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Cathepsin K (catK) is a lysosomal cysteine protease with strong collagenolytic activity that mediates bone
resorption in osteoclasts. Recently, catK expression has been reported in skin and lung fibroblasts, which
suggests a role in maintaining homeostasis of the extracellular matrix outside of bone. Matrix degradation is a
pivotal step in tumor invasion and metastasis. As other proteases, in particular matrix metalloproteinases and
some cathepsins, but not catK, have been described to mediate melanoma invasion, we studied catK in
melanoma. Immunostaining revealed strong catK expression in most primary melanomas and all cutaneous
melanoma metastases. Melanocytic nevi also demonstrated catK expression, but it was less intense than in
melanomas. Melanoma lines express both the pro- and the active form of catK and internalize extracellular
collagen into lysosomes. Inhibition of catK greatly reduced melanoma cell invasion through Matrigel basement
membrane matrix and increased detection of internalized collagen. We suggest that catK may play an important
role in melanoma invasion and metastasis by mediating intracellular degradation of matrix proteins after
phagocytosis. Clinical use of catK inhibitors, a class of medication currently in clinical trials for the treatment of
osteoporosis, may be a promising avenue for the treatment of melanoma.

Journal of Investigative Dermatology (2008) 128, 2281–2288; doi:10.1038/jid.2008.63; published online 27 March 2008

INTRODUCTION
Cathepsin K (catK) is a cysteine protease with strong
collagenolytic and elastolytic activity involved in extracellular
matrix (ECM) turnover that was first characterized as an
important mediator of bone resorption by osteoclasts (Drake
et al., 1996; Everts et al., 1996; Garnero et al., 1996;
Chapman et al., 1997; Yamaza et al., 1998; Xia et al., 1999;
Goto et al., 2003). In osteoclasts, catK has been localized to
lysosomes, where the inactive precursor pro-catK is activated
by auto-proteolysis. It is secreted into the bone resorption
lacunae, where it exerts its resorptive activities at a pH
optimum of 5.5 (Bossard et al., 1996; McQueney et al., 1997;
Dodds et al., 2001; Rieman et al., 2001). CatK has a uniquely
high potency to degrade a wide range of collagens, as it is able
to cleave at multiple sites within the triple helix of collagens
type I and III as well as at extra-helical regions (Garnero et al.,
1996). Other proteases are more limited in their proteolytic
activity on collagen. For example, matrix metalloproteinases
(MMPs) cleave triple helical collagen only at specific single

sites, and other cysteine proteases (cathepsins) cleave collagen
only at the extra-helical regions. CatK upregulation in
osteoclasts is mainly mediated by binding of osteoblast-
derived RANKL (receptor activator of nuclear factor-kB
(RANK) ligand) to its receptor RANK (Troen, 2006).

While a role of catK was long thought to be limited to
bone resorption, it has recently been implicated to be also
involved in the turnover of extracellular matrix proteins in
other organs. These include the lung, where catK deficiency
has been shown to predispose catK-knockout mice to
bleomycin-induced lung fibrosis (Bühling et al., 2004), and
the skin, where we have found it not to be expressed in
normal skin, but upregulated in skin fibroblasts during scar
formation, suggesting that its proteolytic activities counteract
dermal fibrosing processes in the skin (Rünger et al., 2007).

In one of our surgical scar specimens, we observed catK
staining in the cells of a melanocytic nevus. This prompted us
to further investigate the role of catK in melanocyte-derived
skin lesions, including malignant melanoma.

It is well known that tumor-cell invasion requires interplay
of matrix-degrading proteases, growth factors and adhesion
molecules, many of which have been extensively studied in
melanoma (Smolle et al., 1996; Labrousse et al., 2004).

The stroma surrounding melanoma is characterized by
extensive collagen and elastin proteolysis at the invasive front,
carried out by a variety of different proteases. These include
several members of the MMP family, such as MMP-1, MMP-2,
MMP-9, and MMP-13, some of which have been found to be
upregulated in melanoma cells as well as surrounding stromal
cells. This has also been found to correlate with the invasive
and metastatic behavior of melanoma cells and melanoma
prognosis (Hofmann et al., 2000a, 2005). Regarding cysteine
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proteases, cathepsins B and L have been reported to be
upregulated in melanoma and suggested to contribute to cell
invasion (Fröhlich et al., 2001; Dennhofer et al., 2003; Stabuc
et al., 2006). However, the most potent matrix-degrading
protease known, catK, has not been studied in melanoma.

