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Abstract

We prove that homologically nontrivial generic smooth (2n − 1)-parameter families of analytic discs
in Cn, n � 2, attached by their boundaries to a CR-manifold Ω , test CR-functions in the following sense:
if a smooth function on Ω analytically extends into any analytic discs from the family, then the function
satisfies tangential CR-equations on Ω . In particular, we give an answer (Theorem 1) to the following
long standing open question, so called strip-problem, earlier solved only for special families (mainly for
circles): given a smooth one-parameter family of Jordan curves in the plane and a function f admitting
holomorphic extension inside each curve, must f be holomorphic on the union of the curves? We prove,
for real-analytic functions and arbitrary generic real-analytic families of curves, that the answer is “yes,”
if no point is surrounded by all curves from the family. The latter condition is essential. We generalize
this result to characterization of complex curves in C

2 as real 2-manifolds admitting nontrivial families of
attached analytic discs (Theorem 4). The main result implies fairly general Morera type characterization
of CR-functions on hypersurfaces in C

2 in terms of holomorphic extensions into three-parameter families
of attached analytic discs (Theorem 2). One of the applications is confirming, in real-analytic category, the
Globevnik–Stout conjecture (Theorem 3) on boundary values of holomorphic functions. It is proved that a
smooth function on the boundary of a smooth strictly convex domain in C

n extends holomorphically inside
the domain if it extends holomorphically into complex lines tangent to a given strictly convex subdomain.
The proofs are based on a universal approach, namely, on the reduction to a problem of propagation, from
the boundary to the interior, of degeneracy of CR-foliations of solid torus type manifolds (Theorem 2.2).
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1. Formulation of the problem, the main results and comments

1.1. Formulations of the problems and definitions

The results of this article are related to the following general problem.

Morera problem for CR-functions. Let Ω ⊂ Cn be a CR-manifold of real dimension k, and
let D be a family of analytic discs in C

n, such that the boundaries ∂D, D ∈ D, cover Ω. Let f

be a continuous or smooth function on Ω such that for each D ∈ D the restriction f |∂D admits
analytic extension in D. When does this imply that f is a CR-function in Ω?

Recall that the differentiable manifold Ω is called CR-manifold if the dimension of maximal
complex subspaces T C

p (Ω) of the tangent spaces are the same for all points p ∈ Ω . A smooth

function f on Ω is called CR-function if ∂bf = 0 for any tangential Cauchy–Riemann operator
∂b in the complex tangent space.

The main result of this article is Theorem 2.2 which implies an answer to the above question
in the cases n = 1, k = 2 and n = 2, k = 3. We consider smooth regular (2n − 1)-parameter
families of discs and obtain conditions for the families to detect CR-functions.

The condition for the family D involves the homology or relative homology groups, depending
on whether the parameterizing family is closed or not. For the planar case, n = 1, k = 2, the
condition for the family is most simple: the closures of the discs must have no common point.

In the case n = 1, k = 2 our main result implies a general solution, in real-analytic category,
of the following problem which was known for a long time and was solved till now only for
special families of curves.1

Strip-problem. Let γt be a continuous (smooth) one-parameter family of Jordan curves in the
complex plane. Let f be a continuous (smooth) function on the union Ω = ⋃

γt . Suppose that
for each t the restriction f admits analytic extension inside the curve γt . When does this imply
that f is analytic in Ω?

This question naturally arose in relation with the works [7,17,41] and, to the knowledge of the
author, first was explicitly formulated by Josip Globevnik in his talk [19].

Note that the strip-problem is, in a sense, a degenerate case when the attached analytic discs
lie in the same complex plane to which the manifold Ω belongs.

For the dimensions n = 2, k = 3, i.e. for real hypersurfaces Ω in C
2, we prove quite general

Morera type theorem for CR-functions on Ω. Using this theorem we prove, in real-analytic
category, the following conjecture formulated by J. Globevnik and E.L. Stout in the article [25]
(independently this question was posed by the author in the talk [1]).

1 We require real-analyticity to guarantee nice structure of zero sets of certain functions exploited in our constructions
(see Section 3.7). This assumption seems redundant and likely might be reduced to conditions of differentiability by
more refined analytic arguments, in particular, by using the technique of currents (see the concluding remarks at the end
of the article).
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Globevnik–Stout conjecture (one-dimensional extension property). Let D be a strictly con-
vex bounded domain in C

n and S ⊂ D be a (smooth convex) closed hypersurface, compactly
belonging to D. Suppose that a continuous (smooth) function f on ∂D possesses the property:
for any complex line L, tangent to S, the restriction f |L ∩ ∂D analytically extends to L ∩ D.
Then f is the boundary value of a holomorphic function in D.

1.2. Formulations of the main results

First of all, let us describe in a more precise way the families of curves and analytic discs we
are going to deal with.

Let M be a compact connected smooth oriented (2n− 1)-manifold with boundary ∂M which,
in particular, may be empty. For instance, for n = 1 the manifold M is a smooth curve, topologi-
cally equivalent either to the circle S1 or to the closed segment [0,1]. In this case, we will think
of M as of the unit circle M = S1 in the complex plane, or the segment M = [0,1].

By analytic disc in the complex space C
n we understand a holomorphic diffeomorphic em-

bedding

g :Δ �→ C
n,

of the unit disc Δ in the complex plane. The mapping g is assumed smooth up to ∂Δ and

g′(ζ ) �= 0, ∀ζ ∈ Δ.

Sometimes we will use the term “analytic disc” for the image D = g(Δ).

Given a real manifold Ω ⊂ C
n, the analytic disc D is called attached to Ω if its boundary

∂D = g(∂Δ) ⊂ Ω. It may happen that the entire analytic disc D or its portion belongs to Ω.

By the Cr -family of analytic discs parameterized by the manifold M,dimM = k < 2n, we
understand the family Dt = gt (Δ), where gt , t ∈ M, is a family of holomorphic embeddings (or
even immersions) of the disc Δ, smoothly parametrized by the points in M. Here we assume that

G(ζ, t) = gt (ζ ), (ζ, t) ∈ Δ × M,

belongs to the class Cr(Δ × M), r � 2. If the manifold M is real-analytic and the mapping
G(ζ, t) is real analytic in the closed domain Δ × M then we say that the mapping G para-
meterizes a real-analytic family of analytic discs. In most considerations we will need only
differentiability of the manifold M and of the parameterization mapping G.

Denote Ω the set covered by the boundaries of the analytic discs:

Ω = G(∂Δ × M) =
⋃
t∈M

γt .

Regularity assumptions for G, which we will discuss below, provide that Ω is a smooth manifold.
We also denote

Ω̂ = G(Δ × M) =
⋃
t∈M

Dt .

Throughout the article we will use the notations:



M.L. Agranovsky / Advances in Mathematics 211 (2007) 284–326 287
Σ = Δ × M, bΣ = ∂Δ × M, Σ0 = Δ × ∂M, ∂Σ = bΣ ∪ Σ0.

In this article we consider the following two cases:

Case A, n = 1. In this case the analytic discs Dt are Jordan domains, bounded by Jordan curves
γt = ∂Dt , in the complex plane and Ω ⊂ C. The manifold M has the dimension 2n −
1 = 1 and therefore M is topologically either a circle S1 or a closed segment [0,1] ⊂ R.

We will assume the regularity condition. The family {Dt }t∈M of Jordan domains will
be called regular if the parameterizing mapping G has the minimal degeneracy:
1. rankdG(p) = 2, ∀p ∈ Σ.

2. rankdG|bΣ(p) = 2, ∀p ∈ bΣ \Crit(G), where Crit(G) ⊂ bΣ is the one-dimensional
critical smooth manifold of G.

3. rankdG|bΣ(p) = 1, ∀p ∈ Crit(G), and G(Crit(G)) ⊂ ∂Ω.

Under these conditions, the set Ω is a closed domain, its interior points are regular
values for the restriction of G to the boundary manifold bΣ and the critical values
are located on the boundary. The preimage G−1(∂Ω) ∩ bΣ contains the critical curve
Crit(G) and the mapping G is regular out of the critical curve.

Case B, n = 2. In this case Ω ⊂ C
2. We are interested in the case when Ω is a smooth real hy-

persurface in C
2 ∼= R

4. Then by regularity of the family Dt is understood the following
conditions:
1. rankdG(p) = 4, ∀p ∈ Σ = Δ × M.

2. rankdG|bΣ(p) = 3, ∀p ∈ bΣ \Crit(G), where Crit(G) ⊂ bΣ is the two-dimensional
smooth critical manifold.

3. rankdG|bΣ(p) = 2, ∀p ∈ Crit(G), and G(Crit(G)) ⊂ ∂Ω.

Thus, the non-boundary points of the manifold Ω are regular values for the mapping
G :bΣ �→ Ω, while the critical values lie in ∂Ω .

Now we can formulate the main results.

The results for Case A (Ω is a domain in C)
In the case n = 1 the parametrizing manifold M is diffeomorphic to either unit circle S1 or

the segment [0,1]. We assume that M is just one of these curves.

Theorem 1. Let {Dt }t∈M , M = S1 or M = [0,1], be a real-analytic regular closed family of
Jordan domains in C.

Assume that the closures Dt have no common point:

(a)
⋂

t∈M Dt = ∅.

Let f be a real-analytic function in Ω and assume that f satisfies the property:

(∗) for each t ∈ M the restriction f |∂Dt admits holomorphic extension in Dt .

Then f is holomorphic in the interior of Ω = ⋃
t∈M ∂Dt and extends holomorphically to

Ω̂ = ⋃
t∈M Dt .

The condition (a) cannot be omitted.
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The results for Case B (Ω is a hypersurface in C
2)

The condition (a) in general form is the following.

Definition 1.1. Let ∂M = ∅. We say that the family of the analytic discs D = {Dt }t∈M, parame-
trized by the mapping G(ζ, t), (ζ, t) ∈ Σ = Δ × M, is homologically nontrivial if the induced
mapping of the relative homology groups

G :Hk(M,∂M;R) ∼= Hk(Σ,Σ0;R) �→ Hk

(
G(Σ),G(Σ0);R

)
,

k = dimM , is not trivial, G∗ �= 0.

Let us give a geometric interpretation of the condition of homological nontriviality. For the
case ∂M = ∅ it reads as follows: no d-cycle c ⊂ Ω̂ = ⋃

t∈M Dt , d = dimM, meeting any closed
analytic dics Dt, t ∈ M, is the boundary c = ∂c′ of a (d + 1)-cycle c′ ⊂ Ω̂.

In the case ∂M �= ∅ (“non-closed family”) the condition means the following: if a d-cycle
c ⊂ Ω̂ intersects each closed disc Dt , t ∈ M, then c is relatively homologically nontrivial, i.e.
for no d-cycle c1 ⊂ ⋃

t∈∂M Dt the union c ∪ c1 is a boundary of a (d + 1)-cycle c′ ⊂ Ω̂.

Theorem 2. Let D = {Dt }t∈M be a real-analytic regular family of analytic discs in C
2, para-

metrized by a real connected 3-dimensional real analytic compact manifold M with boundary
(possibly empty). Denote Ω = ⋃

t∈M ∂Dt -a real-analytic 3-dimensional closed manifold in C
2.

Assume that

(a) the family D is homologically nontrivial.

Let f be a real-analytic function on Ω such that:

(∗) for each t ∈ M the restriction f |∂Dt admits analytic extension in the analytic disc Dt .

Then f is a CR-function on Ω.

Recall that Ω̂ is defined as the union of all closed analytic discs Dt .

Remark. 1. The condition (∗) is equivalent to the following:

∫
∂Dt

f ω = 0,

for any holomorphic differential 1-form ω in C
2.

2. In Section 2.2 we will show that in the planar case the homological nontriviality is equiva-
lent to the condition (a) in Theorem 1 that the closed domains Dt have no common point.

Since for n > 1 the condition of holomorphic extendibility is local (differential) as opposite
to the case n = 1 when it is a global (integral) condition, the boundary values of holomorphic
functions can be checked by complex two-dimensional sections and our result for C

2 implies
corresponding characterization of boundary values of holomorphic functions of n variables
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for n � 2. So, Theorem 3 implies answer to the question of Globevnik and Stout [25] in real-
analytic category.

Theorem 3. Let D ⊂ C
n be a bounded strictly convex domain with real-analytic boundary and

S � D be a real-analytic strictly convex closed hypersurface. Let f be a real-analytic function on
∂D such that for any complex line L tangent to S the restriction f |L ∩ ∂D extends analytically
in L ∩ D. Then f is the boundary value of a function holomorphic in D and continuous in D.

