010; DeWald and Hill, 2006). Additionally,
the method presented here is simpler to implement for complex
three-dimensional stress states than either the inverse eigenstrain
or stress function methods. The latter two rapidly become compu-
tationally demanding as the number of basis functions required to
accurately represent the eigenstrain field increases. Consequently,
although several examples exist of inverse eigenstrain and stress
function methods being employed to reconstruct relatively com-
plex states of stress (e.g. Kartal et al., 2012; Song and Korsunsky,

2011), reconstruction in the general three-dimensional case (clas-
sified by Jun & Korsunsky as a ‘3-3-3’ problem type) has not yet
been attempted using the inverse eigenstrain or stress function
methods. Finally, the stress function and inverse eigenstrain meth-
ods involve the superposition of many stress solutions, requiring
that the material is linearly elastic. The present method has no
such requirement, and residual stress states in non-linear elastic
materials can also be reconstructed.

6.4. Applications

This method of residual stress field reconstruction is most use-
ful in cases where strain incompatibility is concentrated around a
relatively small feature such as a weld. The method allows exper-
imental measurements to be focused on such regions of interest
while still providing insight into the nature of the complete stress
field. This would be particularly useful in cases of structural integ-
rity assessment where it is necessary to characterise both the
residual stress state close to weld features in order to estimate
fracture mechanics parameters, while at the same time having
knowledge of the long-range components of the residual stress
field. Such long-range residual stresses are commonly required
for the purposes of estimating creep and stress-relaxation param-
eters such as elastic follow-up (Ainsworth, 1986).

It is emphasised that the method presented here is dependent
upon being able to implicitly characterise the forcing term
=(x,¥,z) in Eq. (2), and is therefore strongly dependent on the com-
pleteness of the measured stress data (see Section 5). Therefore,
just as with other methods its application to more complex stress
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fields, such as the three-dimensional example given here, requires
significantly more measurement data than for simpler cases.

7. Conclusions

e The complete stress field in a residually-stressed elastic body
can be determined from the part of this stress field which exists
in regions where the residual elastic strain is incompatible.

e Two methods of reconstructing the complete residual stress
state from limited measurements using the finite element
method have been introduced and applied to a modelled stress
field in the NeT TG1 weld benchmark specimen. Of these two
methods, the iterative implementation is recommended due
to its better tolerance of incomplete measurement data.
For exact reconstruction of the complete residual stress field,
the part of stress field within the incompatible zone must be
fully characterised. However, using synthetic measurement
data with limited spatial resolution, limited spatial extent, a
limited number of stress tensor components and limited accu-
racy, it has been shown that the proposed reconstruction
method is relatively insensitive to these factors. This recon-
struction method could therefore be used with incomplete
and/or imprecise experimental residual stress data.

Acknowledgements

Funding for this research was provided under a joint Rolls-
Royce/EDF Energy/Royal Academy of Engineering chair awarded
to Prof. David Smith.

References

Abaqus Analysis User’s Manual v6.12, 2012. Dassault Systémes.

Achintha, M., Nowell, D., Shapiro, K., Withers, P.J., 2013. Eigenstrain modelling of
residual stress generated by arrays of laser shock peening shots and
determination of the complete stress field using limited strain measurements.
Surf. Coat. Technol. 216, 68-77.

Ainsworth, R.A., 1986. The treatment of thermal and residual stresses in fracture
assessments. Eng. Fract. Mech. 24, 65-76.

Bouchard, P.J., 2009. The NeT bead-on-plate benchmark for weld residual stress
simulation. Int. ]. Press. Vessels Pip. 86, 31-42.

Bouras, M., Boumaiza, A. Ji, V., Rouag, N., 2012. XRD peak broadening
characterization of deformed microstructures and heterogeneous behavior of
carbon steel. Theoret. Appl. Fract. Mech. 61, 51-56.

Daymond, M.R., Bourke, M.A.M., Dreele, R.B.V., Clausen, B., Lorentzen, T., 1997. Use
of Rietveld refinement for elastic macrostrain determination and for evaluation
of plastic strain history from diffraction spectra. J. Appl. Phys. 82, 1554-1562.

DeWald, A.T., Hill, M.R., 2006. Multi-axial contour method for mapping residual
stresses in continuously processed bodies. Exp. Mech. 46, 473-490.

Do, S., Serasli, K., Smith, D.J., 2013. Combined measurement and finite element
analysis to map residual stresses in welded components. In: Proceedings of the
ASME 2013 Pressure Vessels and Piping Conference.

Eshelby, ].D., 1957. The determination of the elastic field of an ellipsoidal inclusion,
and related problems. Proc. R. Soc., A 241, 376-396.

Faghidian, S.A., Goudar, D., Farrahi, G.H., Smith, D.J., 2012. Measurement, analysis
and reconstruction of residual stresses. J. Strain Anal. Eng. Des. 47, 254-264.

Farrahi, G.H., Faghidian, S.A., Smith, D.]., 2009. Reconstruction of residual stresses in
autofrettaged thick-walled tubes from limited measurements. Int. ]J. Press.
Vessels Pip. 86, 777-784.

Farrahi, G.H., Faghidian, S.A., Smith, D.J., 2010. An inverse method for reconstruction
of the residual stress field in welded plates. J. Pressure Vessel Technol., Trans.
ASME 132, 612051-612059.

Ficquet, X., 2007. Development and Application of the Deep Hole Drilling Method.
University of Bristol.

Hutchings, M.T., 1992. Neutron diffraction measurement of residual stress fields:
overview and points for discussion. In: Measurement of Residual and Applied
Stress Using Neutron Diffraction.