RESULTS
Expression of catK in melanoma

Immunostaining of primary cutaneous melanomas revealed
moderate, strong, or very strong cytoplasmic expression of catK
in 4/5 melanomas in situ, 2/2 thin invasive melanomas (Clark
level II), and 4/5 thick invasive melanomas (Clark level IV)
(Figure 1a). One melanoma in situ showed only focal catK
expression and one thick and ulcerated melanoma only weak
catK expression. Strong staining was observed both in the
dermal, as well as in the epidermal, compartment. Two of the
invasive melanomas showed declining catK expression in
the dermis with increasing depth, whereas the remainder showed
uniform strong catK staining throughout the tumor (shown in
Figure 1a). The keratinocytes of the overlying epidermis were
catK-negative, whereas the pagetoid infiltrate of melanoma cells
in the epidermis were positive (Figure 1b). Some catK-positive
peritumoral stromal fibroblasts were seen in all invasive primary
melanomas except one. All cutaneous melanoma metastases
(n¼6) were strongly and evenly positive for catK (Figure 1c).

Western blot analysis of cultured MM-AN, LIBR, and
MeWo melanoma cell lines demonstrated expression of both
pro-catK (40 kDa) and active catK (25 kDa) in all melanoma
cell lines, whereas cultured primary melanocytes expressed
only pro-catK (Figure 1d).

Expression of catK in non-melanoma skin cancer
In contrast to melanomas, basal cell carcinomas (BCCs;
n¼3) and squamous cell carcinomas (SCCs; n¼4) showed

no (1/3 BCCs, 3/4 SCCs) or weak focal expression of catK
within tumor cells (Figure 2a–d). However, there was strong
expression in the fibroblasts of the peritumoral stroma, which
was much more intense than in the peritumoral stroma
surrounding some melanomas.

Expression of catK in benign melanocytic nevi

Different types of melanocytic nevi, including compound
nevi, intradermal nevi, nevi with features of congenital nevi,
dysplastic nevi, and Spitz nevi, demonstrated variable catK
staining intensity (Figure 2e–h), ranging from absent through
moderate, mostly weaker than the melanomas and melanoma
metastases (Table 1). In all but one of the dermal nevi, catK
staining was observed not only in the nevus cells, but also in
melanocytes in the overlying epidermis (Figure 2f). The one
exception to this was a dermal nevus that was completely
catK-negative.

Actin

Active catK

Pro-catK
1 2 3 4

Figure 1. Malignant melanoma cells express catK. Immunostaining of

primary cutaneous melanomas for catK shows strong staining in both the

dermal and epidermal compartments (a, b). A cutaneous melanoma

metastasis is strongly positive for catK as well (c). Western blot demonstrates

that cultured melanoma cell lines (MM-AN, LIBR, and MeWo, lanes 2–4,

respectively) express both pro-catK (37 kDa) and active catK (25 kDa).

Bars¼ 100 mm. (d). Cultured primary melanocytes (lane 1) express pro-catK

but not active catK.

Figure 2. CatK expression in BCC, SCC, and different types of melanocytic

nevi. Immunostaining of a BCC (a and b) shows no catK staining within the

tumor cells, but strong catK expression in the peritumoral stroma fibroblasts.

Similarly, a SCC (c and d) shows only weak expression within tumor cells, but

very strong expression in peritumoral stroma. There is weak-to-moderate

staining in a compound melanocytic nevus (e), an intradermal melanocytic

nevus (f), a dysplastic nevus with mild atypia (g), and a Spitz nevus (h). Both

the compound and the intradermal nevus demonstrate declining catK staining

with increasing depth (e and f). Single melanocytes overlying the intradermal

nevus are also catK-positive (f). Bars¼100 mm.
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CatK expression in melanoma is not regulated by the
RANK/RANKL pathway

Western blot analysis demonstrated the expression of
RANK and RANKL by three different melanoma cells lines
(Figure 3a). The expression levels of RANK and RANKL in
these lines varied and were inversely related, with melanoma

lines with the highest RANK expression (MM-AN) showing
the lowest RANKL expression and vice versa (LIBR and
MeWo). However, treatment with RANKL did not increase
catK expression in these three melanoma lines (Figure 3b–d),
suggesting that activation of the RANK/RANKL pathway does
not regulate catK expression in melanoma cells.

