Note
Lipschitz Constants for the Bernstein Polynomials of a Lipschitz Continuous Function
B. M. Brown, D. Elliott, and D. F. Paget
Department of Mathematics, University of Tasmania, Box 252C, G.P.O., Hobart, Tasmania, Australia 7001
Communicated by Frank Deutsch
Received April 1, 1985
\section*{1. Introduction and Principal Result}

Suppose a function f is continuous on [0,1]. The nth ($n \geqslant 1$) Bernstein polynomial of f is denoted and defined by

$$
\begin{equation*}
B_{n}(f ; x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k} . \tag{1.1}
\end{equation*}
$$

Obviously, $B_{n}(f)$ is a polynomial of degree $\leqslant n$ and its importance in approximation theory arises from the fact that $\lim _{n \rightarrow x} B_{n}(f ; x)=f(x)$ uniformly on $[0,1]$. For elementary properties of these polynomials see Davis [2, Chap. 6] and, for a more extensive treatment, Lorentz [3]. Onc of the outstanding properties of these polynomials is that they mimic the behaviour of the given function f to a remarkable degree. Thus if, in addition to being continuous on $[0,1], f$ is convex, then $B_{n}(f)$ is also convex. Furthermore (see [2, Sect. 6.3]), for $n=2,3,4, \ldots$ and for all $x \in[0,1]$,

$$
\begin{equation*}
B_{n} \cdot(f ; x) \geqslant B_{n}(f ; x) \geqslant f(x) . \tag{1.2}
\end{equation*}
$$

As a consequence of this result we have, since the function $-x^{\mu}, 0<\mu \leqslant 1$, is convex on $[0,1]$, that for $n=1,2,3, \ldots$,

$$
\begin{equation*}
B_{n}\left(x^{\mu} ; h\right) \leqslant h^{\mu}, \quad 0 \leqslant h \leqslant 1 . \tag{1.3}
\end{equation*}
$$

In this note we shall assume only that the given function f is Lipschitz
continuous of order $\mu, 0<\mu \leqslant 1$, on [0,1$]$. That is, there exists a constant $A \geqslant 0$ such that for every pair of points $x_{1}, x_{2} \in[0,1]$, we have

$$
\begin{equation*}
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqslant A\left|x_{1}-x_{2}\right|^{\mu} . \tag{1.4}
\end{equation*}
$$

The constant A, which depends upon f and μ, is known as the Lipschitz constant of f, and for f satisfying (1.4), we write $f \in \operatorname{Lip}_{A} \mu$. Obviously, if f is differentiable on $[0,1]$, then f satisfies inequality (1.4) for all $\mu \in(0,1]$. The principal result is the following theorem.

Theorem 1. If $f \in \operatorname{Lip}_{A} \mu$, then for all $n \geqslant 1, B_{n}(f) \in \operatorname{Lip}_{A} \mu$ also.
An elementary proof of this theorem is given in the next section. The interesting thing about this result is that each of the Bernstein polynomials $B_{n}(f)$, for $n=1,2,3, \ldots$, has the samc Lipschitz constant as the given function f when considered as being in the class of functions $\operatorname{Lip} \mu$. This is another example of the mimicing behaviour of the Bernstein polynomials. Two further small points should be noted. First, since $\lim _{n \rightarrow \infty} B_{n}(f ; x)=$ $f(x)$, for all $x \in[0,1]$, the converse of Theorem 1 is true. Second, by choosing $f(x)$ to be $A x^{\mu}$ and the points x_{1}, x_{2} to be 0,1 , respectively, we see that the constant A cannot be diminished for any value of n.
There is a brief history to this theorem. Bloom and Elliott [1] showed that it was true when $\mu=1$ and for $\mu \neq 1$ showed that $B_{n}(f) \in \operatorname{Lip}_{A}(\mu / 4)$. Theorem 1 was conjectured and, in a private communication to the authors of [1], Dr. Dickmeis stated that the result was true as a consequence of the Peetre K-theory of interpolation between Banach spaces. We shall now give an elementary proof of Theorem 1.

2. Proof of Theorem 1

Let $x_{1} \leqslant x_{2}$ be any two points of $[0,1]$. We need to show that

$$
\left|B_{n}\left(f ; x_{2}\right)-B_{n}\left(f ; x_{1}\right)\right| \leqslant A\left(x_{2}-x_{1}\right)^{\mu},
$$

given that f satisfies (1.4). From (1.1),

$$
\begin{aligned}
B_{n}\left(f ; x_{2}\right) & =\sum_{j=0}^{n}\binom{n}{j}\left(1-x_{2}\right)^{n-j} f\left(\frac{j}{n}\right)\left(x_{1}+\left(x_{2}-x_{1}\right)\right)^{j} \\
& =\sum_{j=0}^{n}\binom{n}{j}\left(1-x_{2}\right)^{n \quad j} f\left(\frac{j}{n}\right)\left\{\sum_{k=0}^{j}\binom{j}{k} x_{1}^{k}\left(x_{2}-x_{1}\right)^{j-k}\right\} \\
& =\sum_{j=0}^{n} \sum_{k=0}^{j} \frac{n!x_{1}^{k}\left(x_{2}-x_{1}\right)^{j-k}\left(1-x_{2}\right)^{n-j}}{k!(j-k)!(n-j)!} f\binom{j}{n}
\end{aligned}
$$