Proof. If n = 2, then Theorem 3 is a particular case of Theorem 2, for a special family of sections
by complex lines. In this case the parametrizing manifold is M = S. The analytic disc Dt, t ∈ S,

is defined as the intersection

Dt = Lt ∩ D

of the domain D with the complex line Lt tangent to S at the point t.

Then

Ω̂ =
⋃
t∈S

Dt = D \ D′,

where D′ is the domain bounded by S. If a 3-cycle c intersects each analytic disc Dt then any
4-cycle bounded by c must contain D′ and hence is not contained in Ω̂ . Therefore c is not
homologous to zero in Ω̂ and the condition (a) of Theorem 2 holds. Therefore f is CR function
on ∂D and hence is the boundary value of a holomorphic function in D.

If n > 2, then consider complex 2-planes Π intersecting S. For almost all Π the intersection
S ∩ Π is a real-analytic hypersurface, contained in the intersection

DΠ = D ∩ Π

which can be regarded as a strictly convex domain in C2. The surface S ∩ Π is strictly convex.
Thus, we are in position of Theorem 2 applied to the domain DΠ ⊂ C2 and to the family of

complex lines L ⊂ Π, tangent to the 3-surface SΠ. By Theorem 3 for n = 2 the function f is
annihilated by any tangential differential operator X,X ∈ T C

p (∂D ∩ Π), p ∈ ∂D ∩ Π. Due to

the large supply of the complex 2-sections Π, we obtain Xf = 0 for any point p ∈ ∂D and any
vector X ∈ T C(∂D). Therefore f is CR function on ∂D and hence extends holomorphically in
the domain D. �
1.3. Generalization of Theorem 1: Characterization of complex curves in C

2

Theorem 1 can rephrased in terms of the graph Γf of the function f. Indeed, if Ft is the
analytic extension of f from the boundary ∂Dt into domain Dt then the graph ΓFt of Ft over Dt

is an analytic disc in C2 attached to Γf . Therefore Theorem 1 states that if the real 2-manifold
Γf ⊂ C

2 admits a nontrivial one-parameter family of attached analytic discs then Γf is a complex
manifold.

This version of Theorem 1 can be generalized to compact manifolds which are not necessarily
graphs.

For simplicity we formulate the result for periodic families of attached analytic discs.



290 M.L. Agranovsky / Advances in Mathematics 211 (2007) 284–326
Theorem 4. Let Λ ⊂ C
2 be a real-analytic 2-dimensional oriented compact manifold with

nonempty boundary, ∂Λ �= ∅. Suppose that Λ admits one-parameter regular homologically non-
trivial real-analytic family Dt , t ∈ S1, of attached analytic discs such that Λ = ⋃

t∈S1 ∂Dt . Then
Λ is a 1-dimensional complex manifold in C

2 and Dt ⊂ Λ for all t.

By regularity we understand here that Λ \ ∂Λ consists of regular values of the parametrizing
mapping of the family {Dt } on bΣ.

1.4. History of the problems

Strip-problem. The name “strip-problem” is due to the typical shape of domains swept out by
one-parameter families of curves in the plane (see, e.g. Ehrenpreis’ book [16, p. 575]; for the
strip-problem for more general PDE see [16, Chapter 9.5], and [4]). The analytic extendibility
inside a planar Jordan curve can be formulated it terms of a complex moments condition, thus
the question can be regarded as a version of Morera theorem, in which the lowering by one of
the number of parameters for the family of the testing contours is compensated by the stronger
condition of vanishing of all complex moments. We also refer the reader for this and related
problems to [41,42].

In the paper [7], by Val’sky and the author, on Moebius-invariant function algebras in the
unit disc, a lemma was proved about testing of analyticity by analytic extendibility into families
of Jordan curves in the disc. The families were assumed invariant with respect to conformal
automorphisms of the unit disc. The method used was averaging of a function with respect to
rotations and applying the argument principle to the averaged function.

Globevnik [17] observed that replacing the averaging by computing the Fourier coefficients
in the polar coordinates leads to an analogous test of analyticity for rotation-invariant families
of curves. In the articles [20,21,23] he made several interesting observations on the phenomena.
In [5] the result of Globevnik [17] was generalized for U(n)-invariant families of boundaries of
analytic discs in C

n, with using decompositions into spherical harmonics in C
n.

The above results used tools of harmonic analysis and therefore required group invariance of
the testing families. However, even for (noncompact) group-invariant families of curves, when no
information about the growth of functions in the question is known and Fourier analysis becomes
inapplicable, simple natural questions remained unanswered.

For instance, the following question became a challenge: given a continuous or smooth func-
tion f in the strip |Im z| < 1, does the analytic extendibility inside any inscribed circle of radius 1
imply that f is holomorphic in the strip?

The first result beyond harmonic analysis was obtained by Globevnik and the author [3].
The problem was completely solved for arbitrary one-parameter families of circles in the plane,
though for functions f (x, y) which are rational (quotient of two polynomials) in x, y. In spite of
yet geometric restrictions for the curves (circles), the approach in [3] led to a new insight. The
key point was reformulating the problem, originally one-dimensional, in C

2 using the embed-
ding z �→ (z, z) of the real 2-plane into C

2. The functions, along with their analytic extensions,
lift to the quadrics (z1 − a)(z2 − a) = r2 in C

2, which are the complexifications of the circles
|z − a| = r. Then the proof in [3] is based on analysis of the dynamics, in the parameter t , of
the quadrics, parameterized by a = a(t) and r = r(t), with respect to the zero varieties of the
polynomials generating the rational function f.
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Also, in [3] the case of real-analytic functions and arbitrary smooth families of circles was
solved (independently, but in a special case, the same result was obtained by Ehrenpreis [15],
with the help of Fourier analysis).

The next significant progress was due to Tumanov [39]. As in [3], he also started with the
lifting the problem into C

2, but applied powerful tools of CR-theory, in particular, the edge of
the wedge Ayrapetyan–Henkin’s theorem [11], to prove forced analytic extendibility of the lifted
function f to a larger domain. Note, that in [3] such extension was provided automatically, as
rational functions in z, z always possess meromorphic extensions inside any circle.

As the result, in [39] the strip-problem was solved for continuous functions, albeit for more
restricted in the sense of [3], families of circles, namely those with constant radius and centers
on an interval. However, soon afterward, Tumanov [40] got rid of the above restrictions and
came up with a proof for the case of continuous functions f and arbitrary smooth families of
circles. Moreover, this proof, motivated by an argument of Hans Lewy, was much simpler than
that in [39]. Recently Globevnik [24] generalized the geometric construction from [39] and used
the reasoning from [40] to solve the strip-problem for special families of non-circular Jordan
curves which are translates of a fixed axially symmetric Jordan curve, along the line orthogonal
to the symmetry axis.

In Theorem 1 of this article we give the solution for generic families of general Jordan curves
with no restriction of geometric type. Our approach rests on a reformulating of the original
problem to the topological language, namely, as a question about CR-extensions of coverings
of the 2-dimensional torus or cylinder, inside the solid torus or solid cylinder.

This reduction reveals topological or, better to say, topology-analytical nature of the problem,
as well as the adequate tools for the solutions. As result, it allows to get rid of geometric restric-
tions for the Jordan domains in the question and solve the problem for general families. Some
ingredients of the analytic parts of the proofs are close to those in the article [40] by Tumanov.

One-dimensional extension property. We refer the reader for boundary Morera theorems to the
recent survey by Kytmanov and Myslivets [28], and an extended bibliography there. Here we
will outline only some results which are mostly related to our paper.

It was observed in [7] that boundary values of holomorphic functions in the unit ball in C
n can

be characterized by analytic extendibility into sections of the ball by complex lines. Stout [35]
generalized this result to arbitrary smooth domains, using complex Radon transform. In [6] the
family of lines was reduced to the set of complex lines passing through a fixed open domain.

Nagel and Rudin [31,32] proved one-dimensional property for the ball in C
n and the family

of complex lines tangent to a smaller concentric ball. Globevnik [18,22] reduced the families of
lines in the question. In [8] an analogous result was obtained for lines tangent to a fixed orbit of
the Heisenberg group acting on the complex ball.

The fundamental work by Globevnik and Stout [25] contains many deep results on the subject
(see also [26]). There the approach is mainly based on the complex Radon transform in its vari-
ous versions, in particular, approximation by the complex plane waves. Tumanov [38] obtained
similar characterizations of CR-functions on CR-manifolds of higher codimension.

Note, that of most interest are the families not containing small analytic discs. By small discs
we understand the families of discs that can be shrinked to boundary points. In this case, the
problem of testing CR-functions is much easier, at least for smooth functions, as the tangential
CR-equation follow from Stokes formula applied to the shrinking discs.

An example of families without small discs is the family of intersections of a fixed domain
with complex curves (for instance, complex lines, as in [31]), tangent to a fixed surface. In [25]
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Globevnik and Stout conjectured that the Nagel–Rudin theorem should be true for two arbitrary
enclosed convex domains D′ � D, when the family of analytic discs, testing boundary values of
holomorphic functions on ∂D, consists of sections of the domain D by the complex lines tangent
to the hypersurface S = ∂D′.

Dinh [14] confirmed the conjecture for smooth functions and under certain condition of
“strongly non real-analyticity” of the above sections by the complex lines.

Recently, the conjecture of Globevnik and Stout was confirmed in affirmative by Baracco,
Tumanov and Zampieri [12] for the family of extremal discs. The extremal discs are geodesics in
Kobayashi metrics in the larger domain. The proof goes back to the idea of the proof in [39] and
hence the extremal discs are needed for meromorphic lifts to tangent spaces, similarly to lifting
circles to complex quadrics in C2 by means of z.

In this article we prove (Theorem 2) that in dimension n = 2 and under assumptions of suffi-
cient smoothness (real-analyticity), no geometric restrictions for analytic discs and for character
of the family are required, and the one-dimensional extension property, at least for smooth func-
tions, is true for arbitrary generic family of attached analytic discs. The essential condition is
rather topological and requires homological nontriviality of the family.

Since for n > 1 characterization of (smooth) boundary values of holomorphic functions are
differential (local), as opposed to n = 1, Theorem 2, albeit is stated for n = 2, lead to various
boundary Morera theorems in arbitrary dimensions. To apply Theorem 2 the families of attached
analytic discs must have rich enough supply of subfamilies filling up 2-dimensional complex
submanifolds. Theorem 3 is just an example of such kind of application.

Theorems 1 and 2 are proved by an universal approach which we explain in the following
section. The remarkable papers of Alexander and Wermer [10] and of Stout [36] about linking
numbers and analytic functions were a major influence in my discovering this approach.

2. Reduction of the problems to CR-extensions of coverings and foliations

2.1. Formulation of the equivalent result on extensions of foliations

We will formulate a single theorem which includes, in equivalent form, Theorems 1 and 2.
Let n be an integer and M be a compact connected Cr -smooth oriented real (2n−1)-manifold

with the boundary ∂M , possibly empty.
As above, we denote

Δ = {
z ∈ C: |z| < 1

}
.

For the unit circle in the plane we will use both notations, ∂Δ and S1, depending on the context,
analytical or topological. We also use all the notations, Σ,bΣ,Σ0, ∂Σ,Ω, Ω̂, from Section 1.
The real dimensions of the manifolds are

dimR Σ = 2n + 1, dimR bΣ = 2n.

The dimensions of the manifolds Ω = G(bΣ) and Ω̂ = G(Σ) depend on the rank of the
mapping G, which we are now going to specify.

In order to combine both cases A and B, discussed in the previous section, let us introduce the
definition.
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Definition 2.1. Let k � 2n be an integer. We say that a smooth mapping

G :Σ �→ C
n

is (2n, k)-regular if:

1. Ω̂ = G(Σ) is a closed domain in C
n, rankR dG(p) = 2n for all p ∈ Σ .

2. Ω = G(bΣ) is a smooth real k-dimensional manifold in C
n ∼= R

2n, with boundary and
rankR dG|bΣ(p) = k for all p ∈ bΣ \ Crit(G), where Crit(G) ⊂ bΣ is (k − 1)-dimensional
critical manifold, and Crit(G) ⊂ G−1(∂Ω).

3. rankR dG|bΣ(p) = k − 1, for p ∈ Crit(G).

In this article we are concerned with the two cases.

(A) n = 1, k = 2. In this case the image Ω̂ = G(Σ) has real dimension 2 and is a closed domain
in C, G(bΣ) = Ω is also a domain in C, with the smooth boundary ∂Ω containing the critical
values of G. The mapping ζ �→ G(ζ, t) maps conformally the unit disc Δ onto the analytic disc
Dt ⊂ C. These analytic discs are attached to Ω which means that ∂Dt ⊂ Ω.

The restriction G|bΣ of G to the 2-dimensional boundary manifold bΣ is a finitely sheeted
covering over Ω \ ∂Ω. The fibers correspond to the curves

γt = ∂Dt = G
(
∂Δ × {t}),

passing through a fixed point in Ω.