Inhibition of catK inhibits melanoma invasion

With MeWo and MMAN melanoma cells plated onto the
Matrigel-coated membranes, treatment with the catK inhi-
bitor greatly reduced the number of invading cells (Figure 4).
When placed onto uncoated control membranes and counted
after 18 (MeWo) or 20 hours (MMAN), the mean number of
diluent-treated cells migrating through the membrane was
274 with MeWo cells and 159 with MM-AN cells. The
number of catK inhibitor-treated (any concentration) mela-
noma cells migrating through the uncoated membrane was
not statistically different from the number of diluent-treated
cells. This indicates that the inhibitor was not toxic and did
not affect the ability of the cells to migrate (as opposed to
their ability to invade through Matrigel). A mean number of
156 MeWo cells or 80 MMAN cells invaded through the
Matrigel with diluent treatment, indicating an invasion index
of 56.9 and 50.4% for the two cell lines. When estimating a
plating efficiency of approximately 50, 0.6% of diluent-
treated MeWo cells and 0.3% of diluent-treated MM-AN cells
had invaded through the Matrigel at the indicated time
points. An invasion index of 0.11 with MeWo cells and of
0.02 with MMAN cells with the highest concentration of the
catK inhibitor indicates a reduction of invasion by 89 and
98%, respectively. A dose response was observed, as lower
doses of the catK inhibitor demonstrated less reduction of
invasion. LIBR cells did not migrate through the uncoated
membrane of the invasion chamber membrane and therefore
could not be used for these invasion studies.

Melanoma cells internalize collagen IV

Twenty-four hours after adding Oregon green-labeled col-
lagen IV to melanoma cells, internalized collagen was
detectable in 14.3% of MeWo and 17.7% of MM-AN cells
(Figure 5a and c). The internalized collagen colocalized with
LAMP1 (lysosome-associated membrane protein 1), which
demonstrates that internalized collagen is located in lyso-
somes (¼ late endosomes). Observations over time after
adding labeled collagen revealed that at the 1-, 3-, and
9-hour time points most internalized collagen is found close
to the cell borders and does not colocalize with LAMP1
(Figure 5b, left panel). This is consistent with localization of
internalized collagen in early (LAMP1-negative) endosomes
at these early time points. At the later time points (16, 21, 24,
and 26 hours after adding collagen IV), most of the
internalized collagen was found all over the cytoplasm and
colocalized with LAMP1, demonstrating its localization in
lysosomes (Figure 5b, middle panel). At the latest time point
(26 hours), some cells were observed in which internalized
collagen was restricted to one small perinuclear, LAMP1-
positive compartment (Figure 5b, right panel). With inhibition
of catK, the fraction of cells with detectable internalized

Table 1. CatK expression in melanocytic nevi

Type of
nevus

CatK staining
intensity1 Comments on staining pattern

CMN + Focal staining, in junctional

compartment only

CMN + Focal staining, in junctional

compartment only

CMN, CNF + Focal staining, in junctional

compartment only

CMN, CNF + Focal staining, in junctional
compartment only

CMN, CNF + Staining in dermal and epidermal

compartments

CMN, CNF + Staining in dermal and epidermal

compartments

CMN, CNF ++ Staining in dermal and epidermal

compartments

CMN, CNF ++ Staining in dermal and epidermal

compartments

IDMN �

IDMN +

IDMN +

IDMN, CNF �

IDMN, CNF +

IDMN, CNF ++

JDN2 + Focal staining

JDN3 + Focal staining

JDN3 + Focal staining

CDN2 �

CDN2 + Focal, staining in epidermal

compartment only

CDN2 + Staining in epidermal compartment only

CDN2 ++ Staining in epidermal compartment only

JSN4 +

CSN �

CSN + Staining in epidermal compartment only

IDSN +

CatK, cathepsin K; CDN, compound dysplastic nevus; CMN, compound
melanocytic nevus; CNF, with histopathological features of congenital
melanocytic nevus; CSN, compound Spitz nevus; IDMN, intradermal
melanocytic nevus; IDSN, intradermal Spitz nevus; JDN, junctional
dysplastic nevus; JSN, junctional Spitz nevus.
1�, no staining; +, weak staining; ++, moderate staining; +++, strong
staining; ++++, very strong staining.
2Mild atypia.
3Moderate atypia.
4None of the Spitz nevi were atypical Spitz nevi.
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collagen IV increased 2.1- and 2.6-fold for MeWo and
MM-AN cells, respectively (Figure 5c; P¼ 0.03). This suggests
that rapid degradation of internalized collagen by catK limits
detectability of internalized collagen.