On inverting the order of summation and writing $k+l=j$, then

$$
\begin{align*}
B_{n}\left(f ; x_{2}\right)= & \sum_{k=0}^{n} \sum_{l=0}^{n-k} \frac{n!}{k!l!(n-k-l)!} x_{1}^{k}\left(x_{2}-x_{1}\right)^{l} \\
& \times\left(1-x_{2}\right)^{n} k \quad i f\left(\frac{k+l}{n}\right) . \tag{2.1}
\end{align*}
$$

We now construct a similar double sum for $B_{n}\left(f ; x_{1}\right)$. Again, from (1.1), we have

$$
\begin{align*}
B_{n}\left(f ; x_{1}\right)= & \sum_{k=0}^{n}\binom{n}{k} x_{1}^{k} f\left(\frac{k}{n}\right)\left(\left(x_{2}-x_{1}\right)+\left(1-x_{2}\right)\right)^{n \cdots} \\
= & \sum_{k=0}^{n}\binom{n}{k} x_{1}^{k} f\left(\frac{k}{n}\right)\left\{\sum_{l=0}^{n-k}\binom{n-k}{l}\left(x_{2}-x_{1}\right)^{\prime}\left(1-x_{2}\right)^{n \cdots}\right\} \\
= & \sum_{k=0}^{n} \sum_{l=0}^{n-k} \frac{n!}{k!l!(n-k-l)!} x_{1}^{k}\left(x_{2}-x_{1}\right)^{\prime} \\
& \times\left(1-x_{2}\right)^{n \cdots k-l} f\left(\frac{k}{n}\right) \tag{2.2}
\end{align*}
$$

On subtracting (2.2) from (2.1), we have

$$
\begin{aligned}
& \left|B_{n}\left(f ; x_{2}\right)-B_{n}\left(f ; x_{1}\right)\right| \\
& =\left\lvert\, \sum_{k=0}^{n} \sum_{l=0}^{n-k} \frac{n!}{k!l!(n-k-l)!} x_{1}^{k}\left(x_{2}-x_{1}\right)^{l}\left(1-x_{2}\right)^{n-k-l}\right. \\
& \left.\quad \times\left\{f\left(\frac{k+l}{n}\right)-f\left(\frac{k}{n}\right)\right\} \right\rvert\, \\
& \leqslant
\end{aligned} \begin{aligned}
& \text { (} \sum_{k=0}^{n} \sum_{l=0}^{n-k} \frac{n!}{k!l!(n-k-l)!} x_{1}^{k}\left(x_{2}-x_{1}\right)^{l}\left(1-x_{2}\right)^{n-k-1}\left(\frac{l}{n}\right)^{\mu},
\end{aligned}
$$

on using (1.4),

$$
\begin{aligned}
& =A \sum_{l=0}^{n} \frac{\left(x_{2}-x_{1}\right)^{\prime} n!}{l!(n-l)!}\left(\frac{l}{n}\right)^{\prime}\left\{\sum_{k=0}^{n-l}\binom{n-l}{k} x_{1}^{k}\left(1-x_{2}\right)^{n} \quad l \quad k\right. \\
& =A \sum_{l=0}^{n}\binom{n}{l}\left(x_{2}-x_{1}\right)^{\prime}\left(\frac{l}{n}\right)^{\mu}\left(x_{1}+1-x_{2}\right)^{n-1} \\
& =A B_{n}\left(x^{\mu} ; x_{2}-x_{1}\right), \quad \text { by }(1.1), \\
& \leqslant A\left(x_{2}-x_{1}\right)^{\mu}, \quad \text { by }(1.3) .
\end{aligned}
$$

Thus we see that $B_{n}(f) \in \operatorname{Lip}_{A} \mu$, where A is the Lipschitz constant of f so that the theorem is proved.

References

1. W. R. Bloom and David Elliott, The modulus of continuity of the remainder in the approximation of Lipschitz functions, J. Approx. Theory 31 (1981), 59-66.
2. P. J. Davis, "Interpolation and Approximation," Blaisdell, Waltham, Mass., 1963.
3. G. G. Lorentz, "Bernstein Polynomials," Math. Expo. No. 8, Univ. of Toronto Press, Toronto, 1953.