The set Crit(G) ⊂ G−1(∂Ω) of critical points is a curve in bΣ. The set of critical values
G(Crit(G)) ⊂ ∂Ω is the envelope of the family of the curves γt . The points from the envelope
are the sliding points. At these points the velocity vector (the motion direction) of the family γt

is proportional to the tangent vector to γt . Except the sliding points the boundary ∂Ω contains
subarcs of the curves γt corresponding to “boundary” parameters t ∈ ∂M.

The condition that the interior of Ω consists of regular values of the mapping G|bΣ (does not
contain sliding points) guarantees that this mapping is a foliation over the interior of Ω . This
condition is important in our considerations.

(B) n = 2, k = 3. In this case Ω̂ has real dimension 2n = 4, while Ω is a real 3-dimensional
submanifold of C

2, contained in ∂Ω̂. The analytic discs Dt are attached to Ω. The union of their
closures constitutes Ω̂.

The restriction of the parameterization mapping G to the 4-dimensional manifold bΣ is a
foliation with the 3-dimensional base Ω \ ∂Ω and the 1-dimensional fibers G−1(b), b ∈ Ω \ ∂Ω.

The fibers correspond to the one-parameter family of the curves passing through one point in Ω.

Now we are ready to formulate the main result, which is just a general form of Theorems 1
and 2.

Theorem 2.2. Let Q = (F,G) :Σ �→ C × C
n = C

n+1 be a real-analytic CR-mapping, that is Q

is holomorphic on each complex fiber Δ × {t}.
Suppose that:
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(i) The mapping G is (2n, k)-regular;
(ii) The mapping Q degenerates on the boundary bΣ , meaning that

F = f ◦ G

holds on bΣ for some smooth function f on Ω = G(bΣ);
(iii) The induced homomorphism G∗ of the relative homology groups

G∗ :H2n−1(Σ,Σ0;R) �→ H2n−1
(
G(Σ),G(Σ0);R

)

has a nonzero image, where Σ0 = Δ × ∂M.

Suppose that one of the two cases takes place:

(A) n = 1, k = 2;
(B) n = 2, k = 3 and H1(M,∂M) = 0.

Then Q is degenerate on the entire (2n + 1)-manifold Σ , meaning that

F = f̂ ◦ G

on Σ , for some smooth function f̂ , or, equivalently rankdQ = 2n < dimΣ = 2n + 1 and
codimR Q(Σ) = 2. The function f is CR-function in the interior of Ω = G(bΣ).

In the case when M is a closed manifold, i.e. ∂M = ∅, the relative homology groups in con-
dition (iii) of Theorem 2.2 must be replaced by the corresponding homology groups H2n−1(Σ),
H2n−1(G(Σ)).

Theorem 2.2 can be exposed as a theorem giving conditions of existence of an extension f̂ of
the commutative diagram

bΣ

G
F

Ω = G(bΣ)
f

C

to the commutative diagram

Σ

G
F

Ω̂ = G(Σ)
f̂

C

where F and G are CR-mappings.

2.2. Reduction of Theorems 1 and 2 to Theorem 2.2

Denote F(ζ, t) the analytic extension of the function ζ �→ f (G(ζ, t)) from the unit circle
{|ζ | = 1} to the unit disc {|ζ | < 1}. Such extension exists by the condition (∗) of Theorems 1
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and 2. Then the two functions F and G define a smooth mapping

Q = (F,G) :Σ = Δ × M �→ C × C
n = C

n+1.

Now we want to show that Theorem 2.2, applied to the functions (F,G), is equivalent to
Theorems 1 and 2, applied to the function f.

First of all, the conditions (i) of regularity for G are the same in Theorems 1 and 2, and
in Theorem 2.2. This condition implies that G is a covering over Ω \ ∂Ω , i.e. there are finite
constant number of curves through each interior point in Ω.

The condition (ii) in Theorem 2.2 holds because

F(ζ, t) = f
(
G(ζ, t)

)
, ζ ∈ ∂Δ, t ∈ M,

by the construction of F .
Thus, to complete comparing the conditions we need only to check that properties (a) in

Theorems 1 and 2, formulated in terms of analytic discs, imply the property (iii) in Theorem 2.2,
formulated in terms of the induced homomorphisms of the homology groups.

Proposition 2.3. The conditions (a) in Theorems 1 and 2 are equivalent to condition (iii) in
Theorem 2.2.

Proof. Consider first the case of closed M . Suppose that condition (a) of homological nontrivi-
ality holds. The homology groups of the compact manifolds Σ = Dl ×M and M are isomorphic
and generated by the the fundamental class [M] which is the homology class of the cycles
C = {0} × M and M correspondingly.

The (2n − 1)-cycle

C = {0} × M

which we will call central cycle, will play an important role in the sequel.
The image cycle c = G(C) intersects each analytic disc

Dt = G
(
Δ × {t})

and by (a) the cycle c represents a nonzero element in H2n−1(G(Σ)). Therefore G∗ �= 0 and
hence the condition (iii) holds.

The case of nonclosed manifolds M and relative homologies is considered analogously.
It remains to check that in the planar case, n = 1, k = 2 and dimM = 1, the condition of

homological nontriviality converts to the more transparent condition of Theorem 1 of empty
intersection of the closures of analytic discs Dt .

Let us start with a simple remark. The domains Dt have a common point, b, if and only if the
curve G−1(b) intersects each closed disc

Δt = Δ × {t}.

Therefore if the common point b exists then the homology class [G−1(b)] ∈ H1(Σ) is not 0.
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However, G maps this curve to the point b, and it follows that G∗ = 0. Thus, if (a) in Theo-
rems 1, 2 does not hold, then (iii) in Theorem 2.2 fails.

In the opposite direction, assume that (a) is true, i.e.,
⋂

t∈M Dt = ∅. We claim that then the
G-images of bΣ and Σ coincide:

Ω = Ω̂.

Indeed, if not then some value b is taken by G in Σ but not in bΣ. Then the function

1

2πi

∫
|ζ |=1

dG(ζ, t)

G(ζ, t) − b

is continuous in t . It evaluates the number of zeros in the disc Δt and therefore is constant. Since
it is different from zero for least one value of t it is not zero for all t . Therefore G takes on the
value b on each disc Δ which means that b belongs to all domains Dt . Contradiction.

Now suppose that (iii) fails. Then G maps the central cycle

C = {0} × M

to a cycle c = G(C), (relatively) homologically equivalent to zero in Ω̂.

Consider first the case ∂M = ∅ and M = S1 in Theorem 1. Then the cycle c is homotopic
to 0. Moreover, since the cycle c belongs to the interior of Ω̂ = Ω, it can be contracted, within
the interior of Ω, to a point

b ∈ Ω \ ∂Ω.

The mapping G is a locally trivial foliation over intΩ (by the regularity condition, the crit-
ical values of G are located on ∂Ω = ∂Ω̂). Applying the axiom about covering homotopy
[37, Theorem 4.1] we obtain that the homotopy c ∼ {b} lifts up to a homotopy C ∼ C′, where C′
is a nontrivial 1-cycle in Σ.

The new cycle C′ projects, by the mapping G, to the point b:

G(C′) = {b}.

The cycle C′ is homotopic to the central cycle C = {0} × M and hence it must intersect each
complex disc Δ × {t}. But this is just another way of saying that

b ∈
⋂
t∈M

Dt .

Thus, the condition (a) of Theorem 1 fails.
In the case M = [0,1] in Theorem 1, the argument is analogous. Namely, if the condition (iii)

in Theorem 1 fails and the cycle c = G(C) is relatively trivial, then there is a smooth curve

c1 ⊂ G(Σ0) = D0 ∪ D1
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such that c ∪ c1 a boundary in the interior of Ω̂ = Ω . The new curve is the image c ∪ c1 =
G(C ∪ C1), of the union of the cycle C with a 1-chain (a curve)

C1 ⊂ Σ0 = Δ0 × Δ1.

Then the curve c ∪ c1 is homotopic, in the interior of Ω = Ω̂ to a point. We can perform the
homotopy in two steps.

First, we deform c ∪ c1 so that the part c1 contracts to a point within the set D0 ∪ D1. Then c

is deformed homotopically to a closed curve (cycle) c′ ⊂ Ω.

Again, by the axiom on covering homotopy, the cycle C ∪ C1 can be homotopically trans-
formed in Σ so that C1 contracts to a point within Σ0 and the cycle C transforms to a cycle C′
with end points belonging to Σ0. This new cycle intersects all the discs Δt .

Second, we contract c, within the interior of Ω, to an inner point b ∈ Ω. Correspondingly, by
the covering homotopy, C′ can be transformed to a cycle C′′ ⊂ Σ, which intersects each disc Δt ,
t ∈ M, and projects by G to the point b, i.e.,

G(C′′) = {b}.

This says that for any t ∈ M

b ∈ G(Δt) = Dt

and therefore the condition (a) in Theorem 1 fails. The equivalence of conditions (a) and (iii) is
proved. �

To complete the reduction we have to prove that the conclusion of Theorem 2.2 implies the
conclusions of Theorems 1 and 2.

Indeed, Theorem 2.2 asserts the relation F = f̂ ◦ G in Σ. This means that F is constant on
the level curves G = const in Σ, or, in other words, that the values of the analytic extensions at
a fixed point z ∈ Dt do not depend on t. This immediately implies that f is analytic (n = 1) or
CR-function (n = 2) in Ω.

An alternative proof is as follows. Suppose that Q is degenerate, F = f̂ ◦ G on Σ for some
smooth function f̂ on Ω̂.

Let n = 1. The functions F and G are analytic in ζ and differentiating in ζ the above relation
between F and G yields

(∂f̂ ◦ G)∂ζ G = 0

and therefore ∂f̂ = 0 on Ω̂. Thus, f̂ is analytic on Ω̂ and hence f = f̂ |Ω is analytic on Ω.

Let n = 2 and the 3-manifold Ω is locally defined by the equation ρ(z1, z2) = 0, where ρ is
a smooth real-valued function in a neighborhood of a point in Ω. Then

ρ(G1,G2) = 0.

Differentiating in the variable ζ the latter identity and the identity

F(ζ, t) = f̂
(
G1(ζ, t),G2(ζ, t)

)
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leads to a linear system, with the zero determinant due to the embedding condition ∂ζ (G1,G2) �=
(0,0).

Vanishing of the determinant can be written as

∂f̂ ∧ ∂ρ = 0,

which is just the CR-condition for the function f̂ = f in Ω.

This completes the reduction.

2.3. Necessity of the conditions

Before going to the proof of Theorem 2.2, let us show necessity of conditions in Theorems 1,
2 and, correspondingly, in their topological versions Theorem 2.2.

Let us consider the case A, n = 1, k = 2, when the manifold Ω is a domain in the plane.
The main condition (a) in Theorems 1 and 2 is that the intersection of the closed analytic

discs from the family is empty. The following example, demonstrating the importance of this
condition, belongs to Globevnik [17,20]. His example is given by function

f (z) = zn/z, n > 1,

where n is large enough to provide desirable smoothness at the origin.
The function z extends meromorphically from any circle in the plane inside the disc, with a

simple pole at the center, and with a simple zero, which is inside the disc if and only if when the
point 0 is outside.

It follows that f extends analytically, without poles, inside any circle enclosing, or even con-
taining, the origin. For any family of circles surrounding the origin, the corresponding closed
discs have the common point 0, so the condition (a) fails. Nevertheless, function f is not holo-
morphic.

In the context of Theorem 2.2, the above example translates as follows:

M = S1, G(ζ, t) = Reit + rζ,

where R, r are nonnegative numbers, corresponding to rotation of a circle of radius r around a
circle of radius R, and may serve a simplest model for understanding the constructions in this
article.

The influence of the property of having or nonhaving a fixed point inside all the curves, to
detecting analyticity in the sense of Theorem 1, was studied in details by Globevnik in [20]. He
gave there other interesting examples of the above type. For instance, Globevnik showed that
rotations of equilateral triangle around its center does not detect analyticity but this is not true
for nonsymmetric triangles.

Define

F(ζ, t) = ζeit (Reit + rζ )n

reit + Rζ
, n > 1,
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on the solid torus {|ζ | � 1} × S1. In this case the sets Ω and Ω̂ are

Ω = G
(
∂Δ × S1)

= {|R − r| � |z| � R + r
}
,

Ω̂ = G
(
Δ × S1)

= {
max(R − r,0) � |z| � R + r

}
.

The regularity condition hold as the Jacobian of G equals to

∂(G,G)

∂(ψ, t)
= 2iRr sin(t − ψ)

and it vanishes if and only if ψ − t = 0 or π, i.e. on the circles of radii R + r and r − R centered
at 0 which constitute the boundary of the annulus Ω.