DISCUSSION
Here we describe, to our knowledge for the first time,
expression of catK in malignant melanoma and its cutaneous
metastases, both in-vivo and in-vitro. As catK is the most
potent collagenase known, this suggests that it may play an
important role in melanoma invasion and metastasis. This is
further supported by our findings that inhibition of catK
greatly reduces invasion of two different melanoma cell lines
in an in-vitro invasion assay.

Mechanisms that enable tumor cells in general to invade
into adjacent tissue and, during metastasis, into blood and
lymph vessels and into distant tissues, have been subject of

intense research. One crucial aspect of tumor invasion and
metastasis is degradation of the extracellular matrix. Much
research has focused on MMPs as mediators of this process
(Curran and Murray, 1999; Stetler-Stevenson, 2001; Yoon
et al., 2003; Deryugina and Quigley, 2006). For melanoma in
particular, MMPs have been shown to play a role in tumor
invasiveness and metastatic behavior in vivo and in vitro,
including mouse models, and to correlate with tumor stages
and clinical prognosis in patients (Ray and Stetler-Stevenson,
1995; Itoh et al., 1998, 1999; Schultz et al., 1988; Vaisanen
et al., 1998; Hofmann et al., 2000a, b, 2003, 2005; Nikkola
et al., 2002, 2005; Iida et al., 2004). Treatment of melanoma
cells with an MMP inhibitor was shown to reduce melanoma
cell invasion through Matrigel, but only by 55% (Durko et al.,
1997), which is less than the 87 and 98% reduction we
observed with treatment of MeWo and MMAN melanoma
cells with a catK inhibitor. Given all these data, MMPs have
been considered promising targets for anticancer therapies.
However, clinical trials using several generations of MMP
inhibitors failed to slow tumor progression (Coussens et al.,
2002; Overall and Kleifeld, 2006b). This may indicate that
MMPs, although contributory, are not the most important
players in tumor-mediated extracellular matrix degradation.

MMPs degrade ECM proteins in the extracellular environ-
ment. Recently, however, the intracellular degradation of
ECM proteins has been suggested to be more important for
tumor invasion (Overall and Kleifeld, 2006a). Fibroblasts are
known to internalize extracellular collagen via phagocytosis
after binding of collagen to collagen receptors (for example,
a2b1 integrin) (Lee et al., 1996). Given that melanoma cells
express a variety of collagen receptors (Kramer and Marks,
1989), it is not surprising that melanoma cells, as we show
here, are as well capable of internalizing extracellular
collagen via endocytosis into lysosomes. The high expression
of the lysosomal protease catK in melanoma cells suggests
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Figure 3. Treatment with RANKL does not induce catK expression in melanoma cells. Western blot demonstrates that cultured melanoma cell lines MM-AN,

LIBR, and MeWo express both RANK and RANKL to varying degrees (a). However, treatment of cultured melanoma cells with RANKL did not induce catK

expression in either cell line, as compared with diluent-treated cells (MM-AN (b); LIBR (c); MeWo (d)). RANKL (80 ng ml�1; R&D Systems) or diluent (complete

medium) was added to non-confluent, exponentially growing cells once and protein was harvested for immunoblotting on five consecutive days.
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Figure 4. Inhibition of catK dose dependently inhibits invasion of MeWo and

MMAN melanoma cells through a reconstituted basement membrane.

Shown are means±SD of triplicate samples 18 (MeWo) or 20 hours (MM-AN)

after cell plating.
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that it contributes to intracellular degradation of internalized
collagen through its strong and versatile collagenolytic
activity. This is further supported by our finding that
inhibition of catK increased detection of internalized
collagen, presumably because the high levels of catK in
melanoma cells rapidly degrade internalized collagen when
not inhibited. Therefore, we would like to suggest catK
as a promising target for treatment of malignant melanoma.
Potent catK inhibitors have already been developed and
investigated in clinical trials for the treatment of osteoporosis

(Adami et al., 2006). Unlike MMPs, which are produced
predominantly by the peritumoral stromal cells, melanoma
cells themselves strongly express catK, making catK-mediated
ECM degradation independent of the peritumoral stroma.
Nevertheless, as we show that most melanomas are
characterized also by an upregulation of catK in peritumoral
fibroblasts, inhibition of catK would not only target tumor
cell-, but also stroma cell-mediated ECM degradation.