Jun, T.-S., Korsunsky, A.M., 2010. Evaluation of residual stresses and strains using
the eigenstrain reconstruction method. Int. J. Solids Struct. 47, 1678-1686.
Jun, T.-S., Hofmann, F., Hofmann, M., Korsunsky, A.M., 2012. Residual stress
characterization in 12%-Cr steel friction stir welds by neutron diffraction. J.

Strain Anal. Eng. Des. 47, 203-213.

Kartal, M.E., Dunne, F.P.E., Wilkinson, A.J., 2012. Determination of the complete
microscale residual stress tensor at a subsurface carbide particle in a single-
crystal superalloy from free-surface EBSD. Acta Mater. 60, 5300-5310.

Korsunsky, A.M., 2009. Eigenstrain analysis of residual strains and stresses. J. Strain
Anal. Eng. Des. 44, 29-43.

Korsunsky, A.M., Regino, G.M., 2007. Residual elastic strain in autofrettaged tubes:
variational analysis by the eigenstrain finite element method. J. Appl. Mech.,
Trans. ASME 74, 717-722.

Krawitz, A.D., 2011. Neutron strain measurement. Mater. Sci. Technol. 27, 589-603.

Lei, Y., O’'Dowd, N.P., Webster, G.A., 2000. Fracture mechanics analysis of a crack in a
residual stress field. Int. ]. Fract. 106, 195-216.

Luckhoo, H.T., Jun, T.-S., Korsunsky, A.M., 2009. Inverse eigenstrain analysis of
residual stresses in friction stir welds. Procedia Eng. 1, 213-216.

Martins, R.V., Ohms, C., Decroos, K., 2010. Full 3D spatially resolved mapping of
residual strain in a 316L austenitic stainless steel weld specimen. Mater. Sci.
Eng., A 527, 4779-4787.

MATLAB®, version 4.14.0.739 (R2012a). The Mathworks Inc., Natick, USA.

Mura, T., 1987. Micromechanics of Defects in Solids. Kulwer Academic Publishers,
Dortrecht, The Netherlands.

Smith, M.C., Smith, A.C., 2009. NeT bead-on-plate round robin: comparison of
residual stress predictions and measurements. Int. J. Press. Vessels Pip. 86, 79—
95.

Song, X., Korsunsky, A.M., 2011. Fully two-dimensional discrete inverse eigenstrain
analysis of residual stresses in a railway rail head. J. Appl. Mech., Trans. ASME
78.

Timoshenko, S.P., Goodier, J.N., 1970. Theory of Elasticity, third ed. McGraw-Hill.

Wimpory, R.C., Ohms, C., Hofmann, M., Schneider, R., Youtsos, A.G., 2009a.
Statistical analysis of residual stress determinations using neutron diffraction.
Int. J. Press. Vessels Pip. 86, 48-62.

Wimpory, R.C., Ohms, C., Hofmann, M., Schneider, R., Youtsos, A.G., 2009b.
Corrigendum to Statistical analysis of residual stress determinations using
neutron diffraction. Int. J. Press. Vessels Pip. 86, 721.

Winholtz, R.A., Krawitz, A.D., 1996. The effect of assuming the principal directions
in neutron diffraction measurement of stress tensors. Mater. Sci. Eng., A 205,
257-258.

Withers, P.J., 2007. Residual stress and its role in failure. Rep. Prog. Phys. 70, 2211~
2264.

Withers, PJ., Bhadeshia, H.K.D.H., 2001. Residual stress: part 1 - measurement
techniques. Mater. Sci. Technol. 17, 355-365.

Withers, P.J., Turski, M., Edwards, L., Bouchard, P.J., Buttle, D.J., 2008. Recent
advances in residual stress measurement. Int. J. Press. Vessels Pip. 85, 118-127.


http://refhub.elsevier.com/S0020-7683(14)00056-0/h0010
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0010
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0010
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0010
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0015
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0015
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0020
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0020
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0025
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0025
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0025
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0030
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0030
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0030
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0035
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0035
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0045
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0045
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0050
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0050
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0055
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0055
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0055
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0060
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0060
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0060
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0065
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0065
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0075
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0075
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0080
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0080
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0080
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0085
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0085
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0085
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0090
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0090
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0095
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0095
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0095
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0100
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0105
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0105
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0110
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0110
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0115
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0115
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0115
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0125
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0125
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0130
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0130
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0130
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0135
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0135
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0135
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0140
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0145
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0145
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0145
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0150
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0150
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0150
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0155
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0155
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0155
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0160
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0160
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0165
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0165
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0170
http://refhub.elsevier.com/S0020-7683(14)00056-0/h0170

	A method for reconstruction of residual stress fields from measurements made in an incompatible region
	1 Introduction
	2 Principles of the proposed method
	3 Implementation
	3.1 Finite element implementation
	3.2 Measurement considerations

	4 Numerical example
	4.1 Target residual stress field
	4.2 Reconstruction details
	4.3 Reconstruction using ideal ‘measurement’ data

	5 Parametric studies using non-ideal ‘measurement’ data
	5.1 Size of measurement region
	5.2 Available stress tensor components
	5.3 Finite spatial resolution
	5.4 Random errors
	5.5 Combined effect

	6 Discussion
	6.1 Applicability to experimental measurements
	6.2 Comparison of the direct and iterative methods
	6.3 Comparison with inverse eigenstrain and stress function methods
	6.4 Applications

	7 Conclusions
	Acknowledgements
	References