If r < R then F has pole at ζ = (−r/R)eit ∈ Δ and the condition (∗) fails. However, if R � r

then this pole is outside of Δ and (∗) holds. At the same time, the condition (iii) obviously fails
because the nontrivial cycle

{(−(R/r)eit , eit
)}

is mapped by G to the point 0 and hence that the induced mapping G∗ of the homology groups
is trivial. Correspondingly, the conclusion of Theorem 1 fails, too, as F and G are functionally
independent in the solid torus and the mapping (F,G) is nondegenerate.

Consider the case B (Theorem 2), related to testing CR-functions on hypersurfaces. It is easy
to see that the condition (a) cannot be removed. The corresponding example exists in any di-
mension. Indeed, let Ω = S2n−1 be the unit sphere in C

n. Consider the analytic discs which
are intersections of the complex unit ball B2n ⊂ C

n with complex lines L passing through the
origin. The boundaries of the discs are circles, covering the unit sphere (Hopf foliation). The
condition (a) does not hold, as 0 is the common point of the discs. Correspondingly, the assertion
of Theorem 2 is not true as any function constant on the circles L ∩ S2n−1 but real valued and
nonconstant on the sphere S2n−1 provides a counterexample.

3. Proof of Theorem 2.2

3.1. Informal comment on the proof of Theorem 2.2

The problem under consideration may be viewed as a version of an argument principle for
boundaries of small dimensions (of codimensions greater than 1). Let us explain what do we
mean by that.

A simplest one-dimensional analog of Theorem 2.2 could be the following simple fact: given
a smooth mapping

G :Δ �→ I



300 M.L. Agranovsky / Advances in Mathematics 211 (2007) 284–326
of the unit disc onto a segment I = [α,β] ⊂ R, whose restriction to ∂Δ is a smooth covering
over the interval (α,β), and a function F from the disc-algebra, smooth up to the boundary, then
F = const provided F takes equal values on the intersections G−1(b) ∩ ∂Δ, b ∈ I .

Here is the proof in the form we need (a similar argument was used in [7,13,17]). Suppose
there exists b ∈ F(Δ) \ F(∂Δ). Then by the argument principle

1

2πi

∫
∂Δ

dF

F − b
= #

{
z ∈ Δ: F(z) = b

}
> 0.

On the other hand, from the condition we have F = f ◦ G on ∂Δ for some smooth function f

and then

1

2πi

∫
∂Δ

dF

F − b
= degG · 1

2πi

∫
I

df

f − b
= 0,

because the Brouwer degree of the mapping G : ∂Δ = S1 �→ I is zero, degG = 0.

The obtained contradiction says that F(Δ) = F(∂Δ) which implies f = const, as otherwise,
the curve F(∂Δ) must contain an open set, due to the openness property.

The above argument can be viewed as a simple model of the idea of the proof of our main
result, Theorem 2.2. However, the main difference and the main difficulty is that in our case the
function F depends on the additional parameter t and the fibers of the foliation G do not belong
to the complex discs where F is analytic. Moreover, the fibers are transversal to the discs. Our
goal is to prove that then, still, F is constant on the G-fibers and hence the mapping Q = (F,G)

is degenerate: Q maps the level curves G−1(b) to points.
The topological interpretation of the above toy model might be the following: if the analytic

function F collapses the boundary circle to a curve then F collapses the unit discs as well, and
the images of the disc and its boundary coincide: F(Δ) = F(∂Δ).

Theorems 2.2 may be interpreted in the similar topological terms. Take for example, the case
n = 1, k = 2, corresponding to the strip-problem for a periodic family of Jordan curves.

The mapping G from Theorem 2.2 maps the 2-dimensional torus T 2 to a planar domain, Ω.

Now, the function F is constant on the level sets of G, as F = f ◦G, and therefore the composite
mapping Q, defined on the solid torus,

Q = (F,G) :Σ �→ C
2 ∼= R

4

collapses the boundary torus T 2 to a manifold diffeomorphic to a planar domain (which is the
graph of the function f over Ω.)

The image Q(Σ) of the interior is a set in R
4 attached to the 2-dimensional image of the

boundary torus T 2, and this image is “flat,” i.e. is topologically equivalent to a planar domain.
In Theorem 2.2 we prove in that if the mapping Q is homologically nontrivial, meaning that Q

induces nontrivial homomorphism of the homology group, then Q collapses the interior of the
solid torus as well it does with its boundary. In other words, the image of the 3-dimensional solid
torus Σ is 2-dimensional and is contained in the image of the boundary and Q(Σ) = Q(∂Σ),

similarly to our model example.
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3.2. The plan of the proof of Theorem 2.2

We assume, to the contrary of the assertion, that Q is nondegenerate and our goal will be
arriving to a contradiction.

Step 1. A key point is Lemma 3.3 where we prove the symmetry relation (2) of linking numbers
which are periods (winding numbers) of one function on the zero sets of the other. Lemma claims
that certain logarithmic residue type integrals are equal. This equality is true for functions ana-
lytic in ζ variable and having the important property: they take equal values at the points on the
boundary manifold bΣ , belonging to the same G-fiber.

Lemma 3.3 is proved by the standard technique from residues theory, assuming removing
neighborhoods of singularities, applying Stokes formula to differential forms on the remaining
manifold and then shrinking the removed neighborhoods.

The key point is that the constancy of functions on the G-fibers on bΣ provides cancellation
of a surface term in the Stokes formula and this leads to the needed symmetry relation.

Step 2. In the second, analytic, part of the proof we study the minors J of the Jacobi matrix
J (F,G) in Σ . First, we observe that the zero sets of J (the Q-critical sets) contain the central
cycle C = {0} × M. Since we assumed that Q is not degenerate, there are minors J which are
not identically zero and hence the zero sets J−1(0) are essentially (2n − 1)-dimensional.

The final part of the proof, for instance in the case ∂M = ∅ (Theorems 1 and 3), is as follows.
Take for simplicity the case n = 1. We apply the symmetry relation proved in Lemma 3.3 to

the functions J and G − b. However, Lemma 3.3 requires that both functions identify points on
bΣ from the same G-fiber. The function G − b certainly satisfies this property, but J may not.
Nevertheless, it appears that the “phase” part, Θ = J/J , does satisfy the required property away
from zeros of J . This is enough to write the symmetry relation for J and G − b, as the change
of the argument of Θ is just the doubled change of the argument of J.

Now we use the symmetry relation to obtain contradiction with the assumption that J does
not vanish identically.

First, take b /∈ Ω̂ = G(Σ). Then G−1(b) = ∅ and the integral over G−1(b) in the symmetry
relation (2) vanishes simply because the set of integration is empty.

On the other hand, condition (iii) guarantees that the image c = G(C) of the nontrivial loop
C = {0} × M , is homologically nontrivial in Ω̂ . Since C ⊂ J−1(0) then c ⊂ G(J−1(0)).

Then b can be chosen out of Ω̂ and so that the loop c has a nonzero index, indb c �= 0, with
respect to the point b and we have the desired contradiction because then the second integral
in (2), over G(J−1(0)), is different from zero.

This contradiction implies that J = 0 identically which is just the conclusion of Theorem 2.2.
In the case ∂M �= ∅ (Theorems 2 and 4) we slightly modify the above argument. First, an

additional surface term appears in Stokes formula, corresponding the boundary of M. Then the
symmetry relation delivers a jump-function which counts algebraic number of intersections with
the image G(J−1(0)) of the critical set.

The homological condition (iii) provides that there exists a path, L, which crosses the union
of the discs Dt, t ∈ M , without meeting the discs with t ∈ ∂M and has the nonzero intersection
index with G(C) ⊂ G(J−1(0)).

The final argument rests on determining the relative homological class of a cycle of codi-
mension 1 by intersection indices with a transversal curve L. The contradiction comes from
comparing the total algebraic number of the intersection indices (jumps of the counting func-
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tion) which is different from 0 with the total variation of the counting function along the path L

which appears to be 0.

3.3. The Brouwer degree of the mapping G

Let us study properties of the mapping G.

We start with the planar case (2n, k) = (2,2) and with the case of the closed manifold M . In
this case

M = S1, Σ = Δ × S1, bΣ = ∂Σ = S1 × S1 = T 2.

Lemma 3.1. The Brouwer degree of the mapping

G :T 2 �→ G
(
T 2) = Ω

is zero, degG = 0.

Proof. The image G(T 2) is a compact domain Ω = G(T 2) ⊂ C.

Embed Ω to the Riemann sphere as a compact subset Ω̃ ⊂ S2. Then we can view the mapping
G as a mapping to S2:

G :T 2 �→ Ω ⊂ Ω̃ ⊂ S2.

The 2-dimensional homology groups of the 2-dimensional compact manifolds without bound-
aries are

H2
(
T 2;Z

) = H2
(
S2;Z

) = Z

and the Brouwer degree is defined by the relation

G∗(μ1) = degG · μ2,

where μ1, μ2 are generators (fundamental classes) of the corresponding homology groups
H2(T

2;Z) and H2(S
2;Z). However, the image of G is a compact subdomain of the sphere S2

and is contractible, hence G∗(μ1) = 0 and therefore degG = 0. �
We will need a local version of Lemma 3.1.

Corollary 3.2. If O ⊂ Ω is a submanifold, then the local Brouwer degree of the restricted map-
ping

G :T 2 \ G−1(O) �→ Ω \ O

is zero.
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Proof. Recall that locally the Brouwer degree is defined as the algebraic number of points in the
preimage G−1(b) of a regular value b ∈ Ω, i.e.

degG =
∑

G(p)=b

signdGp.

Clearly, this number preserves after simultaneous removing a set O from Ω = G(T 2) and its full
G-preimage G−1(O) from T 2. �
3.4. Linking numbers

Everywhere in this section we assume that ∂M = ∅, but combine both cases (2n, k) = (2,2)

and (2n, k) = (4,3), so that Ω is either a planar domain or 3-dimensional closed manifold in C
2.

Note that if ∂M = ∅ then bΣ coincides with the topological boundary, bΣ = ∂Σ.

Denote βMB the Martinelli–Bochner (2n−1)-differential form βMB (Martinelli–Bochner ker-
nel) in the space C

n (see, e.g. [9,36]). It will be convenient to denote the coordinates in C
n by

z2, . . . , zn+1. Then

βMB = 1

(2πi)n
|z|−2nω′(z) ∧ ω(z),

where ω′(z) = ∑n+1
j=2(−1)j zj dz[j ] and ω(z) = dz2 ∧ · · · ∧ dzn+1 and [j ] means that the differ-

ential dzj is skipped.
The Martinelli–Bochner form coincides with the (2n − 1)-surface form in the real Euclidean

space R2n and integration in this form is well related with computing degrees of mappings, and
linking numbers (see e.g., in the close context, [10,36]).

Define the 2n-form in C
n+1:

β = 1

2πi

dz1

z1
∧ βMB.

In particular, for n = 1 we have

β = 1

(2πi)2

dz1

z1
∧ dz2

z2
.

The form β is closed in C
n+1 with the deleted linear spaces {z1 = 0} and {z′ = (z2, . . . ,

zn+1) = 0}.
The following lemma is a key one in the proof of Theorem 2.2. It asserts a symmetry of

linking numbers associated to the level sets of functions, compatible with the foliation G. By
G-compatibility we understand the constancy on the G-fibers.

Lemma 3.3. Let G :Σ �→ C
n be the mapping from Theorem 2.2, and ∂M = ∅. Let J be a nonzero

C1-function

J :Σ �→ C

having the following properties:
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1. The zero set J−1(0) is a (2n − 1)-chain in Σ.

2. The set J−1(0) ∩ bΣ contains the critical set Crit(G) of the mapping G on bΣ.

3. The quotient

Θ = J

J
= exp(2i argJ ) : (∂Δ × M) \ J−1(0) �→ S1

is G-compatible, i.e., Θ is representable, outside of zeros of J, in the form

Θ = σ ◦ G, (1)

for some smooth function σ defined on G(bΣ \ J−1(0)).

Then

(a) for any regular value b ∈ C
n of the mapping G, such that J−1(0) ∩ G−1(b) = ∅, holds:

2
∫

J−1(0)

(G − b)∗βMB = 1

2πi

∫

G−1(b)

(
dJ

J
− dJ

J

)
; (2)

(b) the chain c = G(J−1(0)) is a cycle, i.e. ∂c = ∅.

Proof. We use the usual technique from the theory of residues, which involves deleting neigh-
borhoods of singular sets, applying Stokes formula to the remaining manifold and then shrinking
the neighborhoods (e.g. [10,36]).