In osteoclasts, catK degrades bone collagen not only
intracellularly, after internalization into lysosomes, but also
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Figure 5. Melanoma cells internalize collagen IV. Twenty-four hours after adding Oregon green-labeled collagen IV, many MeWo melanoma cells demonstrate

intracellular collagen IV (a). Colocalization with the lysosomal protein LAMP1 demonstrates that internalized collagen IV is located in lysosomes. Green,

collagen IV; blue, DNA (4’,6-diamidino-2-phenylindole); and red, LAMP1. Time-dependent progression through different stages of endocytosis during collagen

IV internalization in MeWo melanoma cells. (b) Three hours after adding Oregon green-labeled collagen IV, most of the intracellular collagen IV was located

along cell borders and did not colocalize with LAMP1. This is consistent with localization in early endosomes. Within 24 hours, internalized collagen IV is found

all over the cytoplasm within LAMP1-positive lysosomes (late endosomes). Within 26 hours, some cells demonstrate concentration of internalized collagen in

perinuclear lysosomes. Bar¼ 10 mm. Inhibition of catK increases detection of collagen IV internalization in MeWo and MM-AN melanoma cells (c). Five hours

before adding Oregon green-labeled collagen IV, cells were treated with the catK inhibitor Boc-1. Twenty-four hours after adding labeled collagen,

internalization of collagen IV was scored in three separate fields (100 cells each). Shown are means±SD.
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extracellularly after secretion into bone resorption lacunae.
The low pH optimum of catK limits its extracellular activity to
acidic environments. Given that a tumor microenvironment
is often acidic, it is perceivable that secreted catK could also
contribute to ECM degradation of tumors. The pH of human
melanoma, as measured by electrodes, has been reported to
be within the range of 6.4–7.3 (Vaupel et al., 1989), which is
likely not low enough for secreted catK to be highly active.
However, some melanoma micro-compartments may have
an even lower pH, so that a collagenolytic activity of catK in
the extracellular space cannot be entirely excluded. The
observation that an acidic extracellular pH promotes
melanoma metastasis in mice (Rofstad et al., 2006) may be
interpreted to support a role of extracellular catK activity in
melanoma. However, given catK’s intracellular collagenoly-
tic activity in acidic lysosomes, its matrix-degrading capabil-
ities are not limited to an acidic environment.

Osteolysis in bone metastasis, including melanoma bone
metastasis, has often been thought to be mediated by a tumor
cell-mediated activation of osteoclasts (Hiraga et al., 1995;
Guise et al., 2006). However, evidence that melanoma cells
can also directly degrade bone has been provided by
Sanchez-Sweatman et al. (1997) using a mouse melanoma
model. Given that melanoma cells strongly express catK
themselves, as we show here, it is possible that in melanoma
bone metastases, the tumor cells themselves degrade bone,
and are not dependent on an activation of osteoclasts.
Therefore, treatment with a catK inhibitor might be particu-
larly promising for the treatment of bone metastases of
melanoma, as it would inhibit bone degradation not only by
osteoclasts, but also by melanoma cells themselves.

Alternatively, instead of using a catK inhibitor to reduce
tumor invasion and metastasis, targeting catK-stimulating
signals may be another treatment avenue. Recently, inhibi-
tion of RANKL, a potent regulator of catK, has been suggested
for the treatment of lytic bone lesions in multiple myeloma
(Heath et al., 2007). Here, we show that melanoma cells
express both RANK and RANKL. However, treatment with
RANKL did not induce catK expression in these cells,
suggesting that treatment with a RANKL inhibitor may not
have the desired effects on catK expression in melanoma.

