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Abstract 

Spatial relationships between trees play an important role in forest ecosystem and its dynamics. These relationships 
determine how much of the common resources are available for an individual tree and influence the growth and 
mortality of the tree through a competition process. The way how plants share the available resources determines the 
mode of competition. In the case where a tree influences another tree but not vice versa we speak about asymmetric 
competition, otherwise competition is symmetric. When modelling interactions between neighbouring trees it is 
natural to assume that the size of a tree determines its hierarchical level: the largest trees are not influenced by any 
other trees than the  trees  in the same size class, while trees in the other size classes are influenced by the other trees 
in the same class as well as by all larger trees. Thus, in general there are both kind of interaction between trees: 
symmetric and asymmetric. We take an approach to quantify the strength of the competition process between the 
trees which is based on the hierarchy of trees. The space-time model considered here is based on a spatial point 
process with time-dependent marks where the asymmetric competition is incorporated into the model by interaction 
kernels. 
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1. Introduction 

Spatial relationships between trees play a fundamental role in forest ecosystem and its dynamics, 
governing together with other factors competition, growth, mortality and regeneration processes of a plant 
community [1]. The study of the spatial relations, i.e. the spatial structure of a forest stand, is of great 
interest in plant ecology because it allows to advance in the understanding of underlying ecological 
processes. When studying a forest or plant community both aspects, temporal and spatial are tightly 
coupled: spatial patterns are result of ecological processes operated in the past, whilst temporal changes of 
individual trees depend on other trees and cannot be considered as independent units. 

A natural way to describe the plant community dynamics is to apply the individual-based models [2], 
which combine spatial and temporal processes, providing a link between pattern and processes. An 
advantage of these models is their flexibility and a potential ability to take into account many real world 
features of ecological community dynamics, including local interactions, individual variability, adaptive 
behaviour, and heterogeneous distributions of resources and other environmental factors. 

Unfortunately, being highly structured with many parameters the individual-based models can suffer 
from identification problem. Data needed to calibrate their parameters are very expensive in terms of 
timing and labor consumption to collect them and large enough datasets are rarely available. 
Consequently, instead of estimating parameters of the whole space-time model only submodels are fitted 
to data [3]. Typically, three submodels are considered: spatial birth, spatial growth and spatial death 
models. Although these three processes are substantially different, they have a common aspect being 
affected by competition process which plays a crucial role in plant community dynamics. 

The competition process is an important determinant of the fate of an individual tree, and it is 
responsible for small-scale heterogeneity. Unfortunately, this process is not easily detected, because it is 
often masked by phenotypic plasticity and adaptation mechanisms of organisms as well as various large-
scale heterogeneities, like micro-climatic or soil patches distributions. Competition is a consequence of 
limitation of resources which plants use for their life. Tension of the competition process is not constant 
and depends on the stage of a plant development and local environment.   

Important property of competition is non-symmetricity which is connected to size-specific interaction 
between trees.  Two modes of competition are distinguished: asymmetric and symmetric competition. By 
symmetric competition we mean that if a tree influences a neighbouring tree, then the neighbour also 
influences the tree, and they share the available resources equally or proportionally to the sizes of the 
trees. However, the competition between trees is not symmetric: typically a large tree influences a small 
one but not vice versa, at least if the sizes of the trees are very different [4]. 

In the paper we consider modelling spatial structure of plant community with this specific point of 
view: an ability of models to address the key property of the competition process in ecological systems  - 
the mode of interaction. 

2. Space-time individual-tree based models 

The core of the individual-tree based models is tree growth modelling. Fox et al. [5] give a review of 
tree growth studies, and conclude that individual tree modelling methodologies need to characterise and 
include structured stochasticity (i.e. spatial and temporal dependence). They mention that historically, 
forest growth modelling has mainly been concentrated on the deterministic prediction of mean trends, and 
that until recently individual tree growth modeling methodologies have treated individual trees as 
independent units. It is wide recognized now that spatial dependence affects inference and cannot be 
eliminated from the analysis, see e.g. [6,7, 8]. 
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Individual-tree growth models are characterized by explicit spatial locations of trees, growth function 
describing potential growth when a tree has no competitors, and the reducing growth effect due to 
interactions with neighbouring trees. Such models are very convenient for experimenting with different 
management strategies to optimisize yield and predict forest dynamics. Parameter estimation for the 
individual-tree growth model can, however, be difficult because spatial relations between trees change 
with time as trees grow. As to our knowledge there does not exist any space-time likelihood-based 
statistical model to describe these complicated temporal relations between spatially interacting objects. 
Instead, some space-time marked point process simulators [9, 10], which belong to a family of the 
individual-based models, were proposed.  