First of all, we will complete the set J−1(0) to make it G-compatible on bΣ, i.e. union of
G-fibers. For this aim, consider the full G-preimage

N0 = [
G−1(G(

J−1(0)
))] ∩ bΣ.

Define N the compliment of the zeros of J on bΣ in N0:

N = N0 \ (
J−1(0) ∩ bΣ

)
.

By the construction, the union

(
J−1(0) ∩ bΣ

) ∪ N = N0

is G-compatible on bΣ. The set N is either empty, or, by the regularity conditions for G, it is
finite union of smooth manifolds of the dimensions less or equal to 2n − 1.

The first step of the proof of the formula (2) is to construct a family of shrinking neighbor-
hoods, in Σ, of the singular sets J−1(0) and G−1(b).

Define

Aε = {|J | < ε
}
, Bε = {|G − b| < ε

}
.

Additionally, construct a family Nε of ε-neighborhoods of the set N.
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Now remove the constructed neighborhoods from Σ and denote the remainder:

Σε = Σ \ (Aε ∪ Bε ∪ Nε).

Define the orientation on the manifolds ∂Aε , ∂Bε and ∂Nε by the inward, with respect to Σε,

normal vector.
Define on Σε the 2n-form:

Ξ = Φ∗β = 1

2πi

dΘ

Θ
∧ (G − b)∗βMB,

where Φ = (Θ,G − b). The differential form Ξ has no singularities in Σε and is closed there
because the form β is closed.

Therefore the Stokes formula yields:

∫
∂Σε

Ξ =
∫
Σε

dΞ = 0.

The boundary of Σε consists of the four parts equipped by the induced orientations:

∂Σε = ∂Aε ∪ ∂Bε ∪ ∂Nε ∪ (
bΣ \ (Aε ∪ Bε ∪ Nε)

)

and therefore the latter identity reads as

∫
bΣ\(Aε∪Bε∪Nε)

Ξ −
∫

∂Aε

Ξ −
∫

∂Bε

Ξ −
∫

∂Nε

= 0. (3)

The signs minus before the last three integrals appear because the induced orientations on ∂Aε

and ∂Bε, required by Stokes formula, are opposite to the above defined orientations.
Now we take the limit of the integrals, when ε → 0.

First, let us check that the added set N contributes nothing, i.e. the integral over ∂Nε in (3)
disappears when ε → 0 Indeed, since N is not contained in J−1(0) then by real-analyticity
dim(N ∩ J−1(0)) < 2n− 1. On the other hand, the intersection N ∩G−1(b) with the level curve
of G is not more than finite.

The differential form Ξ is the wedge product of the Martinelli–Bochner type form and the
logarithmic derivative type form. The first factor has singularities at zeros of functions J and the
second one-on the curve G = b. We see from the dimensions of these singularities on N that Ξ

is integrable (in a regularized sense) on N and since dimN < 2n, degΞ = 2n, the integral of Ξ

over N is zero. Since the neighborhoods Nε shrink to N, the last integral in the left-hand side
in (3) goes to zero as ε goes to zero.

To understand the limits of other integrals in (3), write the differential form under the integral
(3) as

Ξ = 1
(

dJ − dJ
)

∧ (G − b)∗βMB = Φ∗β − Φ∗β,

2πi J J
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where Φ = (J,G − b),Φ = (J ,G − b) and

β = 1

2πi

dz1

z1
∧ βMB.

The mapping Φ maps J−1(0) to {0}× (G− b)(J−1(0)) and G−1(b) to J (G−1(b))×{0} and
hence change of variables z = Φ(ζ, t) ∈ C

2, i.e. z1 = J , z′ = G − b, in (3) leads, after letting
ε → 0, to

2
∫

J−1(0)

(G − b)∗βMB − 1

2πi

∫

G−1(b)

(
dJ

J
− dJ

J

)
=

∫
bΣ ′

Ξ, (4)

where

bΣ ′ = bΣ \ (
J−1(0) ∪ N ∪ G−1(b)

) = bΣ \ (
N0 ∪ G−1(b)

)
.

Here we have used that the forms (2πi)−1dz1/z1 and βMB are correspondingly the arc and
the surface measures on the unit circle and the unit sphere in the spaces of the variables z1 and z′.
The sign minus before the second integral comes from the orientation consideration. The factor 2
in the left-hand side is due to the relation

dJ

J
= −dJ

J

on |J | = ε.

Formula (2) will be proved if we would show that the right-hand side in (4) is zero. We will
prove this separately for the case when Ω is a domain in C (the case A, (2n, k) = (2,2)) and for
the case when Ω is a hypersurface in C

2 (the case B, (2n, k) = (4,3)).
In the first case, (2n, k) = (2,2) we use Corollary 3.2 from Lemma 3.1. By regularity condi-

tion, the mapping G is a covering of bΣ \ Crit(G) over Ω \ ∂Ω .
The set bΣ ′ is G-compatible because it is obtained by removing from bΣ the full G-

preimages, N0 and G−1(b). It does not contain the critical Crit(G) because this set is removed
along with J−1(0). Hence G is a covering on bΣ ′. By Corollary 3.2 from Lemma 3.1, we have
that

ν = degG|bΣ ′ = 0.

By the condition 2, Θ = σ ◦G away from zeros of J. Then the change of variables G(ζ, t) = z′
in the integral yields:

∫
bΣ ′

Ξ = ν · 1

2πi

∫
G(bΣ ′)

dσ

σ
∧ βMB(z′ − b) = 0,

because ν = 0.



M.L. Agranovsky / Advances in Mathematics 211 (2007) 284–326 307
For (2n, k) = (4,3), the vanishing of the integral on the right-hand side of (3) follows even
more simply. In this case, the mapping G :bΣ �→ Ω is a smooth foliation of 4-dimensional
manifold over a 3-dimensional manifold, with one-dimensional fibers. The differential form

η = dσ

σ
∧ βMB(z′ − b)

has degree 4 and therefore η = 0 on the 3-dimensional manifold Ω. Then the pull back of the
form η to bΣ satisfies Ξ = G∗(η) = 0 and therefore the integral of Ξ over bΣ ′ ⊂ bΣ vanishes.

Now we have completed the proof of the main part, (a) of Lemma 3.3. Notice that the above
proof may be briefly exposed by using the language of currents (see [10]).

It remains to check the assertion (b). To this end, take in (2) the point b belonging to the
unbounded component V of C

n \ G(Σ). Then the right-hand side in (2) equals zero and hence,
after changing of variables z′ = G(ζ, t) in the left-hand side, we obtain

∫
c

βMB(z′ − b) = 0, b ∈ V.

It can be proved by many ways that vanishing of Martinelli–Bochner type integral in a neighbor-
hood of infinity implies that the surface of integration is closed, ∂c = ∅.

Now the proof of Lemma 3.3 is completed. �
Remarks. 1. The proof of Lemma 3.3 may be briefly exposed by using the language and the
technology of currents (see [10]).

2. In the proof of Theorem 2.2 for case of closed manifold M we will use formula (2) in the
situation when G−1(b) = ∅ and therefore the right-hand side in (2) is zero.

3.5. The Jacobi determinants J , the function Θ, and the central cycle C, for the case
(2n, k) = (2,2)

Our immediate goal is to construct a functions J and satisfying the conditions of Lemma 3.3,
and vanishing on the central cycle C = {0}×M. The function we are going to construct will also
carry information about degeneracy of the mapping Q.

Such function turns out to be the Jacobian of the mapping Q = (F,G) in the angular variable
ψ and the local coordinate t on M. The needed properties follow from the functional relation
between F and G on bΣ, while vanishing on the central cycle C = {ζ = 0} in Σ comes from the
vanishing at ζ = 0 of the tangent vector field to the unit circle. This vector field acts on analytic
functions as the complex derivation ∂ψ = iζ ∂ζ .

Let us do the corresponding computations. Choose the basis ∂ψ , ∂t in the tangent space to
bΣ. Here ζ = eiψ and t is the local coordinate on M. If M = [0,1] then take t ∈ [0,1] and if
M = S1 then t can be taken the angular variable on the unit circle, M = S1 = {eit }.

We will use the notation ∇ for the column:

∇ = column[∂ψ, ∂t ].

In this notation, the Jacobi matrix for the mapping G becomes [∇G,∇G].



308 M.L. Agranovsky / Advances in Mathematics 211 (2007) 284–326
Lemma 3.4. Define

J+ = det[∇F,∇G], J− = det[∇G,∇F ].

Thus, J+ is obtained from the Jacobi matrix of G by replacing ∇G by ∇F , while J−—by
replacing ∇G by ∇F.

Then on bΣ the relation holds:

J+ = det[∇G,∇G](∂f ◦ G), J− = det[∇G,∇G](∂f ◦ G). (5)

Here ∂ , ∂ are the derivatives in z and z, respectively.

Proof. We start with the link F = f ◦ G between F and G (condition (ii) of Theorem 2.2) on
the manifold bΣ = ∂Δ × M . Differentiation in local coordinates on bΣ and the chain rule lead
to the linear system:

[∇G,∇G][∂f ◦ G,∂f ◦ G] = ∇F. (6)

Then (5) follows immediately from the Cramer’s rule when solve the linear system (6)
for [∂f ◦ G,∂f ◦ G]. �

In the sequel we will be exploiting only the “minus” minor, J−, as it possesses needed orien-
tation properties. The function J (ζ, t) = J−(ζ, t) is just the Jacobian

J = ∂(F,G)

∂(ψ, t)
= ∂ψF∂tG − ∂ψG∂tF,

where ζ = |ζ |eiψ .

On the manifold S1 × M, the function J also can be understood as the Poisson bracket J =
{F,G}. The function J is defined in the entire Δ × M and can be expressed there in terms of
complex derivatives in ζ :

J (ζ, t) = iζ(∂ζ F∂tG − ∂ζ G∂tF ). (7)

Consider a smooth G-level curve Γ = G−1(b), parametrized by ζ = ζ(t). Differentiating the
identity G(ζ(t), t) = b in t and taking into account that ∂ζ G �= 0 we obtain for the directional
derivative ∂G along the G-level curves:

∂GF = d

dt
F

(
ζ(t), t

) = ∂ζ Fζ ′(t) + ∂tF = −∂ζ F∂tG − ∂ζ G∂tF

∂ζ G

and therefore J is related to the directional derivative by

J = −iζ ∂ζ G∂GF.

Thus, vanishing of J identically in Σ means that F = const on the G-level curves and there-
fore F is a function of G.
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Lemma 3.5. The functions J = J− possesses the properties:

1. J (0, t) = 0 for all t ∈ M.

2. The zero set J−1(0) contains the critical set Crit(G) = {det[∇G,∇G] = 0} ⊂ bΣ.

3. On bΣ, away from zeros of J , the relation holds:

Θ = J

J
= σ ◦ G,

where

σ = −∂f

∂f
.

Proof. The property 1 follows from (7). The property 2 follows from the representation of J in
formula (5). The property 3 also follows from (5) because the Jacobian det[∇G,∇G] obviously
takes purely imaginary values. �

Thus, the function J satisfies all the conditions of Lemma 3.3, except, maybe, the assump-
tion 1 about a nice structure of the zero set J−1(0).

3.6. The functions J in the case (2n, k) = (4,3)

Constructing Jacobi minors. Now we need a version of Lemma 3.5 for the case B, when n = 2
and Ω is a hypersurface in C

2, dimΩ = 2n − 1 = 3. Recall that in this case, the regularity
condition says that rankdG|∂Δ×M = 3.

Consider the complex Jacobi matrix

[∇G1,∇G2,∇F ]

contains 3 columns and 4 rows. The rows correspond to the derivatives with respect to
ψ, t1, t2, t3, where tk are local coordinates on M.

Let us first specify how should we understand the differentiation in local coordinates tk .
Any 3-dimensional compact orientable manifold M is parallelizible (the tangent bundle is

trivial), see e.g. [30]. This means that there exist three linearly independent smooth tangent vector
fields X1,X2,X3 ∈ T (M) on M .

In a neighborhood of any point in M we define parametrization tk via coordinates in the basic
X1,X2,X3 in the tangent plane, so that the vector field Xk corresponds to the differentiation
in tk , Xk = ∂tk , k = 1,2,3.

The degeneracy of the mapping Q = (F,G) would be shown if we prove that all 3×3 minors
J 0, J 1, J 2, J 3 are identically zero, where J 0 is obtained from the above Jacobi matrix by remov-
ing the first row (containing the derivatives with respect to ψ ) and J k , k = 1,2,3, are obtained
by deleting the row (∂tkG1, ∂tkG2, ∂tkF ).

Lemma 3.6. J 1, J 2, J 3 ≡ 0 imply J 0 ≡ 0.
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Proof. Denote

hψ = ∂ψ(G1,G2,F ), hα = ∂tα (G1,G2,F ), α = 1,2,3.