CatK immunostaining showed clearly different staining
patterns for melanomas and non-melanoma skin cancers.
Unlike melanomas, SCCs and BCCs do not or only focally
express catK. However, they demonstrate prominent catK
staining in the peritumoral stroma, the invasion front in
particular. It has previously been shown that BCC tumor cells
demonstrate low proteolytic activity when compared with
adjacent stromal tissue (Schlagenhauff et al., 1992), suggest-
ing that the dense fibrotic stromal tissue in these types of
tumors does not constitute an inert barrier to invasion, but
rather is an active contributor to tumor growth and invasion.
We would like to add that stromal catK expression might
contribute, at least in part, to invasion of non-melanoma skin
cancers. It is noteworthy that both SCCs and BCCs readily
invade bone per continuum, likely to be mediated through
activation of osteoclasts at the invasion front. However, when
these tumor cells encounter an invasion barrier in which catK

cannot be induced, they would fail to invade and
produce metastasis. This may explain why BCCs, and to a
lesser degree SCCs, are less prone to metastasize than
melanoma.

The expression of catK is not limited to malignant
melanoma, but is also found in benign melanocytic nevi.
One might speculate that catK expression in nevus cells
enables them to invade into the dermis, which is part of their
natural ‘‘life cycle’’ and is unrelated to malignancy. Most
catK-expressing nevi showed the strongest catK expression in
the epidermis and upper dermis, and declining catK
expression with increasing depth. While this was seen in
some melanomas, many melanomas did not demonstrate
such ‘‘maturation’’.

Melanocytes in normal skin were found to not express
catK. However, we do not believe that catK expression
differentiates melanoblasts/nevus cells from melanocytes, as
we found that melanocytes in the epidermis overlying most
dermal nevi were catK positive and that melanocytes in
culture expressed catK as well. It, therefore, appears that
melanocytes have an innate capability to express catK, but
need certain stimuli, presumably present in melanocytic nevi
and melanomas, to do so. An innate capability of melano-
cytes to invade, for example, during the natural ‘‘life cycle’’
of nevi or during embryonal migration from the neuroecto-
derm into the epidermis may explain the ease with which
melanomas invade and metastasize. It is tempting to
speculate that catK is involved.

MATERIALS AND METHODS
Immunostaining

Immunostaining was performed on formalin-fixed, paraffin-

embedded sections of six primary cutaneous melanomas, seven

cutaneous melanoma metastases, three BCCs, four SCCs, and 25

melanocytic nevi of different types. The melanocytic nevi included

eight compound nevi (of which six displayed histopathological

features of congenital nevi), six intradermal nevi (of which three had

histopathological features of congenital nevi), three junctional

dysplastic nevi with mild or moderate atypia, four compound

dysplastic nevi with mild atypia, and four Spitz nevi (one junctional,

two compound, and one intradermal; none of which were atypical).

For catK-staining we used a monoclonal catK antibody (Novocastra,

Newcastle upon Tyne, UK) at a dilution of 1:40 for 32 minutes on an

automated immunohistochemistry system (Ventana Benchmark LT;

Ventana Medical Systems, Tucson, AZ), and counterstained with

hematoxylin and a postcounter staining with blueing reagent

(Ventana Medical Systems).

Cell culture

Primary human melanocytes were obtained from surgical specimens

of neonatal foreskin as described previously (Gilchrest et al., 1984),

and cultured in calcium-free minimal essential medium 199 (Gibco/

Invitrogen, Grand Island, NY) supplemented with 5% fetal calf

serum, insulin, T3, transferring, epidermal growth factor, basic

fibroblast growth factor, hydrocortisone, and inositol. The melanoma

cell lines MMAN, MeWo, and LIBR were cultured in DMEM (Gibco/

BRL, Rockland, MA) supplemented with 10% calf serum, and grown

at 37 1C in a humidified 5% CO2 atmosphere. LIBR is derived from a
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primary malignant melanoma; MMAN and MeWo from melanoma

metastases.

Western blotting

Western blot analysis was performed employing standard proce-

dures, with proteins harvested from subconfluent exponentially

growing cells. Antibodies used were directed against catK (rabbit

polyclonal, detects both the pro- and the active form of catK, 1:200

dilution; Abcam, Cambridge, MA), RANK (mouse mAb, 1:170

dilution; R&D Systems, Minneapolis, MN), RANKL (mouse mAb,

1:140 dilution; R&D Systems), and actin for loading control (goat

polyclonal, horseradish peroxidase-conjugated, 1:2,000; Santa Cruz

Biotechnology, Santa Cruz, CA).