The general structure of the growth model for an individual tree is 
 

Vi,T  = fpot (Vi,T  ,  S) (1-Ci,T  ),                                                                                                                (1) 
 

where Vi,T  is  T -year increment of the size characteristic, e.g., a stem diameter, of the ith tree, T is the 
age of the tree;  fpot is a potential growth rate function of a tree, when it has no competitors, S is a set of 
parameters describing the stand-level characteristics and environmental factors; Ci,T [0,1] is a coefficient 
which controls depression of the growth due to competition: C=0 corresponds to free growth and C=1 
corresponds to a stop of growth. 

2.1.  Competition load 

Much research was devoted to a choice of the coefficient C which is known as the competition load or 
index [11]. There are two main approaches to calculate the competition load affecting the tree growth: 
ecological field theory [12] and field of neighbours (FON) method [13]. Here we extend the latter to 
combine appealing properties of both approaches. Assume that the competition load at a given point 
z=(x,y) is additive 

 
                                                                                                             (2) 
 

where is the competition load of the j-th tree at an arbitrary point z, and  is the 
Euclidean distance between the location of  tree j and another location in the forest, z.  Typically, function 
U decreases with increasing distance . To calculate overall competition load on tree i created by 
all competitors of the tree, the FON approach proposes to relate the competition load from all competitors 
of tree i on resource domain Ai of the ith tree to that without competition load, 
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More generally, define the competition load which is experienced by tree i as a trade-off between tree and 
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where *
iU  is a function determining how the resource at location z is  partitioned between tree i  and its 

competitor  j. An advantage of the form of the competition load is that it allows for adjusting competition 
to directional effects. 
 
2.2.  Asymmetric competition 
 

The inter-plant competition leading to the growth rate slowdown is not necessarily symmetric. A 
property of asymmetricity of competition is widely accepted by ecologists and it can be easily modelled 
by the competition indeces by means of size-ratio functions. To be clear, we will distinguish size-
dependent symmetricity and asymmetricity. Asymmetric competition means that larger individuals have a 
disproportionate advantage over smaller individuals leading to a growth depression of the latter. With size 
symmetric competition, plants share resources proportionally to their size. It is usually assumed that light 
competition is size asymmetric whereas below-ground competition is size symmetric [13]. We present 
here the competition kernel in more general form as 
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where iW  is an influence function of the ith tree at location z, depending on its size TiV ,   and distance 

 , e.g., ))(exp( 2
, zdistVW iTii , where a scale parameter  is site and species-specific. 

Function 1f  can be viewed as a joint influence function and it is symmetric, whilst 2f  is an 

antisymmetric function (i.e. ),(),( 22 stftsf  ), and it characterises the difference in the strength of 
the influence. The logit function is the inverse of the logistic function and  is the parameter of 
asymmetry. Although modelling asymmetric competition is simple, only a few studies have dealt with 
empirical investigation of the relationship between mode of competition and the spatial pattern of a plant 
community.  
 
2.3.  Establishment and mortality modelling 

 Depending on objectives of the modelling, individual-tree based models can include submodels of 
newly arriving trees and mortality process. Locations of new trees (saplings) are modelled typically by 
means of inhomogeneous Poisson process where the intensity may depend on positions of existing trees 
and distribution of environmental factors, e.g., soil type. The mortality process is typically determined by 
a rule that a tree is considered dead when the increment of the tree size is less than a given threshold. 
Besides, the model may include stochastic death which is a consequence of other causes than competitive 
inhibition and age limit. 

 
2.4.  Evaluation of the space-time individual-tree based models 

 
Evaluation of parameters of the individual-tree based models is hampered by small empirical 

databases. Data records on long-term dynamics of forest ecosystems with spatial information are unique. 
Only recently with applying remote sensing methods such datasets have become available for research 
purposes.  