Suppose J 0(ζ0, t0) �= 0. Then J 0(ζ, t) �= 0 for (ζ, t) in a neighborhood of (ζ0, t0) and the vectors
h1, h2, h3 are linearly independent over C for such (ζ, t).

On the other hand, the condition implies that each system consisting of the vector hψ and
any two vectors from the set h1, h2, h3, is C-linearly dependent. Since the last two vectors in the
above triple are linearly independent, we have

hψ ∈ Πα,β = span{hα,hβ}, α,β = 1,2,3, α �= β.

But due to the linear independence of the vectors h1, h2, h3 we have Π1,2 ∩Π1,3 ∩Π2,3 = {0}.
The vector hψ belongs to this intersection and hence

hψ = (∂ψG1, ∂ψG2, ∂ψF ) = (0,0,0).

The derivatives are evaluated at points (ζ, t) in an open set in Σ . However it is impossible as the
functions G1(ζ, t),G2(ζ, t) are nonconstant analytic (in ζ = reψ ) functions. �

Lemma shows that, to prove the degeneracy of the mapping (F,G), it suffices to check van-
ishing the minors J 1, J 2, J 3. The advantage of these minors is that their first row is ∂ψ(G,F )

and therefore vanishes at ζ = 0, the fact which is crucially important to us. The minor J 0 does
not have this property.

Let us fix some of the minors, for instance, J = J 3. This minor corresponds to deleting from
Jacobi matrix the last row with the derivatives with respect to t3:

J =
∣∣∣∣∣∣
∂ψG1 ∂ψG2 ∂ψF

∂t1G1 ∂t1G2 ∂t1F

∂t2G1 ∂t2G2 ∂t2F

∣∣∣∣∣∣ .

Remind that the local parameters on M are chosen so that X1 and X2 are differentiations in the
first two coordinates X1 = ∂t1 ,X2 = ∂t2 .

To the end of this section, in order not to overload notations, we will denote by the symbol
“det” the minors including the rows with the derivatives ∂ψ, ∂t1 , ∂t2 , but not ∂t3 .

Properties of the function J . We have chosen one of the minors J 1, J 2, J 3, namely J = J 3,
but what follows applies for any minor Jα.

Suppose that J = J 3 is not identically zero. We start with checking that J/J is G-compatible
on bΣ away from the zeros of J.

It would be more convenient to perform computations for arbitrary n and then set n = 2. Let
ρ = ρ(z, z) be a smooth real-valued defining function in a neighborhood U of the hypersur-
face Ω :

Ω = {
z ∈ C

n: ρ(z, z) = 0
}
, ∇ρ �= 0.

The function f is assumed to be extended as a smooth function in U.
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Consider the tangential CR-operators on Ω :

∂μ,ν = ∂μρ∂ν − ∂νρ∂μ.

Here ∂μ and ∂ν are derivatives in zμ and zμ correspondingly. The system ∂μ,ν , μ < ν, forms a
basis in the complex tangent ∂-bundle T 0,1(Ω).

We start again with the main relation on the boundary manifold bΣ = ∂Δ × M :

F = f ◦ G

and differentiate it in the local coordinates ψ, t :

n∑
j=1

(∂jf ◦ G)∇Gj +
n∑

j=1

(∂jf ◦ G)∇Gj = ∇F. (8)

The extra relation between the gradients comes from the equation of the hypersurface Ω :

ρ(G1, . . . ,Gn,G1, . . . ,Gn) = 0.

Differentiating yields:

n∑
j=1

(∂jρ ◦ G)∇Gj +
n∑

j=1

(∂jρ ◦ G)∇Gj = 0. (9)

Fix μ such that ∂μρ �= 0 in a neighborhood of a point in Ω. Express ∇Gμ from (9) and substitute
in (8). After grouping terms we obtain:

n∑
j=1

[
(∂μ,j f ) ◦ G

]∇Gj +
∑
j �=μ

[
(∂μ,j f ◦ G)

]∇Gj = ∂μρ∇F,

where ∂μ,j = ∂μρ∂j − ∂jρ∂μ.

The columns (gradients) are vectors with 2n components. Solve by the Cramer’s rule the
resulting 2n × (2n − 1) system for the 2n − 1 unknowns (∂μ,νf ) ◦ G, ν �= μ:

[∂μ,νf ◦ G]det
[∇G,∇G[μ]] = ∂μρ det

[∇G1 · · ·∇Gn,∇G1 · · · [μ] · · ·∇F · · ·∇Gn

]
, (10)

where ∇F is inserted in the place of the νth column ∇Gν and [μ] means that the μth column is
skipped.

Let us remind that we agreed to denote by the symbol “det” the minor obtained by deleting
the 4th row corresponding to t3. Denote Jμ,ν the determinant in the right-hand side of (10):

Jμ,ν = det
[∇G;∇G1 · · · [μ] · · ·∇F · · ·∇Gn

]
.

Then on bΣ formula (10) implies:

Jμ,ν = Kμ(∂μ,νf ◦ G),
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where

Kμ = (1/∂μρ)det
[∇G,∇G[μ]].

The function Jμ,ν vanishes on the central cycle C = {0} × M because the first line of the de-
terminant is formed by the derivatives ∂ψF , ∂ψGj , ∂ψGj , and all these derivatives vanish at
ζ = 0.

Now suppose that some function J = Jμ,ν is not identically zero function and check the
properties 1, 2 of Lemma 3.5.

First of all, Jμ,ν(0, t) = 0 because the first line of the determinants consists of the derivatives
in ψ which vanish at ζ = 0, as ∂ψ = iζ ∂ζ on holomorphic functions.

To prove that the “phase” part J/J takes the same values at points on bΣ from the same
G-fibers, we will check that the function Kμ takes only real values. To this end, let us write,
taking into account that ∂μρ = ∂μρ and ∇G = ∇G:

Kμ = (1/∂μρ)det
[∇G,∇G[μ]].

Now express the column ∇Gμ from the relation (9) and substitute to the above determinant. The
determinants with equal columns vanish and we obtain:

Kμ = (1/∂μρ)det
[∇G1 · · · (−∂μρ/∂μρ)∇Gk · · ·∇Gn;∇G[μ]].

Cancel ∂μρ and rearrange the determinant by permutations of the columns:

Kμ = (1/∂μρ)(−1)n−1 det
[∇G[μ];∇G

] = (1/∂μρ)(−1)q det
[∇G,∇G[μ]] = (−1)qKμ,

q = (n − 1)(n + 2)/2.

We are interested in the case n = 2 and therefore q = 2. Then Kμ = Kμ and therefore Kμ is
real-valued function.

For n = 2, the CR-dimension of Ω equals 1 and the basic tangential ∂-operator is,

∂b = ∂1,2 = ∂1ρ∂2 − ∂2ρ∂1.

The functions Jμ,ν, corresponding to the indices (μ, ν) = (1,2) and (μ, ν) = (2,1), coincide
and are equal to

J1,2 = J2,1 = J = det[∇G1,∇G2;∇F ].

As in the previous section, we define

Θ = J

J
.

We have

J =
{

K1(∂1,2f ◦ G), ∂1ρ �= 0,
(11)
K2(∂2,1f ◦ G), ∂2ρ �= 0,
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on bΣ. We have shown that the functions K1 and K2 are real, hence on the manifold bΣ holds

Θ = σ ◦ G,

where

σ = −∂1,2f

∂1,2f
= −∂2,1f

∂2,1f
.

We have used here that ∂1,2f = −∂2,1f. Let us note also that the function J (ζ, t) = J1,2(ζ, t) is
analytic in ζ, as well as the function J constructed in the previous section.

The representation (11) and definitions of the functions K1 and K2 imply that the set J−1(0)∩
bΣ contains the critical set Crit(G) of G on bΣ.

Thus, the constructed function J has all the properties from Lemma 3.5. Therefore Lemma 3.3
applies to the function J, after checking the structure of the set J−1(0) (condition 1 in
Lemma 3.3).

3.7. The structure of the set J−1(0) and the regularization of the integrals

In the previous we have constructed the Jacobians J for both cases n = 1 and n = 2 and shown
that in each case the function J satisfies Lemma 3.3. However Lemma 3.3 assumes that the zero
set J−1(0) is a (2n − 1)-chain for integrals of corresponding differential forms over J−1(0) be
defined.

Thus, to apply the symmetry relation proved in Lemma 3.3 we have to understand the structure
of the zero set of the functions J (ζ, t). This is essentially the only point where we use the
assumption about real-analyticity of the mapping G and of the function f (and therefore of
its analytic extension, F ).

In this case the Jacobian J (ζ, t) is real-analytic in Δ×M, holomorphic in ζ in the unit disc Δ,
and the structure of the zero set J−1(0) is well understood.

Namely, for each value of the parameter t the function J (ζ, t) has finite number of zeros
ζ = ζj (t), unless J (·, t) ≡ 0. The zeros constitute a collection of points in the disc Δt = Δ × M

each of which changes continuously till it reaches the boundary circle |ζ | = 1.

If for some t0 the zeros are not isolated then J (ζ, t0) = 0 identically. In this case we will call
the disc Δt0 zero-disc. Nevertheless, by real-analyticity, the zero discs are isolated.

Thus, the zero set J−1(0) consists of finite number of smooth (2n − 1)-manifolds Cj =
{(ζ(t), t): t ∈ M}, ∂Cj ⊂ bΣ, union with a collection (maybe empty) of zero discs:

J−1(0) =
(⋃

j

Cj

)
∪ Z(T ),

where

Z(T ) =
⋃
t∈T

Δt = Δ × T .

For t /∈ T the section J−1(0) ∩ {t = t0} = {ζ1(t), . . . , ζj (t)} is finite and the function J (·, t)
has a constant multiplicity κj at its zero ζj (t).
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The set T , parametrizing the zero discs, can be defined as

T =
∞⋂

s=1

{
t ∈ M: ∂s

ζ J (0, t) = 0
}

and is an analytic set. We want to prove that the integral over the part Z(T ) of the critical set
J−1(0) contributes nothing in the integral over J−1(0) in formula (2).

Removing the zero discs in the case A, (2n, k) = (2,2). Consider the case n = 1. Then M is a
curve, the parameter t is one-dimensional, and since J (ζ, t) is a real-analytic nonzero function,
it can vanish on at most finite number of discs, that is #T < ∞. Let T = {t1, . . . , tN }, where by
ti we understand (real) coordinates of the corresponding points in T . By real-analyticity, J can
be represented as

J (ζ, t) = q(t)J0(ζ, t).

Here q(t) = (t − t1)
k1 · · · (t − tN )kN and the function J0(ζ, t) possesses all the properties of the

function J except that the zero set J−1
0 (0) contains no disc Δt .

Since the parameters t1, . . . , tN are real, we have

Θ = J

J
= J0

J 0
,

where J0 has on each disc Δt only finite number of zeros of finite order. Then J0 satisfies the
conditions of Lemma 3.3 and formula (2) holds for J0. Thus, in the presence of zero disc we
compute integrals in formula (2) for the “regular” part, J0 of J.

Removing the zero discs in the case B, (2n, k) = (4,3). In this case dimM = 3 and the dimen-
sion of the analytic subset T ⊂ Ω can be 0, 1 or 2. By the (real) dimension we understand the
maximal dimensions of Whitney strata (see [27]).

If dimT = 0 then dimZ(T ) = 2. Since in (2) we integrate 3-form, the cycle G(Z(T )) is
negligible.

Suppose dimT = 1. Then Z(T ) contains 3-chains of the form c = Δ × γ, where dimγ = 1.

This chains might contribute in (2).
However, the condition H1(M) = 0 in Theorem 2.2 implies that γ is homological (relatively

homological) to zero in M.

Then the cycle G(c) is homological to zero in the image G(Σ) and since the Martinelli–
Bochner form is closed, the integral over the cycle G(c) in (2) is zero.

Finally, if dimT = 2 and γ ⊂ T is a stratum of the pure dimension 2, then locally, in a
neighborhood of a point t0 ∈ M, we have

γ = {
q(t) = 0

}
,

where q(t) is real-valued. Then, as in the case n = 1, locally

J (ζ, t) = q(t)J0(ζ, t)

where J0(ζ, t) has only isolated zeros on discs Δt .
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Since J/J = J0/J 0, then we conclude that the set c = Δ × γ is removable, by the same
argument as for n = 1.

4. End of the proof of Theorem 2.2 for the case ∂M = ∅

Everywhere in this section n = 1 or n = 2.