Melanoma cell invasion assay

Melanoma cell lines were treated with the diluent or the

lysosomotropic, water-soluble polymer selective catK inhibitor

Boc-I (catK inhibitor II; Calbiochem, La Jolla, CA) at concentrations

of 0.1, 0.5, and 1mM for 5 hours (Wang et al., 2002). Complete

inhibition of catK has been demonstrated for the 1 mM concentration

in synovial fibroblasts. Other cathepsins are much less inhibited by

this agent (Ki 90–10,000-fold higher). Fifty thousand cells in serum-

free medium were then placed into the inserts of BioCoat Matrigel

invasion chambers (Becton Dickinson Biosciences, Bedford, MA)

and again treated with the catK inhibitor. In the invasion chamber

inserts, an 8-mm pore size polyethylene terephthalate membrane is

coated with basement membrane matrix, and cells invade and

migrate along a nutrient gradient provided by complete medium (5%

fetal bovine serum) in the chamber well. Parallel control experi-

ments were performed with uncoated chamber inserts. After 18

(MeWo) or 20 hours (MMAN), all cells that invaded through the

matrix and migrated through the pores of the membrane were

counted after methanol fixing and staining with Diff-Quik (Dade

Behring, Newark, DE) using a light microscope. The assay was

performed in triplicates. Percent invasion was calculated as the ratio

of the mean number of cells migrating through the Matrigel-covered

membrane and the mean number of cells migrating through the

control membrane (not covered by Matrigel). The invasion index was

calculated as the ratio between % invasion of the catK inhibitor-

treated cells and the % invasion of diluent-treated cells.

Collagen IV internalization and localization experiments

Internalization of collagen IV by melanoma cells was studied as

described by Kjøller et al. (2004) for fibroblasts. Briefly, cells were

seeded onto glass coverslips and grown for 48 hours in complete

medium. Thirty minutes prior to adding Oregon green-labeled

collagen IV (25 mg ml�1; Molecular Probes-Invitrogen, Carlsbad,

CA), cells were washed twice in ice-cold serum-free medium and

kept at 4 1C for 30 minutes. For inhibitor studies, cells were

preincubated with the selective catK inhibitor Boc-I (1 mM; catK

inhibitor II, Calbiochem) or diluent for 5 hours prior to incubation in

collagen IV.

Cells were kept at 4 1C for another 2 hours to allow binding of

collagen before transfer to 37 1C for various periods of time (1, 3, 9,

16, 21, 24, and 26 hours). For quenching of extracellular, non-

internalized collagen, cells were incubated with 0.4% trypan blue

(Sigma-Aldrich, St Louis, MO) in saline solution for 5 minutes before

washing and fixation. Cells were fixed in 4% paraformaldehyde

(10 minutes at room temperature) and permeabilized by immersion

in methanol/acetone (1:1) at �20 1C for 1 minute. After blocking

with 10% goat serum ( Jackson ImmunoResearch, West Grove, PA)

in 0.1% nonidet-40/phosphate-buffered saline (30 minutes at room

temperature), cells were incubated with mouse anti-LAMP1 (BD

Pharmingen, San Jose, CA), 1:250, in 1% BSA/phosphate-buffered

saline (16 hours at 4 1C). After washing with 0.1% nonidet-40/

phosphate-buffered saline (3� 10 minutes), cells were incubated

with a secondary antibody (1:500; Rhodamine Red-X-conjugated

anti-mouse IgG; Jackson ImmunoResearch) for 1 hour at

room temperature, washed three time with 0.1% nonidet-40/

phosphate-buffered saline, and mounted on glass slides using a

4’,6-diamidino-2-phenylindole-containing embedding medium

(Vectorshield; Vector Laboratories, Burlingame, CA). Cells were

inspected with an Eclipse E400 fluorescence microscope (Nikon,

Melville, NY) and images were acquired with a Spot RT digital

camera and Spot Advanced RT software (Diagnostic Instruments,

Sterling Heights, MI). Co-staining of internalized collagen with

LAMP1 indicates localization in lysosomes/late endosomes, whereas

missing co-staining with LAMP1 is consistent with localization in

early endosomes, which are LAMP1-negative and usually localize

closer to the cell membrane.

All studies have been approved by the authors’ Institutional

Review Board and the Declaration of Helsinki Principles have been

followed. Patient consent was not required because data were

collected without patient identifiers.
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