There are some attempts to estimate parameters of the space-time individual-tree based models. Särkkä 
and Renshaw [6] suggested the method of least squares, where the sum of the squared differences of 
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observed and predicted (model based) marks (sizes of the trees) are minimized with  respect to the 
parameters. However, this estimation procedure does not control the spatial pattern of trees, and therefore 
the final model can create forests, where the size distribution is similar to the one in the data but the 
spatial structure differs.  

While data on long-term forest dynamics are limited, mapping short-term changes of tree dimensions 
is usually used for evaluation of submodels of forest ecosystem dynamics. For comparison of competition 
indexes and prediction of growth of trees, regression models, where the competition index is used as a 
predictor, are often applied. In case of spatial data the regression techniques can be account for spatial 
autocorrelation [6]. In particular, spatial model of mortality based on auto-logistic regression was 
introduced by Rathbun and Cressie [3]. 

3. Spatial point processes models with non-symmetric interactions 

Often, data are purely spatial, i.e tree locations are mapped only at one time point. Although lack of the 
temporal component makes prediction of forest development difficult if not impossible, analysis of the 
spatial data enables to assess some characteristics of inter-plant competition. To model the spatial 
structure of a forest stand, spatial point processes with local interactions (Gibbs models) have been 
proved to be useful [14], because they allow to take into account the inter-plant competition. However, 
these models are not capable to account for non-symmetricity of interactions between individuals within a 
plant community. To overcome this limitation of the traditional form of Gibbs models, point processes 
with hierarchical interaction were proposed by Grabarnik and Särkkä [15]. The main idea is that 
information on size of trees allows to build the partial ordering among trees corresponding to the natural 
hierarchy of plant community. Ecologically justified assumption that large trees influence smaller trees 
but not vice verse, can be modelled as a sequence of Gibbs point processes. Locations of points in one of 
the subprocesses in the sequence depend only on the neighbouring points of that process and on the points 
of processes at higher levels (i.e. processes that come earlier in the sequence) but not on points of the 
processes at lower levels (i.e. processes that come later in the sequence).  

Formally, the Gibbs point process with hierarchical interactions is a vector  of q finite 
Gibbs point processes with a density  
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                                                                      (6)
 

 
where z  is the ordered set of subpatterns },{z 1 kknkk zz , and )z,,z|(z 11 kkkf , , is the 
density of the Gibbs point process conditional on points of all subpatterns of upper levels. The densities 
are specified by interaction (potential) functions which describe local interaction between points which 
may be inhibitive  as well as attractive. An example where the hierarchical model has been fitted to a real 
forestry dataset can found in [15]. 

Note, that any Gibbs point process with hierarchical interactions can be viewed as multivariate Gibbs 
point process without hierarchical relations, but their interaction functions will take the different form, 
and the interaction parameters will have a different interpretation. For example, the bivariate Poisson 
process ) with the hard core interaction between points of different type (the Widom–Rowlinson 
mixture model) has the marginal process , which is the area-interaction Gibbs process, having much 
more complex structure of interactions. Thus, applying this two-types point process model to the analysis 
of the mutual arrangement of dominant trees and suppressed trees, it is more natural to define first the 
marginal model of dominant trees and then the model of conditional distribution for the suppressed trees. 
Both variants of the Gibbs model (hierarchical and non-hierarchical) are able to describe an observed 



Pavel Grabarnik and Aila Särkkä / Procedia Environmental Sciences 7 (2011) 62–67 67

point pattern. It would be interesting to compare estimated interaction functions of both representations of 
the model of hierarchical and non-hierarchical type when the data are generated by the space-time 
individual-tree based model with the asymmetric competition. 

4. Conclusions 

We have given a general form for the competition index of the space-time individual-tree based 
models, which allows for asymmetric interaction. Furthermore, we have suggested how the asymmetric 
interaction can be incorporated in spatial point process models for the tree locations. Our final goal, 
however, is to construct a full space-time model, which allows for likelihood-based inference. The 
hierarchical Gibbs point processes are a natural starting point and a building block to reach this goal. 
Therefore, the direction of future work is to investigate theoretical properties of the hierarchical Gibbs 
point processes and, then, to include temporal component in the model.  
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