Our strategy is as follows. We assume that the mapping Q is nondegenerate. Then the Jacobi
minors J constructed in Sections 3.5 and 3.6 are not identically zero. Using the symmetry relation
in Lemma 3.3, for the case when the curve G−1(b) is just empty, we obtain that the integral of the
differential form (G − b)∗βMB over the set J−1(0) is zero. On the other hand, this set contains
the nontrivial cycle C which is mapped by G to a nontrivial cycle in the image. Hence the integral
can be made nonzero by appropriate choice of the point b and we obtain contradiction with the
assumption that Q is nondegenerate.

Let us start realizing this program. Let J be the function constructed in Sections 3.5 and 3.6
and assume that J �= 0. Now we want to apply Lemma 3.3 to the function J.

All the conditions of Lemma 3.3 are fulfilled. Removing the zero discs according to the reg-
ularizations procedure in Section 3.7, we represent the (2n − 1)-chain J−1(0) as the union of
connected smooth manifolds with multiplicities:

J−1(0) =
⋃
j

κjCj .

One of these manifolds is just the cycle C′ = Cj0 . The multiplicities κj are the winding numbers
(indices) of the function J at its zeros with respect to ζ (see Section 3.7).

Let b ∈ C
n is such that J−1(0) ∩ G−1(b) = ∅. Apply Lemma 3.3:

2
∫

J−1(0)

(G − b)∗βMB = 1

2πi

∫

G−1(b)

(
dJ

J
− dJ

J

)
.

After change of variables (z1, z
′) = (J (ζ, t),G(ζ, t)) in the first integral, the latter identity

transforms to

2
∑
j

κj

∫
G(Cj )

βMB(z′ − b) = 1

2πi

∫

G−1(b)

(
dJ

J
− dJ

J

)
. (12)

Lemma 4.1. In the case (2n, k) = (2,2) and (2n, k) = (4,3), the numbers κj are positive.

Proof. Each chain Cj ⊂ J−1(0) is defined, near generic points, by the equation ζ = ζj (t),
t ∈ M.

In Sections 3.5 and 3.6 we have constructed the functions J = J−(ζ, t) and J = J1,2, for the
cases (2,2) and (4,3) correspondingly. In both cases these functions are analytic in ζ, for the
determinants defining J do not contain antiholomorphic columns.

Hence the winding numbers κj = κj (t) of the mapping ζ �→ J (ζ, t) on a small circle |ζ −
ζ(t)| = ε, at an isolated zeros ζ = ζj (t), are positive integers, equal to the multiplicities of the
zero of the holomorphic function J . If ζj (t) consists of the boundary zeros, |ζj (t)| = 1 then κj
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must be taken 1/2 of the multiplicity of the zero ζj (t) because the integration in (11) is performed
within the unit disc. �
Remark 4.2. Lemma 4.1 is the only point where we use the restriction n � 2 for the dimension.
This restriction means that in both cases, A and B, of Theorem 2.2, the CR-dimension of the
manifold Ω is one. In this case, the Jacobians J in Sections 3.5 and 3.6 are sense-preserving
mappings and the winding numbers κj are positive, which is an important point in the proof.

Now we can finish the proof. We know that J vanishes on a homologically nontrivial cycle C

in Σ :

C ⊂ J−1(0),

so that C is one of the cycles Cj constituting the chain J−1(0).

Let b /∈ G(Σ). Apply the identity (12) to that value b. Since b in not in the image of G then
G−1(b) = ∅ and hence the integral over the curve G−1(b) is zero:

∫

G−1(b)

(
dJ

J
− dJ

J

)
= 0. (13)

On the other hand, according to Lemma 3.6, the image cycles G(Cj ) are all co-oriented and the
multiplicities κj are all positive, κj > 0.

Moreover, by condition (iii) of Theorem 2.2, the cycle c = G(C) is not homological to zero in
G(Σ). However it is homological to zero in R

2n and therefore c = ∂c′ for some 2n-dimensional
cycle c′ in R

2n. This cycle does not belong entirely to G(Σ) and therefore the point b ∈ C
n \

G(Σ) can be chosen so that c �= 0 in H2n−1(R
2n \ {b}).

We have the isomorphisms of the homology groups with coefficients in R:

H2n−1(Σ) ∼= H2n−1(M) ∼= R ∼= H2n−1
(
R2n \ {b}).

Martinelli–Bochner form βMB(z′ −b) is a closed nonexact form in R
2n \ {b}, representing the

generator in de Rham cohomology group H 2n−1(R2n \ {b},R) ∼= R. By the duality, the integral∫
G(Cj )

βMB(z′ − b) = mj ,

where

mj = {
G(Cj )

} ∈ H2n−1
(
R

2n \ {b})

is the homology class of the cycle G(Cj ). Since the cycles G(Cj ) all are co-oriented, we have
mj � 0 and mj = 0 if and only if the cycle G(Cj ) is homological to zero in R

2n \ {b}.
The cycle C is one of the Cj ’s, i.e. C = Cj0 . Then mj0 > 0 because, as we saw, c = G(C) is

a homologically nontrivial cycle in R
2n \ {b} and hence the total sum

∑
j

κj

∫
(G−b)(Cj )

βMB � κj0mj0 > 0.

Together with (13) this inequality contradicts to (12).
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We have assumed that J �= 0 and arrived to contradiction.Therefore J ≡ 0. Now are ready to
obtain the final conclusion of Theorem 2.2.

The final step. Proof that Q is degenerate, F is constant of G-fibers and f is a CR function.

The contradiction we just have obtained says that the minor J (the case A, n = 1) or the
minors J 0, J 1, J 2, J 3 (the case B, n = 2) of the Jacobi matrix J (F,G) with respect to variables
ψ, t vanish identically in our main manifold Σ . Observe that since the functions F,G are analytic
in ζ , the minors built from the derivatives in ζ vanish as well.

In the case n = 1, when the parameter t is one-dimensional, we obtain that rankC J (F,G) < 2
and Q is degenerate in accordance with the claim of Theorem 2.2.

Moreover, J = 0 implies that F = f̂ ◦G in Σ for some function f̂ . Indeed, we have shown in
Section 3.5 that the Jacobian J is proportional to the directional derivative of F along the level
curves G = const and hence J = 0 means that F = const on G-fibers.

Also the relation between J and the ∂-derivatives of the function f proved in Section 3.5
implies

∂f ◦ G = 0

on bΣ which means that f is holomorphic in Ω = G(bΣ).

Now turn to the case n = 2. Again, vanishing the minors J k , k = 0, . . . ,3, implies that
rankC J (F,G1,G2) < 3 and hence Q is degenerate. Moreover, since due to the regularity
condition, ∇G1,∇G2 are linearly independent over C at any point in Σ , we have ∇F ∈
span{∇G1,∇G2}. If ζ = ζ(s), tk = tk(s), k = 1,2,3; s is one-dimensional parameter, is a level
curve Γ = G−1(b), then the directional derivative along the level curve is

∂GF = ζ ′(s)∂ζF + t ′1(s)∂t1F + t ′2(s)∂t2F + t ′3(s)∂t3F.

Since ∂GG1 = ∂GG2 = 0, we conclude from the above linear dependence of the gradients:

∂GF = 0

and therefore F = const on any G-fiber.
Finally, the identity (11) implies that for tangential ∂-derivative holds

∂bf ◦ G = 0

on bΣ , and this means that f is a CR-function on Ω.

5. End of the proof of Theorem 2.2 for the case ∂M �= ∅

The proof for the case of nonclosed parameterizing manifold M follows the same line as in
the case of M with the empty boundary.

Again, we assume that the Jacobian J in the case n = 1 or one of the three minors J 1, J 2, J 3

in the case n = 2 is not identical zero. In all cases, we denote this determinant by J . Our goal
is to arrive to a contradiction which would allow to conclude that all the above minors vanish
identically. Then all the conclusions of Theorem 2.2 follow by the same arguments as in the
previous section.
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The main difference with the case of the previous section, where the parametrizing manifold
M was closed, is that now we have to deal with the relative homology groups.

Our basic manifold now is also a bit different. Namely, we set

Y = G(Σ) \ G(Σ0), Σ0 = Δ × ∂M

and define

Σ ′ = G−1(Y ).

Thus, we take only that part of Δ × M which is the full G-preimage of its image. Note, that
by the condition the set Y is nonempty and connected. The topological boundary of Σ ′ is

∂Σ ′ = (
∂Σ ∩ G−1(Y )

) ∪ G−1(∂Y ).

Taking into account that, in turn, ∂Σ = (∂Δ × M) ∪ (Δ × ∂M) = bΣ ∪ Σ0 and that G−1(Y ) ∩
Σ0 = ∅, we obtain that the boundary of the new manifold is

∂Σ ′ = (
G−1(Y ) ∩ bΣ

) ∪ (
G−1(∂Y ) ∩ Σ0

)
.

Thus, we assume that the mapping Q = (F,G) is not degenerate and, as we have mentioned
already, construct the Jacobian minor J and the function Θ = J/J , as in Sections 3.5 and 3.6.
Our main assumption about Q is that the function J is not identically zero.

Assume initially that the zero set J−1(0) does not contain entire discs Δt . Proceed as in the
case ∂M = ∅ (Lemma 3.3). Namely, we delete from Σ small neighborhoods of the zero sets
and apply Stokes formula to the remainder. Again, we show as in Lemma 3.3, that the surface
integral contributes nothing, because of degeneracy of the mapping (J,G) on ∂Σ ′. However,
an extra surface term appear, corresponding to the extra part of the boundary. As the result, we
obtain:

2
∫

J−1(0)

(G − b)∗βMB = 1

2πi

∫

G−1(b)

(
dJ

J
− dJ

J

)
− 1

2πi

∫

G−1(E)

(
dJ

J
− dJ

J

)
∧ (G − b)∗βMB,

(14)

where

E = ∂Y ∩ G(Σ0)

and correspondingly G−1(E) is the 2n-dimensional extra part of the boundary of Σ ′, coming
from ∂M.

Note that the set J−1(0) is not necessary closed cycles any longer, but it is a cycle relatively
to G(Σ0). Then we will use duality arguments based on counting of intersection indices, in place
of computing periods by integration of Martinelli–Bochner type integrals as in the case ∂M = ∅.

Write (14) as

χ(b) = Z(b) + N(b),
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where χ(b) stands for the left-hand side in (14) and

Z(b) = 1

2πi

∫

G−1(b)

(
dJ

J
− dJ

J

)
, N(b) = − 1

2πi

∫

G−1(E)

(
dJ

J
− dJ

J

)
∧ (G − b)∗βMB.

By change of variables,

χ(b) = 1

πi

∑
j

κj

∫
G(Cj )

βMB(z′ − b),

where Cj are connected components of the (2n − 1)-chain J−1(0) (as in the case ∂M = ∅),
and κj are their multiplicities with respect to J. According to Lemma 4.1 the numbers κj are
positive.

Lemma 5.1. The function Z(b) is integer valued as long as J−1(0) ∩ G−1(b) = ∅.

Proof. By the construction in Lemma 3.5 (property 2), the function Θ = J/J is G-compatible
on bΣ = ∂Δ × M , i.e. it takes same values at the end points of the curves G−1(b). Then the
integral of the logarithmic derivative equals to the variation of the argument of Θ along the curve
G−1(b) and is integer:

Z(b) = 1

2πi

∫

G−1(b)

dΘ

Θ
= (1/2π)VarG−1(b) argΘ ∈ Z. �

Lemma 5.2. The function N(b) is continuous in the domain Y .

Proof. By the construction the sets G−1(Y ) and G−1(E) are disjoint. Therefore when b ∈ Y then
the differential form (G − b)∗βMB has no singularities on the surface of integration, G−1(E).
The 1-form dJ/J − dJ/J has removable singularities at isolated zeros of J on the 2n-surface
G−1(E) and does not depend on b. It follows that the integral defining the function N(b) depends
continuously on b ∈ Y. �

Let J−1(0) = ⋃
j Cj be the decomposition into connected chains. We know that the set

J−1(0) contains the central cycle Cj0 = C = {0} × M, for which the condition (iii) yields that
the homology class [G(C)] ∈ H2n−1(G(Σ),G(Σ0)) is not 0.

The portion of G(Σ0) in Y is just the set E and the homological nontriviality of G(C) means
that ∂G(C) ⊂ E and G(C) cannot be made the boundary of a 2n-cycle in Y ∪ E by adding a
(2n − 1)-chain contained in G(Σ0). In other words, the (2n − 1)-chain G(C) has its boundary
in the set E, but is not homologous to any (2n − 1)-chain in E. The chain G(C) intersects each
domain Dt = G(Δt), t ∈ M.

Lemma 5.3. There exists a connected continuous curve, L ⊂ C
n \G(Σ0), with end points p,q ∈

C
n \ G(Σ) intersecting the (2n − 1)-chain G(C) with the intersection index m �= 0.
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Proof. Denote for brevity X = G(Σ), A = G(Σ0). The chain G(C) represents a nonzero ele-
ment

0 �= [
G(C)

] ∈ H2n−1(X,A).

By Poincare–Lefshetz duality (see e.g. [34, Chapter 6]), there exists an element

0 �= [L] ∈ H1
(
C

n \ A,C
n \ X

)

with nonzero intersection index,

ind
(
L ∩ G(C)

) �= 0.

The 1-chain L has the required properties. �
The final step. Proof that J ≡ 0.

The constructed 1-chain L enters and leaves the set Y, avoiding the set E ⊂ G(Σ) and cross-
ing the chain G(C) with a nonzero intersection index. Reversing, if needed, orientation of the
path L ⊂ Y we can assume that the intersection index m = mj0 > 0 .

By Sokhotsky–Plemelj theorem for the Martinelli–Bochner type integrals (see e.g. [29]), each
time b ∈ L intersects transversally some chain G(Cj ), the integral χ(b) changes for +1 or −1,
depending on the index of the intersection. If mj is the total variation of χ(b), resulted from the
crossing the cycle G(Cj ), then numbers mj are of the same sign since all the cycles G(Cj ) are
co-oriented.

Thus, the algebraic number of jumps the function χ(b), b ∈ L, makes, after passing
through Y, is at least κj0mj0 :

# jumpsb∈L χ(b) � κj0mj0 > 0.

But χ(b) = N(b)+Z(b), b ∈ Y , and the function N(b) changes continuously. On the other hand,
by Lemma 5.1, the function Z(b) is integer valued. Therefore Z(b) changes only when b crosses
the set J−1(0) which results in a jump of value of χ(b). Thus, the total algebraic number of
jumps of χ(b) and Z(b) are equal and hence:

# jumpsb∈L Z(b) = # jumpsb∈L χ(b) � κj0mj0 > 0.

However, G−1(b) = ∅ when b /∈ Y . Therefore the function Z(b) takes the value 0 before the
argument b enters the set Y and after it has left Y . In other words, if b0, b1 /∈ Y are the starting
and end points of the path L then Z(b0) = Z(b1) = 0 and therefore

Varb∈L Z(b) = 0.

This contradiction says that J = 0.

It remains to explain how to get rid of the zero discs. For the case (2n, k) = (2,2) the argument
from Section 3.7 works as it does not depend on whether M is closed or not.

Let (2n, k) = (4,3) and let T and Z(T ) are sets defined in Section 3.7. When dimT = 0 and
dimT = 2, the zero discs are removable for the same reasons as in Section 3.7. When dimT = 1
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and Z(T ) contains 3-chain of the form c = Δ × γ, then by the condition H1(M,∂M) = 0 the
relative 1-cycle γ is relatively homologically zero. This implies that the total intersection index
of the 1-chain L with the relative 3-cycle G(c) is zero and therefore the cycle G(c) contributes
nothing in the result of our computation.

The proof of Theorem 2.2 is completed.

6. Proof of Theorem 4

We restrict ourselves by the proof for the case ∂M = ∅, i.e. M = S1. Let Q(ζ, t) =
(F (ζ, t),G(ζ, t)), (ζ, t) ∈ Σ = Δ×S1, be a parametrization of the family Dt in the formulation
of Theorem 4. We have Q(bΣ) = Λ because the curves ∂Dt , t ∈ S1, cover Λ. By regularity, the
mapping

Q :bΣ �→ Λ

is finitely sheeted covering by the torus bΣ = T 2 of Λ \ ∂Λ. The image Q(Σ) is the union of
the discs Dt and its dimension is at most 3.

We want to prove that the mapping Q = (F,G) is degenerate in Σ, and correspondingly,
Q(Σ) is 2-dimensional and entirely contained in Λ.

We do so by slight modification of the arguments in the proof of Theorem 2.2. First of all we
need to prove the symmetry relation analogous to (2).

To this end we will check first that, as in Lemma 3.5, the Jacobian

J = det[∇F,∇G] = ∂(F,G)

∂(ψ, t)
,

with respect to local coordinates ψ, t on bΣ has constant “phase” on the Q-fibers Q−1(b)∩ bΣ ,
b ∈ C

2. More precisely, we want to prove that J/J is constant on the above fibers, outside of the
zeros of J .

Lemma 6.1. Let u1, u2 ∈ bΣ belong to the same Q-fiber: Q(u1) = Q(u2). If J (u1) �= 0 then
J (u2) �= 0 and

J (u1)

J (u1)
= J (u2)

J (u2)
.

Therefore on bΣ \ J−1(0) holds

J

J
= σ ◦ Q,

for some function σ.

Proof. Each pair of vectors in C
2

{
∂ψQ(uj ), ∂tQ(uj )

}
, j = 1,2,

belongs to the tangent space T Λb at the point b = Q(u1) = Q(u2). Since the Jacobian J does
not vanish at the points u1, u2, each pair constitutes a basis in the 2-dimensional real space T Λb.
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Let A be the (real) transition matrix from one basis to another. The Jacobians are related by

∂(F,G)

∂(ψ, t)
(u1) = detA · ∂(F,G)

∂(ψ, t)
(u2),

that is J (u1) = detA ·J (u2) and lemma follows as detA is real and nonzero and hence it cancels
when one divides J by J . �

Now we need an analog of Lemma 3.1.

Lemma 6.2. The Brouwer degree of the mapping Q :T 2 = bΣ �→ Λ ⊂ C
2 equals zero.

Proof. Lemma 6.2 follows from the condition ∂Λ �= ∅ and from the fact that any smooth map-
ping of a compact closed manifold to a compact manifold with nonempty boundary has the
Brower degree 0. Indeed, the image Q(T 2) can be slightly homotopically contracted inside Λ so
that some points in Λ would have empty preimage with respect to a mapping Q′, homotopically
equivalent to Q. Therefore, by local definition of the degree, degQ = degQ′ = 0. �

Now assume that J is not identically zero and correspondingly J−1(0) is a 1-chain (we re-
move the zero discs exactly as we did in Section 3.7). We need the analog of Lemma 3.3 in the
form

Lemma 6.3. Let ω be a closed differential 1-form in a neighborhood of Q(Σ). Then

∫

J−1(0)

Q∗ω = 0. (15)

Proof. We follow the proof of Lemma 3.3. Define

Θ = J

J
.

The form

Ξ = dΘ

Θ
∧ Q∗ω

is closed in Σ \ J−1(0). The differential form

dΘ

Θ
= dJ

J
− dJ

J

computes the current dΘ/Θ = 2[J−1(0)]. Lemmas 6.1 and 6.2 imply that Ξ integrates to
zero on bΣ \ J−1(0) and then Stokes formula leads to identity (15), in the same way as in
Lemma 3.3. �

Now we can complete the proof of Theorem 4. Since J (0, t) = 0, the zero set J−1(0) contains
the central cycle C = {0}× S1. The image Q(C) meets each analytic disc Q(Δ× S1) and by the



M.L. Agranovsky / Advances in Mathematics 211 (2007) 284–326 323
condition of homological nontriviality the cycle Q(C) ⊂ Q(Σ) is not homologous to zero. By
de Rham duality, there exists a closed differential 1-form ω on Q(Σ) such that

∫
Q(C)

ω �= 0. (16)

The final argument is as in Section 4. Namely, the mapping J is holomorphic in ζ and hence all
cycles G(Cj ), where J−1(0) = ⋃

Cj , are co-oriented. Hence the integrals of ω over Q(Cj ) are
of the same sign and since the cycle C is one of Cj ’s, (15) implies

∫
Q(C)

ω = 0.

This contradicts to (16). Therefore

iζ
∂(F,G)

∂(ζ, t)
= ∂(F,G)

∂(ψ, t)
= 0

identically.
The vectors

∂ψ(F,G)(u), ∂t (F,G)(u), u ∈ bΣ,

span the tangent space T Λb , b = Q(u) = (F (u),G(u)). We have shown that the Jacobian of Q =
(F,G) vanishes identically and hence the above two vectors are linearly dependent over C.

Therefore the real 2-dimensional tangent space T Λb at each point b ∈ Λ is a complex line in C
2.

This proves that Λ is a 1-dimensional complex manifold. By the uniqueness theorem for analytic
functions, the attached analytic discs entirely belong to the manifold: Dt ⊂ Λ, t ∈ S1. Theorem 4
is proved.

7. Concluding remarks

Comments on the proof

The proof of Theorem 2.2 for the case ∂M �= ∅ given in Section 5 is also valid for the case
∂M = ∅. As a matter of fact, for the case of closed manifold M both proofs coincide as one
can count the number of nontrivial (2n− 1)-cycles either by computing logarithmic residue type
integrals, as in Section 4, or by counting of intersection indices in transversal direction, as in
Section 5.

Some ingredients of the proof in Section 5 are close to the argument, presented in a different
form and for the case of circles in the plane, in Tumanov’s article [40].

Let us comment on this. In [40] (as well as in [3,39]) the Schwarz function of the circles (the
meromorphic extension of z from the circle in the corresponding disc) is a key tool. Globevnik
observed in [24] that the construction in [40], works also for families parameterized by mapping
of the form G(ζ, t) = g(ζ ) + it , t ∈ R, where g is a conformal mapping of the unit disc, having
the symmetry g(ζ ) = g(ζ ). This allowed him to obtain the corresponding test of analyticity for
a special families of non-circular curves.
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In fact, the Schwarz function in the above articles plays the role similar to that of Jacobian J

in our approach. To explain this, observe that the Schwarz function of the circle coincides with z

on the circle |z−a| = r and therefore is G-compatible for the parameterizing mapping G(ζ, t) =
a(t) + r(t)ζ . This function develops a simple pole at the center of the circle which can be turned
to zero by taking the reciprocal function. It results in the function satisfying the two conditions:
it is G-compatible on bΣ and vanishes on the central cycle C. Existence and construction of
nontrivial functions with these two properties is just the key ingredient in our proof.

Nevertheless, the only domains, for which the Schwarz function has a simple pole, are discs. In
fact, there is a larger class of domains with meromorphic Schwarz functions, so called quadrature
domains (see e.g. [33]), but this class is pretty restrictive, too, as even simple domains, like
ellipses, do not belong to it. So, the approach based on the Schwartz functions does not seem to
work for general domains and rather works for discs or some other quite special families.

The key point in our proof is that the needed properties (G-compatibility and vanishing on a
nontrivial cycle in Σ ) are provided by the Jacobian determinants J , which encode the holomor-
phy or being CR of f. The Jacobi determinants are intrinsically produced both by the family of
curves (i.e. by the parametrizing function G) and by the analytic extensions F of the original
function f . This circumstance allows to deal with arbitrary functions G and makes the proof
work for general Jordan curves.

Smoothness assumptions

Our construction involves derivatives and therefore requires at least smoothness both of the
family of the analytic discs and, which is perhaps even worse, of the function f.

Moreover, we use integration of differential forms over the zero sets J−1(0) and assume even
stronger condition of real-analyticity to provide nice structure of the zero sets and the integrals
being defined.

In this article we have focused on the very constructions and therefore assume all objects
under consideration maximally smooth. However, the technology of currents allows integration
of differential forms over “bad” sets and hence, as it was noticed in the beginning of the article,
may allow to extend our approach for differentiable, say C∞, functions f .

Another possible way of relaxing smoothness assumptions might be the following. Observe
that the function f in Theorem 1 (the strip-problem) appeared, after Theorem 1 is proved, real
analytic in Ω because it is holomorphic there. Therefore one could try to derive real-analyticity
of f from the original conditions, under the initial minimal assumption of continuity of f .

It seems plausible that it might be done by using argument from [39] based on the edge of
the wedge theorem. This argument might lead to real analyticity of f in a narrow open curved
strip in Ω which would be enough to conclude that all the zero discs in J−1(0) are isolated.
The latter is important for integrals of differential forms in our proofs to be defined. It should
be mentioned, either, that the discussed method may work only for the strip-problem, since in
higher dimensions (for instance, in Globevnik–Stout conjecture) one cannot expect a posteriori
real analyticity of f . We plan to return to the problem of relaxing the smoothness assumptions
elsewhere.

The case n > 2

The restriction n � 2 for the dimension is used only at one, albeit crucial, point, namely for
checking that the multiplicities κj are of the same sign. This is provided by analyticity of the
Jacobians J in ζ, which is true just in the cases n = 1, dimR Ω = 2, and n = 2,dimR Ω = 3.
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Nevertheless, the method developed in this article can be applied, mutatis mutandis, in higher
dimensions by considering minors of less dimensions. Then the proof works for families of
attached analytic discs satisfying certain conditions for less dimensional subfamilies. We are
going to return to the higher-dimensional case elsewhere.

The main results of this article were announced in the short note [2].
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